MATH 111 Spring 2006

Practice Test 2 - Solutions

1. Read the textbook!

2.

(a)

(b)

()

(e)

If n is an integer such that 5|(n — 1), then n = 1 (mod 5). Then n®+n—2 =
134+ 1—2=0 (mod 5). This implies that 5|(n® + n — 2). (This is a direct
proof.)

Another proof: If n is an integer such that 5/(n—1), then n—1 = 5k for some
k € Z. Then n = 5k + 1, therefore n® + n —2 = (5k+1)> + (bk + 1) — 2 =
125k3 4+ 75k? + 15k +1+5k+1—2 = 125k3 +75k*+ 20k = 5(25k3 + 15k% +4k).
Since 25k3 + 15k? + 4k € Z, 5|(n® + n — 2). (This is also a direct proof.)

Assume that logs 2 is rational. Then logs 2 = m for some m,n € Z, n > 0.
n

Then 3% = 2, s0 3™ = 2". Sincen > 0, 3™ = 2" > 1, so m > 0. Since
3 =1 (mod 2), 3™ =1 (mod 2), so 3™ is odd. However, 2" = 22" is
even. We get a contradiction. Therefore log, 2 is irrational. (This is a proof
by contradiction.)

We will prove this statement by contrapositive. Assume that n is odd. Then
n = 2k+1 for some k € Z. Then Tn?+4 = 7(2k+1)?+4 = 7(4k>*+4k+1)+4 =
28k% + 28k + 11 = 2(14k* + 14k +5) + 1. Since 14k* + 14k +5 € Z, Tn* + 4
is odd.

First we will prove that if 3|(mn) then 3|m or 3|n. We will prove this by
contrapositive, namely, we will prove that if 3 fm and 3 /fn, then 3 f(mn).
If 3 fm, then m = 3k 4+ 1 or m = 3k + 2 for some k € Z. If 3 /n, then
n =314+ 1 or n =3+ 2 for some [ € Z. Thus we have four cases:

Case I: m = 3k+1, n = 3l+1. Then mn = (3k+1)(3l4+1) = 9kI+3k+3l+1 =
3(3kl+k+1)+ 1. Since 3kl +k+1€Z,3 J(mn).

Case II: m = 3k+1, n = 3l1+2. Then mn = (3k+1)(3{+2) = 9kl+6k+31+2 =
3(3kl + 2k +1) + 2. Since 3kl + 2k +1 € Z, 3 f(mn).

Case III: m =3k + 2, n =31+ 1. Then mn = (3k +2)(3l + 1) = 9kl + 3k +
6l + 2 =33kl + k +2l) + 2. Since 3kl +k+2l € Z, 3 f(mn).

Case IV: m =3k + 2, n = 3l + 2. Then mn = (3k +2)(3l + 2) = 9kl + 6k +
61+ 4 = 3(3k1 + 2k + 20 + 1) + 1. Since 3kl + 2k + 21+ 1€ Z, 3 J(mn).
Next we will prove that if 3|m or 3|n, then 3|(mn). Here we have two cases:
Case I: 3|m. Then m = 3k for some k € Z. Then mn = 3kn. Since kn € Z,
3|(mn).

Case II: 3|n. Then n = 3! for some [ € Z. Then mn = m3l = 3ml. Since
ml € Z, 3|(mn).

(This direction we proved directly.)

Assume that there exist a nonzero rational number x and an irrational number
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k
y such that zy is rational. Then x = 7 for some k,l € Z, k # 0 and [ # 0,

Ty
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n x

= —. Since
nk

ml,nk € Z and nk # 0, y is rational. Contradiction. (This is a proof by

contradiction.)

~l=|3 |3

(f) We will prove this statement by contrapositive. Namely, we will assume that
alb or a|c and we will show that a|(bc). If alb, then b = ak for some k € Z,
and bc = akc. Since kc € Z, a|(bc). If ale, then ¢ = ak for some k € Z, and
bc = bak = abk. Since bk € Z, al(bc).

3. (a) This statement is true. For example, if a = —1, then for every real number
b, we have b> > 0> —1, so b*> > a.

(b) This statement is false. For any integer a, either a < 4 or a > 5. If a < 4,
then a® +2a +3 <64+ 8+ 3 = 75 < 100, so a® + 2a + 3 # 100. If a > 5,
then a3 + 2a + 3 > 125 + 10 + 3 = 138 > 100, so a® + 2a + 3 # 100.

(c) This statement is true. For any sets A and B, let C = AUB. Then AUC =
AUAUB=AUBand BUC=BUAUB=AUB,s0o AUC=BUC.

(d) This statement is false. For example, if A = {1}, B = {2}, C = {1,2},
D ={2,3}, then AC C, BC D, and AN B =, however, C' N D # ).

(e) This statement if true. Suppose that A ¢ C, B € D, CnND = (), but
AN B # (). Then there is an element z € AN B, so x € A and z € B. Since

A C Cand B C D, it follows that x € C' and x € D. Then x € C'N D, thus
C'N D # (). We get a contradiction.

4. (a) This set is not a relation from A to B because it is not a subset of A x B:
e.g. (a,1) ¢ Ax B.

(b) This set is a relation from A to B since it is a subset of A x B (it is easy to
see that each element of this set is of required form).

5. Determine which of the following relations are reflexive; symmetric; transitive.

(a) R is not reflexive because e.g. (1,1) & R since 1 + 1 # 0.
R is symmetric because if (a,b) € R, then a + b = 0, then b+ a = 0, so
(b,a) € R.
R is not transitive because e.g. (1,—1) € R and (—1,1) € R, however,

(1,1) ¢ R.

(b) R is reflexive because for any a € R, e Q, so (a,a) € R.
a
0
R is not symmetric because e.g. (0,1) € R since 1€ Q, but (1,0) € R since
1
0 is undefined (and thus is not an element of Q).

b
R is transitive because if (a,b) € R and (b,c) € R, then % € Q and p € Q.



Since the product of two rational numbers is rational (see proof below),

b
%-— € Q, thus (a,c) € R.
c

Proof that the product of two rational numbers is rational: let xz,y € Q,
k
then x = 7 and y = m for some k,l,m,n € Z, 1 # 0, n # 0. Then
n
k k
xyzj-@:l—m. Since km,In € Z and In # 0, xy € Q.
n n
R is not reflexive because (0,0) € R since 0-0 % 0.
R is symmetric because if (a,b) € R, then ab > 0, then ba > 0, so (b,a) € R.
R is transitive because if (a,b) € R and (b,c) € R, then ab > 0 and bc > 0.
Therefore achb®> > 0. We know that > > 0 for all b € R. Since acb® # 0,
b? # 0. Therefore b* > 0, thus ac > 0.

R is reflexive since for any a € Z, a = a (mod 3), thus (a,a) € R.

R is symmetric because if (a,b) € R, then a = b (mod 3), then b = a (mod 3),
thus (b,a) € R.

R is transitive because if (a,b) € R and (b,c) € R, then a = b (mod 3) and
b = ¢ (mod 3), therefore a = ¢ (mod 3), thus (a,c) € R.

R is not reflexive because e.g. (1,1) € R since 1 # 1.

R is not symmetric because e.g. (2,1) € R but (1,2) ¢ R since 2 > 1 but
1% 2.

R is transitive because if if (a,b) € R and (b,¢) € R, then a > b and b > ¢,
then a > ¢, thus (a,c) € R.
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