Test 2, extra credit problem.

Prove that for any positive integer n,
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Proof.
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First we will try to estimate the sum by estimating each term. We see that each term

is between =—— and ——. and there are 2n + 1 terms, therefore the sum is between 22+tL
3n+1 n+1’ ? 3n+1

and 27%11 The lower bound doesn’t help us, but from the upper bound we see that the

sum is less than 222 = 2.
n+1

To show that the sum is bigger than 1, we will use Mathematical induction.
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and we see that this is indeed bigger than 1.

Inductive step. Assume the inequality holds for n =k, i.e.

1<L+L+...+ ! : (1)
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We want to prove that it holds for n = k + 1:
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Compare (1) and (2), and notice that we “lost” the term k+r1 but “gained” 3 terms:
3k1+2, 3k1+3, and 3k1+ - 1f we can show that we gained more than we lost, then the new
sum (for k£ + 1) is bigger than 1. Thus we want to show that
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The following inequalities are equivalent:
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Bk+2)3k+4)  3k+3
(3k +3)* > (3k +2)(3k + 4)
9k* + 18k + 9 > 9k* + 18k + 8,

and the last one is obviously true.



