Math 111 Some fundamental properties of logical operations

Which of the logical operations \vee , \wedge , \Rightarrow , \Leftrightarrow have the properties of commutativity or associativity? Which combinations of the above logical operations and/or \sim have distributivity? That is, which of the following logical equivalences are true? (Note: more combinations could be considered for distributivity, but we will focus on a few most important ones.)

• Commutativity

$$P \lor Q \equiv Q \lor P$$

 $P \land Q \equiv Q \land P$
 $P \Rightarrow Q \equiv Q \Rightarrow P$
 $P \Leftrightarrow Q \equiv Q \Leftrightarrow P$

Associativity

$$(P \lor Q) \lor R \equiv P \lor (Q \lor R)$$
$$(P \land Q) \land R \equiv P \land (Q \land R)$$
$$(P \Rightarrow Q) \Rightarrow R \equiv P \Rightarrow (Q \Rightarrow R)$$
$$(P \Leftrightarrow Q) \Leftrightarrow R \equiv P \Leftrightarrow (Q \Leftrightarrow R)$$

• Distributivity

$$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$

$$P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$$

$$\sim (P \lor Q) \equiv (\sim P) \lor (\sim Q)$$

$$\sim (P \land Q) \equiv (\sim P) \land (\sim Q)$$

$$\sim (P \Rightarrow Q) \equiv (\sim P) \Rightarrow (\sim Q)$$

$$\sim (P \Leftrightarrow Q) \equiv (\sim P) \Leftrightarrow (\sim Q)$$

$$P \Rightarrow (Q \land R) \equiv (P \Rightarrow Q) \land (P \Rightarrow R)$$

$$P \Rightarrow (Q \lor R) \equiv (P \Rightarrow Q) \lor (P \Rightarrow R)$$