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11 The Integers and Division

DEFINITION 1

EXAMPLE 1

INTRODUCTION

The part of discrete mathematics involving the integers and their properties belongs to
the branch of mathematics called number theory. This section is the beginning of a three-
section introduction to number theory. In this section we will review some basic concepts
of number theory,including divisibility, greatest common divisors,and modular arithmetic.
In Section 2.5 we will describe several important algorithms from number theory, tying
together the material in Sections 2.1 and 2.3 on algorithms and their complexity with
the notions introduced in this section. For example, we will introduce algorithms for
finding the greatest common divisor of two positive integers and for performing computer
arithmetic using binary expansions. Finally, in Section 2.6, we will continue our study of
number theory by introducing some important results and their applications to computer
arithmetic and cryptology, the study of secret messages.

The ideas that we will develop in this section are based on the notion of divisibility.
One important concept based on divisibility is that of a prime number. A prime is an
integer greater than 1 that is divisible only by 1 and by itsclf. Determining whether
an integer is prime is important in applications to cryptology. An important theorem
from number theory, the Fundamental Theorem of Arithmetic, asserts that every positive
integer can be written uniquely as the product of prime numbers. Factoring integers
into their prime factors is important in cryptology. Division of an integer by a positive
integer produces a quotient and a remainder. Working with these remainders leads to
modular arithmetic, which is used throughout computer science. We will discuss three
applications of modular arithmetic in this section: generating pseudorandom numbers,
assigning computer memory locations to files, and encrypting and decrypting messages.

DIVISION

When one integer is divided by a second, nonzero integer, the quotient may or may not
be an integer. For example, 12/3 = 4 is an integer, whereas 11/4 = 2.75 is not. This
leads to the following definition.

If a and b are integers with a # 0, we say that a divides b if there is an integer ¢
such that b = ac. When a divides b we say that a is a factor of b and that b is a
multiple of a. The notation a | b denotes that a divides b. We write @ f b when a
does not divide b.

Remark: We can express a | b using quantifiers as 3c(ac = b), where the universe of
discourse is the set of integers.

In Figure 1 a number line indicates which integers are divisible by the positive inte-
gerd.

Determine whether 3 | 7 and whether 3 | 12.




154 2/The Fundamentals: Algorithms, the Integers, and Matrices

EXAMPLE 2

Extra
Examples

THEOREM 1

COROLLARY 1

—2d -d 0 d
FIGURE 1 Integers Divisible by the Positive Integer d.

Solution: Tt follows that 3 f 7, since 7/3 is not an integer. On the other hand, 3 | 12
since 12/3 = 4. <

Letn and d be positive integers. How many positive integers not exceeding n are divisible
by d?

Solution: The positive integers divisible by d are all the integers of the form dk, where kis a
positive integer. Hence, the number of positive integers divisible by d that do not exceed
n equals the number of integers k with 0 < dk < n, or with O < k < n/d. Therefore,
there are |n/d | positive integers not exceeding n that are divisible by d. <4

Some of the basic properties of divisibility of integers are given in Theorem 1.

Let a, b, and ¢ be integers. Then

1 ifa|banda | c,thena | (b+ c);
2. ifa | b, thena | bc for all integers c;
3. ifa|bandb | c,thena | c.

Proof: Toprove (I)supposethata | banda | c. Then,from the definition of divisibility,
it follows that there are integers s and f with b = as and ¢ = at. Hence,

b+c=as+at =a(s+1).

Therefore, a divides b + ¢. This establishes part () of the theorem. The proofs of parts (2)
and (3) are left as exercises for the reader. <

Theorem 1 has this useful consequence.

If a, b, and c are integers such that @ | b and a | ¢, then a | mb + nc whenever m
and n are integers.

Proof: By part (2) of Theorem 1 it follows that ¢ | mb and a | nc whenever m and n
are integers. By part (/) of Theorem 1 it follows that a | mb + nc. <

PRIMES

Every positive integer greater than 1 is divisible by at least two integers, since a positive
integer is divisible by 1 and by itself. Integers that have exactly two different positive
integer factors are called primes.
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A positive integer p greater than 1 is called prime if the only positive factors of p
are 1 and p. A positive integer that is greater than 1 and is not prime is called
composite.

Remark: The integer n is composite if and only if there exists an integer a such that
alnandl <a < n.

The integer 7 is prime since its only positive factors are 1 and 7, whereas the integer 9 is
composite since it is divisible by 3. <

The primes less than 100 are 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59, 61,
67,71,73,79, 83, 89, and 97. In Section 6.6 we introduce a procedure, known as the sieve
of Eratosthenes, which can be used to find all the primes not exceeding an integer n.

The primes are the building blocks of positive integers, as the Fundamental Theorem
of Arithmetic shows. The proof will be given in Section 3.3.

THE FUNDAMENTAL THEOREM OF ARITHMETIC Every positive integer
greater than 1 can be written uniquely as a prime or as the product of two or more
primes where the prime factors are written in order of nondecreasing size.

Example 4 gives some prime factorizations of integers.

The prime factorizations of 100, 641, 999, and 1024 are given by
100=2.2-5.5=2252,

641 = 641,
999 =3.3.3.37=133.37,
1024=2-2.2.2.2.2.2.2.2.2=210, <

It is often important to show that a given integer is prime. For instance, in cryptology
large primes are used in some methods for making messages secret. One procedure for
showing that an integer is prime is based on the following observation.

If n is a composite integer, then n has a prime divisor less than or equal to /7.

Proof: 1f n is composite, it has a factor a with 1 < a < n. Hence,n = ab,where both a
and b are positive integers greater than 1. We see thata < /norb < ./n,since otherwise
ab > \/n - \/n = n. Hence, n has a positive divisor not exceeding /7. This divisor is
either prime or, by the Fundamental Theorem of Arithmetic, has a prime divisor. In either
case, n has a prime divisor less than or equal to /7. <

From Theorem 3, it follows that an integer is prime if it is not divisible by any prime less
than or equal to its square root. In the following example this observation is used to show
that 101 is prime.
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EXAMPLE 6
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Show that 101 is prime.

Solution: The only primes not exceeding +/101 are 2.3,5,and 7. Since 101 is not divisible
by 2,3,5,0r 7 (the quotient of 101 and each of these integers is not an integer), it follows
that 101 is prime. |

Since every integer has a prime factorization, it would be useful to have a procedure
for finding this prime factorization. Consider the problem of finding the prime factoriza-
tion of n. Begin by dividing n by successive primes, starting with the smallest prime, 2. If n
has a prime factor, then by Theorem 3 a prime factor p not exceeding /n will be found.
So, if no prime factor not exceeding /1 is found, then # is prime. Otherwise, if a prime
factor p is found, continue by factoring n/p. Note that n /p has no prime factors less
than p. Again, if n/p has no prime factor greater than or equal to p and not exceeding
its square root, then it is prime. Otherwise, if it has a prime factor g, continue by factor-
ing n/(pq). This procedure is continued until the factorization has been reduced to a
prime. This procedure is illustrated in Example 6.

Find the prime factorization of 7007.

Solution: To find the prime factorization of 7007, first perform divisions of 7007 by suc-
cessive primes, beginning with 2. None of the primes 2,3, and 5 divides 7007. However,7
divides 7007, with 7007/7 = 1001. Next,divide 1001 by successive primes,beginning with7.
It is immediately seen that 7 also divides 1001, since 1001/7 = 143. Continue by
dividing 143 by successive primes, beginning with 7. Although 7 does not di-
vide 143,11 does divide 143, and 143/11 = 13. Since 13 is prime, the procedure is com-

pleted. Tt follows that the prime factorization of 7007 is7-7-11-13=72-11-13. <

Prime numbers were studied in ancient times for philosophical reasons. Today, there
are highly practical reasons for their study. In particular, large primes play a crucial role
in cryptography, as we will see in Section 2.6.

THE INFINITUDE OF PRIMES It has long been known that there are infinitely
many primes. We will prove this fact using a proof given by Euclid in his famous mathe-
matics text, the Flements.

There are infinitely many primes.

Proof: We will prove this theorem using a proof by contradiction. We assume that there
are only finitely many primes, p1, p2, ..., Pn- Let

Q=pip2--pnt+ L

By the Fundamental Theorem of Arithmetic, Q) is prime or else it can be written as the
product of two or more primes. However, none of the primes p; divides Q, forif p; | o,
then p; divides Q — p1p2-+- Pn = 1. This is a contradiction because we assumed that
we have listed all the primes. Consequently, there are infinitely many primes. (Note that
in this proof we do not state that Q is prime!) <

Since there are infinitely many primes, given any positive integer there are primes
greater than this integer. There is an ongoing quest to discover larger and larger prime




; 2-39

Links

EXAMPLE 7

THEOREM 5

Links

2.4 The Integers and Division 157

numbers; for almost all the last 300 years, the largest prime known has been an integer of
the special form 27 — 1, where p is also prime. Such primes are called Mersenne primes,
after the French monk Marin Mersenne, who studied them in the seventeenth century.
The reason that the largest known prime has usually been a Mersenne prime is that there
is an extremely efficient test, known as the Lucas-Lehmer test, for determining whether
2P — 1 is prime. Furthermore, it is not currently possible to test numbers not of certain
special forms anywhere near as quickly to determine whether they are primé.

The numbers 22 — 1 = 3,23 — 1 = 7,and 2°> — 1 = 31 are Mersenne primes, while
2! — 1 = 2047 is not a Mersenne prime since 2047 = 23 - 89. <

Progress in finding Mersenne primes has been steady since computers were invented.
As of mid-2002,39 Mersenne primes were known, with eight found since 1990. The largest
Mersenne prime known (as of mid-2002) is 213466917 _ 1 a number with over four million

digits, which was shown to be prime in late 2001. A communal effort, the Great Inter-

net Mersenne Prime Search (GIMPS), has been organized to look for new Mersenne
primes. By the way, even the search for Mersenne primes has practical implications. One
quality control test for supercomputers has been to replicate the Lucas-Lehmer test that
establishes the primality of a large Mersenne prime. ‘

THE DISTRIBUTION OF PRIMES Theorem 4 tells us that there are infinitely
many primes. However,how many primes are less than a positive number x ? This question
interested mathematicians for many years; in the late eighteenth century mathematicians
produced large tables of prime numbers to gather evidence concerning the distribution
of primes. Using this evidence, the great mathematicians of the day, including Gauss and
Legendre, conjectured, but did not prove, Theorem 5.

THE PRIME NUMBER THEOREM The ratio of the number of primes not ex-
ceeding x and x /Inx approaches 1 as x grows without bound. (Here Inx is the natural
logarithm of x.)

MARIN MERSENNE (1588-1648) Mersenne was born in Maine, France, into a family of laborers
and attended the College of Mans and the Jesuit College at La Fieche. He continued his education at the
Sorbonne, studying theology from 1609 to 1611. He joined the religious order of the Minims in 1611, a
group whose name comes from the word minimi (the members of this group considered themselves the
least religious order). Besides prayer, the members of this group devoted their energy to scholarship and
study. In 1612 he became a priest at the Place Royale in Paris; between 1614 and 1618 he taught philosophy
at the Minim Convent at Nevers. He returned to Paris in 1619, where his cell in the Minims de I’ Annociade
became a place for meetings of French scientists, philosophers, and mathematicians, including Fermat and
Pascal. Mersenne corresponded extensively with scholars throughout Europe, serving as a clearinghouse
for mathematical and scientific knowledge,a function later served by mathematical journals (and today also
by the Internet). Mersenne wrote books covering mechanics, mathematical physics, mathematics, music,
and acoustics. He studied prime numbers and tried unsuccessfully to construct a formula representing all
primes. In 1644 Mersenne claimed that 27 — 1 is prime for p = 2,3,5,7,13,17,19, 31, 67,127, 257 but is
composite for all other primes less than 257. It took over 300 years to determine that Mersenne’s claim
was wrong five times. Specifically, 27 — 1 is not prime for p = 67 and p = 257 but is prime for p = 61,
p = 87,and p = 107. It is also noteworthy that Mersenne defended two of the most famous men of his
time, Descartes and Galileo, from religious critics. He also helped expose alchemists and astrologers as
frauds.
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The Prime Number Theorem was first proved in 1896 by the French mathematician
Jacques Hadamard and the Belgian mathematician Charles-Jean-Gustave-Nicholas de la
Valleé-Poussin using the theory of complex variables. Although proofs not using complex
variables have been found, all known proofs of the Prime Number Theorem are quite
complicated.

We can use the Prime Number Theorem to estimate the odds that a randomly chosen
number of a certain size is prime. The Prime Number Theorem tells us that the number
of primes not exceeding x can be approximated by x /In x. Consequently, the odds that
a randomly selected positive integer x is prime are approximately (x/In x) /x=1/Inx.
For example, the odds that an integer near 101990 js prime are approximately 1/ In 101000,
which is approximately 1/2300. (Of course, by choosing only odd numbers, we double
our chances of finding a prime.)

Using trial division with Theorem 3 gives procedures for factoring and for primality
testing. However, these procedures are not efficient algorithms; many much more practical
and efficient algorithms for these tasks have been developed. Factoring and primality
testing have become important in the applications of number theory to cryptography.
This has led to a great interest in developing efficient algorithms for both tasks. Clever
procedures have been devised in the last 30 years for efficiently generating large primes.
However, even though powerful new factorization methods have been developed in the
same time frame, factoring large numbers remains extraordinarily more time consuming.
Nevertheless, the challenge of factoring large numbers interests many people. There is a
communal effort on the Internet to factor large numbers, especially those of the special
form k" + 1, where k is a small positive integer and 7 is a large positive integer (such
numbers are called Cunningham numbers). At any given time, there is a list of the “Ten
Most Wanted” large numbers of this type awaiting factorization.

THE DIVISION ALGORITHM

When an integer is divided by a positive integer, there is a quotient and a remainder, as
the division algorithm shows.

THE DIVISION ALGORITHM Let a be an integer and d a positive integer. Then
there are unique integers g and r, with 0 < r < d,such thata = dq +r.

Remark: Theorem 6 is not really an algorithm. (Why not?) Nevertheless, we use its
traditional name.

In the equality given in the division algorithm, d is called the divisor,a is called the
dividend, q is called the quotient, and r is called the remainder. This notation is used
to express the quotient and remainder:

g=adivd, r=amodd.

Examples 8 and 9 illustrate the division algorithm.

What are the quotient and remainder when 101 is divided by 11?
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Solution: We have

101 =11-9+4 2.
Hence, the quotient when 101 is divided by 11 is 9 = 101 div 11, and the remainder is
2=101 mod 11. «

What are the quotient and remainder when —11 is divided by 3?

Solution: We have

—11 =3(-4)+ 1.
Hence, the quotient when —11 is divided by 3 is —4 = —11 div 3, and the remainder is
1 =—11 mod 3.

Note that the remainder cannot be negative. Consequently, the remainder is not —2,
even though

—11 =3(-3) -2,

since r = —2 does not satisfy 0 < r < 3, |

Note that the integer a is divisible by the integer d if and only if the remainder is
zero when a is divided by d.

GREATEST COMMON DIVISORS AND LEAST
COMMON MULTIPLES

The largest integer that divides both of two integers is called the greatest common divisor
of these integers.

Let a and b be integers, not both zero. The largest integer d such that d | a and
d | bis called the greatest common divisor of a and b. The greatest common divisor
of a and b is denoted by ged(a, b).

The greatest common divisor of two integers, not both zero, exists because the set of
common divisors of these integers is finite. One way to find the greatest common divisor
of two integers is to find all the positive common divisors of both integers and then take
the largest divisor. This is done in the following examples. Later, a more efficient method
of finding greatest common divisors will be given.

What is the greatest common divisor of 24 and 36?

Solution: The positive common divisors of 24 and 36 are 1, 2, 3, 4, 6, and 12. Hence,
ged(24, 36) = 12, «
What is the greatest common divisor of 17 and 22?

Solution: The integers 17 and 22 have no positive common divisors other than 1, so that
ged(17,22) = 1. <

Since it is often important to specify that two integers have no common positive
divisor other than 1, we have the following definition.
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The integers a and b are relatively prime if their greatest common divisor is 1.

From Example 11 it follows that the integers 17 and 22 are relatively prime, since
ged(17,22) = L. <

Since we often need to specify that no two integers in a set of integers have a common
positive divisor greater than 1, we make Definition 6.

The integers ay, dz, - . . , Ay are pairwise relatively prime if ged(a;, a;) = 1 when-
everl <i < j<n.

Determine whether the integers 10,17, and 21 are pairwise relatively prime and whether
the integers 10, 19, and 24 are pairwise relatively prime.

Solution: Since ged(10, 17) = 1, ged(10, 21) = 1, and ged(17,21) = 1, we conclude that
10,17, and 21 are pairwise relatively prime.

Since ged(10,24) =2 > 1, we see that 10, 19, and 24 are not pairwise relatively
prime. <

Another way to find the greatest common divisor of two integers is to use the prime
factorizations of these integers. Suppose that the prime factorizations of the integers a
and b, neither equal to zero, are

ay . a " _ by b by

a=pi'pypyt b=pi Pyt
where each exponent is a nonnegative integer,and where all primes occurring in the prime
factorization of either a or b are included in both factorizations, with zero exponents if
necessary. Then ged(a, b) is given by

ged(a, b) = prlmn(al,bl)p;nm(az,bz) . p?in(a,,,b,,)’
where min(x, y) represents the minimum of the two numbers x and y. To show that
this formula for ged(a, b) is valid, we must show that the integer on the right-hand
side divides both @ and b, and that no larger integer also does. This integer does divide
both a and b, since the power of each prime in the factorization does not exceed the
power of this prime in either the factorization of a or that of b. Further, no larger inte-
ger can divide both a and b, because the exponents of the primes in this factorization
cannot be increased, and no other primes can be included.

Since the prime factorizations of 120 and 500 are 120 = 23.3.5and 500 = 22 - 53, the
greatest common divisor is

ng(lZO, 500) = 2min(3,2)3min(1,0)5min(l,3) — 223051 = 20. <

Prime factorizations can also be used to find the least common multiple of two
integers.
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The least common multiple of the positive integers a and b is the smallest positive
integer that is divisible by both a and b. The least common multiple of @ and b is
denoted by lcm(a, b).

The least common multiple exists because the set of integers divisible by both a and b
is nonempty, and every nonempty set of positive integers has a least element (by the
well-ordering property, which will be discussed in Section 3.3). Suppose that the prime
factorizations of @ and b are as before. Then the least common multiple of a and b is
given by
lem(a, b) = pinaX(m,bl)pglaX(az,bz) . ;nax(a,,,b,,)

where max(x, y) denotes the maximum of the two numbers x and y. This formula is
valid since a common multiple of @ and b has at least max(a;, b;) factors of p; in its prime
factorization, and the least common multiple has no other prime factors besides those
ina and b.

What is the least common multiple of 233372 and 24332

Solution: We have

1011'1(233572, 2433) — 2max(3, 4)3max(5, 3)7max(2, ) — 243572' <

The following theorem gives the relationship between the greatest common divisor
and least common multiple of two integers. It can be proved using the formulae we have
derived for these quantities. The proof of this theorem is left as an exercise for the reader.

Let a and b be positive integers. Then

ab = gcd(a, b) - lem(a, b).

MODULAR ARITHMETIC

In some situations we care only about the remainder of an integer when it is divided
by some specified positive integer. For instance, when we ask what time it will be (on a
24-hour clock) 50 hours from now, we care only about the remainder when 50 plus the
current hour is divided by 24. Since we are often interested only in remainders, we have
special notations for them.

We have a notation to indicate that two integers have the same remainder when they
are divided by the positive integer m.

If a and b are integers and m is a positive integer, then a is congruent to b modulo m if
m divides a — b. We use the notation a = b (mod m) to indicate that a is congruent
to b modulo m. If a and b are not congruent modulo m, we write a # b (mod m).
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The connection between the notations used when working with remainders is made clear
in Theorem 8.

Let a and b be integers, and let m be a positive integer. Then a = b (mod m) if and
only if a mod m = b mod m.

The proof of Theorem 8 is left as Exercises 21 and 22 at the end of this section.

Determine whether 17 is congruent to 5 modulo 6 and whether 24 and 14 are congruent
modulo 6.

Solution: Since 6 divides 17 — 5 = 12, we see that 17 = 5 (mod 6). However, since
24 — 14 = 10 is not divisible by 6, we see that 24 # 14 (mod 6). <

The great German mathematician Karl Friedrich Gauss developed the concept of
congruences at the end of the eighteenth century.

The notion of congruences has played an important role in the development of num-
ber theory. Theorem 9 provides a useful way to work with congruences.

Let m be a positive integer. The integers @ and b are congruent modulo m if and only
if there is an integer k such thata = b + km.

Proof: 1f a = b (mod m), then m | (a — b). This means that there is an integer k such
that a — b = km, so that a = b + km. Conversely, if there is an integer k such that
a =b+ km,then km = a — b. Hence, m divides a — b,so that a = b (mod m). <

The set of all integers congruent to an integer a modulo m is called the congruence
class of a modulo m. In Chapter 7 we will show that there are m pairwise disjoint equiv-
alence classes modulo m and that the union of these equivalence classes is the set of
integers.

Theorem 10 shows how congruences work with respect to addition and multipli-
cation.

KARL FRIEDRICH GAUSS (1777-1855) Karl Friedrich Gauss, the son of a bricklayer, was a child
prodigy. He demonstrated his potential at the age of 10, when he quickly solved a problem assigned
by a teacher to keep the class busy. The teacher asked the students to find the sum of the first 100
positive integers. Gauss realized that this sum could be found by forming 50 pairs, each with the sum 101:
1+100,2499, ..., 50+51. This brilliance attracted the sponsorship of patrons, including Duke Ferdinand
of Brunswick, who made it possible for Gauss to attend Caroline College and the University of Géttingen.
While a student, he invented the method of least squares, which is used to estimate the most likely value of
a variable from experimental results. In 1796 Gauss made a fundamental discovery in geometry, advancing
a subject that had not advanced since ancient times. He showed that a 17-sided regular polygon could be
drawn using just a ruler and compass.

In 1799 Gauss presented the first rigorous proof of the Fundamental Theorem of Algebra, which states
that a polynomial of degree n has exactly n roots (counting multiplicities). Gauss achieved worldwide fame
when he successfully calculated the orbit of the first asteroid discovered, Ceres, using scanty data.

Gauss was called the Prince of Mathematics by his contemporary mathematicians. Although Gauss
is noted for his many discoveries in geometry, algebra, analysis, astronomy, and physics, he had a special
interest in number theory, which can be seen from his statement “Mathematics is the queen of the sciences,
and the theory of numbers is the queen of mathematics.” Gauss laid the foundations for modern number
theory with the publication of his book Disquisitiones Arithmeticae in 1801.
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Let m be a positive integer. If a = b (mod m) and ¢ = d (mod m), then

a+c=b+d (modm) and ac = bd (mod m).

Proof: Since a = b (mod m) and ¢ = d (mod m), there are integers s and ¢ with
b=a+smandd = c + tm. Hence,

bt+d=@+sm)+ (c+tm)=(a+c)+m(s+1)
and

bd = (a + sm)(c + tm) = ac + m(at + cs + stm).
Hence,

a+c=b+d (modm) and ac = bd (mod m). <

Since 7 = 2 (mod 5) and 11 = 1 (mod 5), it follows from Theorem 10 that
18=7411=2+1=3(mod5)
and that

77=7-11=2-1=2 (mod5). >

APPLICATIONS OF CONGRUENCES

Number theory has applications to a wide range of areas. We will introduce three appli-
cations in this section: the use of congruences to assign memory locations to computer
files, the generation of pseudorandom numbers, and cryptosystems based on modular
arithmetic.

Hashing Functions The central computer at your school maintains records for each
student. How can memory locations be assigned so that student records can be retrieved
quickly? The solution to this problem is to use a suitably chosen hashing function. Records
are identified using a key, which uniquely identifies each student’s records. For instance,
student records are often identified using the Social Security number of the student as
the key. A hashing function /4 assigns memory location A (k) to the record that has k as
its key.

In practice, many different hashing functions are used. One of the most common is
the function

h(k) = k mod m

where m is the number of available memory locations.

Hashing functions should be easily evaluated so that files can be quickly located.
The hashing function 2(k) = k mod m meets this requirement; to find 4 (k), we need
only compute the remainder when & is divided by m. Furthermore, the hashing function
should be onto, so that all memory locations are possible. The function A (k) = k mod m
also satisfies this property.
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For example, when m = 111, the record of the student with Social Security number
064212848 is assigned to memory location 14, since

h(064212848) = 064212848 mod 111 = 14,
Similarly, since
h(037149212) = 037149212 mod 111 = 65,

the record of the student with Social Security number 037149212 is assigned to memory
location 65.

Since a hashing function is not one-to-one (since there are more possible keys than
memory locations), more than one file may be assigned to a memory location. When this
happens, we say that a collision occurs. One way to resolve a collision is to assign the first
free location following the occupied memory location assigned by the hashing function,
For example, after making the two earlier assignments, we assign location 15 to the record
of the student with the Social Security number 107405723. To see this, first note that & (k)
maps this Social Security number to location 14, since

h(107405723) = 107405723 mod 111 = 14,

but this location is already occupied (by the file of the student with Social Security num-
ber 064212848). However, memory location 13, the first location following memory loca-
tion 14, is free.

There are many more sophisticated ways to resolve collisions that are more efficient
than the simple method we have described. These are discussed in the references on
hashing functions given at the end of the book. <

Pseudorandom Numbers Randomly chosen numbers are often needed for computer
simulations, Different methods have been devised for generating numbers that have prop-
erties of randomly chosen numbers. Because numbers generated by systematic methods
are not truly random, they are called pseudorandom numbers,

The most commonly used procedure for generating pseudorandom numbers is the
linear congruential method. We choose four integers: the modulus 7, multiplier a, in-
crement ¢, and seed xo, with 2 <a <m,0 < ¢ < m, and 0 < Xxg < m. We generate a
sequence of pseudorandom numbers {x,,}, with 0 < Xy < m for all n, by successively
using the congruence

Xpt1 = (ax, + ¢) mod m.

(This is an example of a recursive definition, discussed in Section 3.4. In that section we
will show that such sequences are well defined.)

Many computer experiments require the generation of pseudorandom numbers be-
tween 0 and 1. To generate such numbers, we divide numbers generated with a linear
congruential generator by the modulus: that is, we use the numbers Xp/in.

For instance, the sequence of pseudorandom numbers generated by choosing
m=9,a="7,¢=4,and xg = 3, can be found as follows:

X1=Tx0+4=7-34+4=25mod9 =7,
Xo=Tx1+4=7-T4+4=>53mod9 = 8§,
X3=Txs+4=7-844=60mod 9 = 6,
Xg=Tx34+4=7-64+4=46mod9 = 1,
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x5 =Tx4+4=7-1+4=11mod9 =2,
X6=Txs+4=7-24+4=18mod 9 =0,
x7=Txs+4=T7-04+4= 4mod9 =4,
x3=Tx74+4=7-44+4=32mod9 =5,
x9=Txg+4=7-54+4=39mod9 = 3.

Since x9 = x¢ and since each term depends only on the previous term, this sequence is
generated:

3,7,8,6,1,2,0,4,5,3,7,8,6,1,2,0,4,5,3,....

This sequence contains nine different numbers before repeating.

Most computers do use linear congruential generators to generate pseudorandom
numbers. Often, a linear congruential generator with increment ¢ = 0 is used. Such a
generator is called a pure multiplicative generator. For example, the pure multiplicative
generator with modulus 23! — 1 and multiplier 7° = 16,807 is widely used. With these
values, it can be shown that 23! — 2 numbers are generated before repetition begins. <«

CRYPTOLOGY

Congruences have many applications to discrete mathematics and computer science.
Discussions of these applications can be found in the suggested readings given at the end
of the book. One of the most important applications of congruences involves cryptology,
which is the study of secret messages. One of the earliest known uses of cryptology was
by Julius Caesar. He made messages secret by shifting each letter three letters forward in
the alphabet (sending the last three letters of the alphabet to the first three). For instance,
using this scheme the letter B is sent to £ and the letter X is sent to A. This is an example
of encryption, that is, the process of making a message secret.

To express Caesar’s encryption process mathematically, first replace each letter by an
integer from 0 to 25, based on its position in the alphabet. For example, replace A by 0, K
by 10,and Z by 25. Caesar’s encryption method can be represented by the function f that
assigns to the nonnegative integer p, p < 25, the integer f(p) in the set {0, 1,2, ..., 25}
with

S (p) = (p +3) mod 26.

In the encrypted version of the message, the letter represented by p is replaced with the
letter represented by (p 4+ 3) mod 26.

What is the secret message produced from the message “MEET YOU IN THE PARK”
using the Caesar cipher?

Solution: First replace the letters in the message with numbers. This produces
124419 24 1420 813 1974 15017 10.

Now replace each of these numbers p by f(p) = (p + 3) mod 26. This gives
157722 11723 1116 22107 18 320 13.

Translating this back to letters produces the encrypted message “PHHW BRX LQ
WKH SDUN.” <
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Links

To recover the original message from a secret message encrypted by the Caesar
cipher, the function f ~1 the inverse of f,is used. Note that the function f ~1 sends an
integer p from {0, 1,2, ...,25} to f~1(p) = (p — 3) mod 26. In other words, to find
the original message, each letter is shifted back three letters in the alphabet, with the first
three letters sent to the last three letters of the alphabet. The process of determining the
original message from the encrypted message is called decryption.

There are various ways to generalize the Caesar cipher. For example, instead of
shifting each letter by 3, we can shift each letter by k, so that

f(p) = (p + k) mod 26.

Such a cipher is called a shift cipher. Note that decryption can be carried out using

71 (p) = (p — k) mod 26.

Obviously, Caesar’s method and shift ciphers do not provide a high level of security.
There are various ways to enhance this method. One approach that slightly enhances the
security is to use a function of the form

f(p) = (ap + b) mod 26,

where a and b are integers, chosen such that f is a bijection. (Such a mapping is called an
affine transformation.) This provides a number of possible encryption systems. The use of
one of these systems is illustrated in the following example.

What letter replaces the letter K when the function f(p) = (7p + 3) mod 26 is used for
encryption?

Solurion: First, note that 10 represents K. Then, using the encryption function specified,
it follows that f(10) = (7 - 10 + 3) mod 26 = 21. Since 21 represents V, K is replaced by
V in the encrypted message. <

Caesar’s encryption method, and the generalization of this method, proceed by re-
placing each letter of the alphabet by another letter in the alphabet. Encryption methods
of this kind are vulnerable to attacks based on the frequency of occurrence of letters in
the message. More sophisticated encryption methods are based on replacing blocks of
letters with other blocks of letters. There are a number of techniques based on modu-
lar arithmetic for encrypting blocks of letters. A discussion of these can be found in the
suggested readings listed at the end of the book.

Exercises

1.

= W

Does 17 divide each of these numbers?

a) 68 b) 84 c)

6. Show that if a, b, ¢, and d are integers such thata | ¢
357 d) 1001 and b | d,thenab | cd.
7. Show that if g, b, and ¢ are integers such that ac | bc,

. Show that if @ is an integer other than 0, then
a)1dividesa.  b) a divides 0. thena | b. ,
. Show that part (2) of Theorem 1 is true. 8. Are these integers primes?
. Show that part (3) of Theorem 1 is true. a) 19 b) 27
. Showthatifa | band b | a,where a and b are integers, ¢) 93 d) 101
thena =bora = —b. e) 107 f) 113

S ———




9, What are the quotient and remainder when

a) 19is divided by 77
b) 111 isdivided by 11?
¢) 789is divided by 237
d) 1001 is divided by 137
¢) 0is divided by 197
f) 3is divided by 57

g) —lis divided by 3?
h) 4is divided by 1?

10. What are the quotient and remainder when

a) 44is divided by 8?

py 777 is divided by 217

¢) —123is divided by 197

d) —1isdivided by 237

e) —2002 is divided by 877

f) 0isdivided by 177
g) 1,234,567 is divided by 10017
h) —100 is divided by 101?

. Find the prime factorization of each of these integers.

a) 88 b) 126 c) 729
d) 1001 e) 1111 f) 909,090

. Find the prime factorization of each of these integers.

a) 39 b) 81 ¢) 101

d) 143 e) 289 f) 899

. Find the prime factorization of 10!.

. How many zeros are there at the end of 100!?

. Show that log, 3 is an irrational number. Recall that

an irrational number is a real number x that cannot

be written as the ratio of two integers.

. Which positive integers less than 12 are relatively

prime to 127

. Which positive integers less than 30 are relatively

prime to 30?7

. Determine whether the integers in each of these sets

are pairwise relatively prime.

a) 21,34, 55 b) 14,17,85

¢) 25,41,49, 64 d) 17,18,19,23

. Determine whether the integers in each of these sets

are pairwise relatively prime.

a) 11,15,19 b) 14,15,21

©) 12,17,31,37 d) 7,8,9,11

. We call a positive integer perfect if it equals the sum

of its positive divisors other than itself.

a) Show that 6 and 28 are perfect.

b) Show that 2¢='(27 — 1) is a perfect number when
2° — 1 is prime.

- Letm be a positive integer. Show that a = b (mod m)

if a mod m = b mod m.

- Let m be a positive integer. Show that « mod m = b

mod m if ¢ = b (mod m).

- Show that if 2" — 1 is prime, then n is prime. [Hint:

Use the identity 2% — 1 = (29 — 1) - (27D 420¢=? 4
.. + 2“ + 1).]

2.4 Exercises 167

. Determine whether each of these integers is prime,

verifying some of Mersenne’s claims.
a) 27 —1 b) 2 —1
¢) 2" —1 d) 28 -1

. The value of the Euler ¢-function at the positive inte-

ger n is defined to be the number of positive integers
less than or equal to n that are relatively prime to a.
(Note: ¢ is the Greek letter phi.) Find

Ad@). b e10). ©¢03).

. Show that n is prime if and only if ¢ (n) = n — L.
. What is the value of ¢ (p*) when p is prime and & is a

positive integer?

. What are the greatest common divisors of these pairs

of integers?

a) 2%.3%.5%,25.30.52

b) 2-3-5.7-11-13,2'.3%.11-17"
e) 17, 17V

d) 2.7, 513

e) 0,5

) 2.3.5-7,2-3-5-7

. What are the greatest common divisors of these pairs

of integers?

a) 37.5°.7%,2".3°.5

b) 11-13.17,2°-37.5°.7°
¢) 233 237

d) 41-43.53,41-43.53
) 3'3.57 21272

) 1111, 0

. What is the least common multiple of each pair in

Exercise 287

. What is the least common multiple of each pair in

Exercise 297

. Find ged(1000, 625) and lem(1000, 625) and verify

that ged(1000, 625) - lem (1000, 625) = 1000 - 625.

. Show that if n and k are positive integers, then

[n/k]l = L(n—D/k]+ 1.

. Show that if a is an integer and d is a positive inte-

ger greater than 1, then the quotient and remain-
der obtained when a is divided by d are |a/d] and
a — dla/d),respectively.

. Find a formula for the integer with smallest absolute

value that is congruent to an integer a modulo m,
where m is a positive integer.

. Evaluate these quantities.

a) —17 mod 2
¢) —101 mod 13

b) 144 mod 7
d) 199 mod 19

. Evaluate these quantities.

a) 13 mod 3
¢) 155 mod 19

b) —97 mod 11
d) —221 mod 23

. List five integers that are congruent to 4 modulo 12.
. Decide whether each of these integers is congruent

to 5 modulo 17.
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40.

1.

42.

43.

4.

45.

46.

47.

48.

49.

50.

S1.

52.

53.

a) 80 b) 103

¢ —29 dy —122

If the product of two integers is 273%527'" and their
greatest common divisor is 2%3*5, what is their least
common multiple?

Show that if @ and b are positive integers then ab =
ged(a, b) - lem(a, b). [Hint: Use the prime factoriza-
tions of ¢ and b and the formulae for ged(a, b) and
lem(a, b) in terms of these factorizations.]

Show that if ¢ = b (mod m) and ¢ = d (mod m),
where a, b, c,d, and m are integers with m > 2, then
a—c=b—d modm).

Show thatifn | m,where n and m are positive integers
greater than 1, and if @ = b (mod m), where a and b
are integers, then a = b (mod n).

Show thatifa,b,c,and m are integers such thatm > 2,
¢ > 0,and a = b (mod m), then ac = be (mod mc).
Show that ac = be (mod m), where a, b, ¢, and m are
integers with m > 2, does not necessarily imply that
a = b (mod m).

Show that if «, b, and m are integers such that m > 2
and a = b (mod m), then ged(a, m) = ged(b, m).
Show that if a, b, k, and m are integers such that k >
I,m > 2,and a = b (modm), then ¢ = b*(mod m)
whenever £ is a positive integer.

Which memory locations are assigned by the hashing
function (k) = k mod 101 to the records of students
with these Social Security numbers?

a) 104578690 b) 432222187
¢) 372201919 d) 501338753

A parking lot has 31 visitor spaces, numbered from 0

to 30. Visitors are assigned parking spaces using the

hashing function i(k) = k mod 31, where k is the

number formed from the first three digits on a visi-

tor’s license plate.

a) Which spaces are assigned by the hashing func-
tion to cars that have these first three digits on
their license plates?

317,918,007, 100, 111,310

b) Describe a procedure visitors should follow to
find a free parking space, when the space they are
assigned is occupied.

What sequence of pseudorandom numbers is gener-

ated using the linear congruential generator x,41 =

(4x, + 1) mod 7 with seed x, = 37

What sequence of pseudorandom numbers is gener-

ated using the pure multiplicative generator x,, =

3x, mod 11 with seed xo = 2?

Write an algorithm in pseudocode for generating a

sequence of pseudorandom numbers using a linear

congruential generator.

Encrypt the message “DO NOT PASS GO” by trans-

lating the letters into numbers, applying the encryp-

54.

2-50

tion function given, and then translating the numbers
back into letters.

a) f(p) = (p+3) mod 26 (the Caesar cipher)

b) f(p)=(p+13)mod 26

¢) f(p)=@Gp+7) mod?26

Decrypt these messages encrypted using the Caesar
cipher.

a) EOXH MHDQV

b) WHVW WRGDB

¢) HDW GLP VXP

Books are identified by an International Standard Book

Number (ISBN), a 10-digit code xx; ..

. X1g, assigned by

the publisher. These 10 digits consist of blocks identifying
the language, the publisher, the number assigned to the
book by its publishing company,and finally,a 1-digit check
digit that is either a digit or the letter X (used to repre-
sent 10). This check digit is sclected so that S =0
(mod 11) and is used to detect errors in individual digits
and transposition of digits.

55.

56.

57.

58.

59.

60.

The first nine digits of the ISBN of the third edition
of this book are 0-07-053965. What is the check digit
for this book?

The ISBN of Elementary Number Theory and Its Ap-
plications, 3rd ed., is 0-201-57089-1, where Q is a
digit. Find the value of Q.

Determine whether the check digit of the ISBN for
this textbook was computed correctly by the pub-
lisher.

Find the smallest positive integer with exactly n dif-
ferent factors when # is
a) 3. b) 4.

d) 6. e) 10.
Can you find a formula or rule for the nth term of a
sequence related to the prime numbers or prime fac-
torizations so that the initial terms of the sequence
have these values?

¢) 5.

a) 0,1,1,0,1,0,1,0,0,0,1,0,1, ...

b) 1,2,3,2,5,2,7,2,3,2,11,2,13,2,.

¢) 1,2,2,3,2,4,2,4,3,4,2,6,2,4,.

d) 1,1,1,0,1,1,1,0,0,1,1,0, 1,1, ..

e) 1,2,3,3,55,7,7,7,7, 11, 11,13, 13

) 1,2,6,30,210,2310,30030, 510510, 9699690
223092870, ...

Can you find a formula or rule for the nth term of a
sequence related to the prime numbers or prime fac-
torizations so that the initial terms of the sequence
have these values?

a) 2,2,3,5, 5 7,711, 11,11, 11,13, 13, ...

b) 0,1,2,2,3,3,4,4,4,4,5,5,6,6, ...

¢ 1,0,0,1,0,1,0,1,1,1,0,1,0,1,.

d4) 1,-1,—1,0,— ,1,—1,0,0,1,—1,0, ...

e) 1,1,1,1,1,0,1,1,1,0,1,0,1,0,0,.

f) 4,9,25,49, 121, 169, 289, 361, 529, 84] 961, 1369, +




