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in this position is used for positive integers, and a 1 bit

¡¡ this position is used for negative integers, just as in

one's complement expansions. For a positive integer, the

renaining bits are identical to the binary expansion of

the integer. For a negative integer, the remaining bits are

the bits of the binary expansion of 2u-t - lxl. Two's com-

olement expansions of integers are often used by com-

iuters because addition and subtraction of integers can

te performed easily using these expansions,where these

integers can be either positive or negative.

36. Answer Exercise 30, but this time find the two's com-
plement expansion using bit strings of length six.

37. Answer Exercise 31 if each expansion is a two's com-
plement expansion of length ûve.

38. Answer Exercise 32 for two's complement expan-

sions.

39. Answer Exercise 33 for two's complement expan-

sions.

40. Answer Exercise 34 for two's complement expan-

sions.

41. Show that the integer m wíthtwo's complement rep-
resentation (au,tau-z' . 'atao) can be found using the
eqtationm : -ar-1 .2" I la, z2ù-z *. . .Ia1 .2las.

42. Give a simple algorithm for forming the two's com-
plement representation of an integer from its one's
complement representation.

43. Sometimes integers are encoded by using four-digit
binary expansions to represent each decimal digit.
This produces the binary coded decimal form of the
integer. For instance,791 is encoded in this way by
011110010001. How many bits are required to repre-
sent a number with n decimal digits using this type of
encoding?
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A Cantor expansion is a sum of the form

a,,nl I a,,-y(n - l)l + ... ! a22t. + atll,
where a¡ is an integer with 0 < a¡ < i for í : 1,2,

44. Find the Cantor expansions of

*45.

*46.

47.

48.

49.

50.

51.

E'

53.

*54.

55.

n

a') 2. b) 7. c) 19.

d) 87. e) 1000. f) 1,000,000.

Describe an algorithm that flnds the Cantor expan-
sion of an integer.
Describe an algorithm to add two integers from their
Cantor expansions.
Add (10111)2 and (11010)2 by working through each
step of the algorithm for addition given in the text.
Multiply (1110)z and (1010)z byworking through each
step of the algorithm for multiplication given in the
text.
Describe an algorithm for finding the difference of
two binary expansions.
Estimate the number of bit operations used to sub-
tract two binary expansions.
Devise an algorithm that,given the binary expansions
of the integers a and å, determires whether a > b,

a:b,ora<b.
How many bit operations does the comparison algo-
rithm from Exercise 51 use when the larger of a and å
has ¡z bits in its binary expansion?
Estimate the complexity of Algorithm 1 for flnding
the base D expansion of an integer ¿ in terms of the
number of divisions used.

Show that Algorithm 5 uses O ((log m)2 logn) bit op-
erations to find å" mod. m.

Show that Algorithm 4 uses O(qlog lal) bit opera-
tions, assuming that a > d.

re Applications of Number Theory

INTRODUCTION

Number theory has many applications, especially to computer science. In Section 2.4

we described several of these applications, including hashing functions, the generation
of pseudorandom numbers, and shift ciphers. This section continues our introduction to
number theory, developing some key results and presenting two important applications:
a method for performing arithmetic with large integers and a recently invented type of
cryptosystem, called a public key system.In such a cryptosystem, we do not have to keep
encryption keys secret, since knowledge of an encryption key does not help someone

decrypt messages in a realistic amount of time. Privately held decryption keys are used

to decrypt messages.

Before developing these applications, we will introduce some key results that play
a central role in number theory and its applications. For example, we will show how
to solve systems of linear congruences modulo pairwise relatively prime integers using

the Chinese Remainder Theorem, and then show how to use this result as a basis for



I
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performing arithmetic with large integers. \üe will introduce Fermat's Little Theorem
and the concept of a pseudoprime and will show how to use these concepts to develop a
public key cryptosystem.

SOME USEFUL RESULTS

An important result we will use throughout this section is that the greatest common
divisor of two integers a andb can be expressed in the form

sa * tb,

where s and t are integers. In other words, gcd(a, b) canbe expressed as a linear combi-
nation with integer coefficients of a and å. For example, gcd(6, 14) :2,and2 : (_2) . 6
+ 1 . 14. We state this fact as Theorem 1.

THEOREM 1 lf a and å are positive integers, then there exist integers s and / such that gcd(a, b) :
sa -f tb.

We will not give a formal proof of Theorem t here (see Exercise 66 in Section 3.3 and
[Ro00] for proofs), but we will provide an example of a method for finding a linear
combination of two integers equal to their greatest common divisor. (In this section, we
will assume that a linear combination has integer coeff,cients.) The method proceeds by
working backward through the divisions of the Euclidean algorithm. (We also describe an
algorithm called the extended Euclidean algorithm that can be used to express gcd(a, b)
as a linear combination of a and b in the preamble to Exercise 48.)

EXAMPLE 1 Express gcd(252,198) : 18 as a linear combination of 252 and198.

Solution: To show fhat gcd(252,198) : 18. the Euclidean algorithm uses these divisions:

252:1'198+54
198 :3 '54 +36
54 :1. 36 + 18

36 :2 . 18.

using the next-to-last division (the third division), we can express gcd(252,198) : 1g ¿g

a linear combination of 54 and 36. We find that

18:54 -I.36.
The second division tells us that

36:1,98-3'54.

Substituting this expression for 36 into the previous equation, we can express 1g as a
linear combination of 54 and 198. We have

18 :54 - 7. 36: 54 - 1 . (198 - 3. 54) : 4. 54- 1. 198.

The first division tells us that

54:252 - 1.198.
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Substituting this expression for 54 into the previous equation, we can express L8 as a

linear combination of 252 and 198. V/e conclude that

18 : 4. (252 - 1 . 198) - 1 . 198 : 4. 252- 5' 198,

completing the solution. <

We will use Theorem 1 to develop several useful results. One of our goals will be

to prove the part of the Fundamental Theorem of Arithmetic asserting that a positive

integer has at most one prime factorization. We will show that if a positive integer has a

faclorizationinto primes, where the primes are written in nondecreasing order, then this

factorization is unique.
First, we need to develop some results about divisibility.

LEMMA L Ila,b,andc arepositiveintegerssuchthat gcd(a,b): I anda I bc,thena I c

Proof: Since gcd(a, b) : l,byTheorem 1 there are integers s and / such that

sa l rb :1.

Muttiplying both sides of this equatiôn by c, we obtain

sac+tbc:c.

UsingTheorem 1of Section 2.4,we can use this last equation to show thata I c.By
part2 ofthat theorem,a I tbc. Since a I sac and a I tbc,by part 1 of that theorem, we

ãonclude that a divides sac * tbc,andhettce a I c. This finishes the proof. <

We will use the following generalizalion of Lemma 1 in the proof of uniqueness of

prime factorizations. (The proof of Lemma 2 is left as an exercise in Section 3.3, since it
can be most easily carried out using the method of mathematical induction, which will be

covered in that section.)

LEMMA2 If pisaprimeandp I ara2"'anwhereeacha¡ isaninteger,thenp I a¡fot
some i.

'We can now show that a factorization of an integer into primes is unique. That is, we

will show that every integer can be written as the product of primes in nondecreasing

order in at most one way. This is part of the Fundamental Theorem of Arithmetic. We will
prove the other part, that every integer has a factorization into primes, in Section 3.3.

Proof (of the uniqueness of the prime factorizøtíon of a positiae inte'
ger).. Wewilluseaproofbycontradiction.supposethatthepositiveintegerncanbewrit-
tenastheproductof primesintwodifferentways,say,n : prp2"'p, andn: qrq2"'qt,
each p¡ and q¡ are primes such that pt I pz < " ' <

When we remove all common primes from the fwo factoúzations, we have

P^P¡2 "' Piu : 4ißiz "' Qi,
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where no prime occurs on both sides of this equation and ¿, and u are positive integers.
By Lemma 1 it follows that p¡, divides e¡¡ for some ¿. Since no prime divides another
prime, this is impossible. Consequently, there can be at most one factorization of n into
primes in nondecreasing order. <

Lemma 1 can also be used to prove a result about dividing both sides of a congru-
ence by the same integer. We have shown (Theorem 10 in Section 2.4) fhat we can mul-
tiply both sides of a congruence by the same integer. However, dividing both sides of
a congruence by an integer does not always produce a valid congruence, as Example 2
shows.

EXAMPLE 2 The congruen ce74 : 8 (mod 6) holds, but both sides of this congruence cannot be divided
by 2 since !412 :7 and 812: 4, but 7 t' 4 (mod 6). <

However, using Lemma 1, we can show that we can divide both sides of a congruence
by an integer relatively prime to the modulus. This is stated as The orem 2.

THEOREM 2 Letmbe apositiveintegerandlet a,b,andcbeintegers.If ac: åc (mod m) and
gcd(c, m) : 1, then a : b (mod m).

Proof: Since ac: bc (modm), m I ac - bc : c(a - b). By Lemma 1",

gcd(c,m): 1,it follows thaÍ.m I a - b.We conclude Íhata : b (modm).
slnce

THEOREM 3

LINEAR CONGRUENCES

A congruence of the form

ax: b (modm),

wheremisapositiveinteger,aandbareintegers,and¡isavariable,iscalledalinear
congruence. Such congruences arise throughout number theory and its applications.

How can we solve the linear congruence ax : b (mod m),that is, f,nd all integers x
that satisfy this congruence? One method that we will describe uses an integer a such
that aa: 1 (mod ru), if such an integer exists. Such an integer ø is said to be an inverse
of ø modulo m.Tlteorem 3 guarantees that an inverse of ø modulo ¡ø exists whenever a
andm are relatively prime.

If a and m are rclafively prime integers anð m > 1, then an inverse of ¿ modulo r¿
exists. Furthermore, this inverse is unique modulo ¡z. (That is, there is a unique positive
iuteger ã less than m that is an inverse of a modulo m and every other inverse of a
modulo m is congruent to A modulo lrr.)

Proof; By Theorem 1, since gcd(a, m) : 1, there are integers s and / such that

sallm-1.
This implies that

sa I tm: 1 (mod ru).
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Since tm: 0 (mod rx ), it follows that

sa=7(modm).

Consequently, J is an inverse of a modulo m.'[\at this inverse is unique modulo nt is left
as Exercise 9 at the end of this section. <

The proof of Theorem 3 describes a method for finding the inverse of a modulo m
when a and m ate relatively prime: find a linear combination of a and m that equals 1

(which can be done by working backward through the steps of the Euclidean algorithm);
the coefficient of a in this linear combination is an inverse of a modulo m.We illustrate
this procedure in Example 3.

EXAMPLE 3 Find an inverse of 3 modulo 7

Solution: Since gcd(3, 7) : l,Theorem 3 tells us that an inverse of 3 modulo 7 exists. The
Euclidean algorithm ends quickly when used to find the greatest common divisor of 3

andT:.

7:2.3+1.
From this equation we see that

-2.3+l.J:I.
This shows that -2 is an inverse of 3 modulo 7. (Note that every integer congruent to -2
modulo 7 is also an inverse of 3, such as 5, -9, 12, ar'd so on.) <

When we have an inverse a of a modulo m,we ean easily solve the congruence
ax : b (mod m) by multiplying both sides of the linear congruence by a, as Example 4

illustrates.

EXAMPLE 4 What are the solutions of the linear congruence 3x : 4 (mod 7)?

Solution: By Example 3 we know that -2 is an inverse of 3 modulo 7. Multiplying both
sides of the congruenceby -2 shows that

-2 . 3x : -Z '4 (mod 7).

Since -6 : 1 (mod 7) and -8 = 6 (mod 7), it follows that if ¡ is a solution, then
x=-8:6(mod7).

We need to determine whether every "r with -x : 6 (mod 7) is a solution. Assume that
x = 6 (mod 7). Then, byTheorem 10 of Section 2.4, it follows that

3x:_3.6:18:4(mod7),
which shows that all such x satisfy the congruence. We conclude that the solutions to the
congruence are the integers ¡ such thatx : 6(mod 7),namely,6,13,20,... and -1, -8,
-15,.... <

THE CHINESE REMAINDER THEOREM

Systems of linear congruences arise in many contexts. For example, as we will see later,
they are the basis for a method that can be used to perform arithmetic with large integers.
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Such systems can even be found as word pùzzles in the writings of ancient chinese andHindu mathematicians, such as that given in Example 5.

EXAMPLE 5 In the first century, the chinese mathematician sun-.fsu asked:

There are certain things whose number is unknown. When divided by 3, the re-
mainder is 2; when divided by 5, the remainder is 3; and when divided by 7, the
remainder is 2. What will be the number of things?

This puzzle can be translated into the following question: What are the solutions ofthe systems of congruences

x=2(mod3),
x:3 (mod5),

x :2 (mod7)?

We will solve this system, and with it Sun-Tsu's puzzle,later in this section. <
Tt.e Chinese Remainder Theorem, named after the Chinese heritage of problems

involving systems of linear congruences, states that when the moduli of a i-ystem of linear
congruences are pairwise relatively prime, there is a unique solution of the system modulo
the product of the moduli.

THEOREM 4 THE CHINESE REMAINDER THEOREM Let m1, m2, . . . , m,, be pairwise
relatively prime positive integers. The system

x : at (mod ru¡),
x : a2 (modm),

x : an (mod mn)

has a unique solution moduro m : mlm2. . .ffitt. (That is, there is a sorution x with
0 < ¡ < m,and all other solutions are congruent moduro ¡ø to this solution.)

Proof: To establish this theorem, we need to show that a solution exists and that it is
unique modulo m'We will show that a solution exists by describing a way to construct
this solution; showing that the solution is unique modulo m is Exercise 24 at fheend of
this section.

To construct a simultaneous solution, first let

Mt: mlm*

rork:l,2,...,n.Thatis,M¡istheproductof themoduliexceptformp.sinceø¡and
m¡have no common factors greater than 1 when i + k,itfollowsìhat gcd(m¡r, Mt) : l.
consequently, byTheorem 3,we know that there is an integer y¿, an invårse of M¿ moduro
m¡r,suchthat

Mry* = I (modm¡,).
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To construct a simultaneous solution, form the sum

x : atMtlt I a2M2y2+ .'. + anMnlr.

We will now show that r is a simultaneous solution. First, note that since M ¡ : 0 (modm¡r)
whenever j + k,all terms except the ftth term in this sum are congruent to 0 modulo ru¿.

Since M¡ry¡: 1 (mod m¡r) we see that

x : a¡M¡)t¡r: a¡, (modm¡r),

for k:1,2,
congruences.

,n. We have shown thal x is a simultaneous solution to the n

EXAMPLE 6

EXAMPLE 7

The following example illustrates how to use the construction given in the proof of
Theorem 4 to solve a system of congruences. We will solve the system given in Exam-
ple 5, arising in Sun-Tsu's puzzle.

To solve the system of congruences in Example 5, first let m :3. 5.1 :105, Mt :
m/3 :35, Mz: ml5 :2I,and Mz: m17 : 15. We see that 2 is an inverse of Mt :35
modulo 3, since 35 =2 (mod 3); 1 is an inverse of M2: 21 modulo 5, since 21 : 1 (mod
5); and 1 is an inverse of M3 - 15 (mod 7), since 15 = 1 (mod 7). The solutions to this
system are those x such that

x : a1Mfii1 I ø2M2y2 i a3M3y : 2. 35 . 2 + 3 . 21. | + 2. 15 . 1

:233: 23 (mod 105).

It follows fhaf 23 is the smallest positive integer that is a simultaneous solution. We
conclude Íhat23 is the smallest positive integer that leaves a remainder of 2 when divided
by 3, a remainder of 3 when divided by 5, and a remainder of 2 when divided by 7. <

COMPUTER ARITHMETIC WITH LARGE INTEGERS

Suppose tha| m1, m2, . . . , mn afe pairwise relatively prime integers greater than or equal
to 2 andlet m be their product. By the Chinese Remainder Theorem, we can show (see
Exercise 22) that an integer a with 0 < a < m can be uniquely represented by the n-tuple
consisting of its remainders upon division by m¡, i : 1,2, . . . , n.Th,at is, we can uniquely
represent a by

(ø mod û11, a mad.ftt2, . . ., a mod, mn).

\ühat are the pairs used to represent the nonnegative integers less than 12 when they
are represented by the ordered pair where the first component is the remainder of the
integer upon division by 3 and the second component is the remainder of the integer
upon division by 4?

Solution: We have the following representations, obtained by finding the remainder of
each integer when it is divided by 3 and by 4:

0 : (0,0) 4: (1,0) 8 : (2,0)

1:(1, 1) 5:(2,1) 9:(0, l)
2: (2,2) 6: (0,2) 10 : (1,2)

3 : (0,3) 1 : (t,3) tt : (2,3). <
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To perform arithmetic with large integers, we select moduli mt, m2,. . . , rø,,, where

each m ¡ is an integer greater fhan2,gcd(m ¡, m ¡) : lwhenever i f j,and m : ftl \t?rZ''' t?t tt

is greater than the result of the arithmetic operations we want to carry out'

Once we have selected our moduli, we carry out arithmetic operations with large

integers by performing componentwise operations on the n-tuples representing these

integers using their remainders upon division by m¡,i :1,2,..., n. Once we have com-

puted the value of each component in the result, we recover its value by solving a system

of n congruences modulo m¡, i : 1,2, . . ., ¡¿. This method of performing arithmetic with

large integers has several valuable features. First, it can be used to perform arithmetic with

integers larger than can ordinarily be carried out on a computer. Second, computations

with respect to the different moduli can be done in parallel, speeding up the arithmetic.

EXAMPLE 8 Suppose that performing arithmetic with integers less than 100 on a certain processor is

much quicker than doing arithmetic with larger integers. We can restrict almost all our

computations to integers less than 100 if we represent integers using their remainders

modulo pairwise relatively prime integers less than 100. For example, we can use the

moduli of 99, 98, 97, and 95. (These integers are relatively prime pairwise, since no two

have a common factor greater than 1.)

By the Chinese RemainderTheorem, every nonnegative integer less than 99 '98 '91
. 95 : 89,403,930 can be represented uniquely by its remainders when divided by these

four moduli. For example, we represent 123,684 as (33, 8, 9, 89), since 123,684 mod 99

:33,123,684 mod 98 :8;123,684 mod 97 : 9; and 123,684 mod 95 : 89. Similarly, we

represent 413,456 as (32, 92, 42, 16).

Tofindthesum o1123,684and4\3,456,weworkwiththese4-tuplesinsteadof these

two integers directly. We add the 4-tuples componentwise and reduce each component

with respect to the appropriate modulus. This yields

(33, 8, 9, 89) + (32,92,42, 16)

: (65 mod 99, 100 mod 98, 51 mod 97,105 mod 95)

- (65,2,57,10).

To find the sum, that is, the integer represented by (65,2,5I,L0), we need to solve the

system of congruences

x : 65 (mod 99)

x= 2(mod98)
x = 5l (mod 97)

¡ = 10 (mod 95)

It can be shown (see Exercise 39) that 531 ,I40 is the unique nonnegative solution

of this system less than 89,403,930. Consequently,537,l40 is the sum. Note that it is only

when we have to recover the integer represented by (65,2,51,10) that we have to do

arithmetic with integers larger than L00. <

Particularly good choices for moduli for arithmetic with large integers are sets of

integers of the form 2k - 1, where fr is a positive integer, since it is easy to do bi-

nary arithmetic modulo such integers, and since it is easy to find sets of such integers

that are pairwise relatively prime. [The second reason is a consequence of the fact that

gcd(2" - l,zb - 1) : 2øcd(a,b) - 1, as Exercise 41 shows.] Suppose, for instance, that we

can do arithmetic with integers less than 23s easily on our computer, but that working

with larger integers requires special procedures. We can use pairwise relatively prime
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moduli less than 23s to perform arithmetic with integers as large as their product. For
example. as Exercise 42 shows, the integers 23s - 1,234 - 1.23t - 1,23t - 1,22e - l,
and 223 - 1 are pairwise relatively prime. Since the product of these six moduli ex-
ceeds 2184, we can perform arithmetic with integers as large u"2t84 (as long as the results
do not exceed this number) by doing arithmetic modulo for each of these six moduli,
none of which exceeds 23s.

PSEUDOPRIMES

In Section 2.4 we showed that an integer n is prime when it is not divisible by any prime
p wifh p 

= \ñ.. Unfortunately, using this criterion to show that a given integer is prime
is inefficient. It requires that we find all primes not exceeding Jn and that we carry out
trial division by each such prime to see whether it divides n.

Are there more eff,cient ways to determine whether an integer is prime? According
to some sources, ancient Chinese mathematicians believed that n was prime if and only if

2n-t :1(modn).

If this were true, it would provide an efficient primality test. Why did they believe this
congruence could be used to determine whether an integer is prime? First, they observed
that the congruence holds whenever n is prime. For example,5 is prime and

2s*r - 2a : 16: I (mod 5).

Second, they never found a composite integer r¿ for which the congruence holds. The an-
cient Chinese were only partially correct. They were correct in thinking that the congru-
ence holds whenever n is prime, but they were incorrect in concluding that ¡z is necessarily
prime if the congruence holds.

The great French mathematician Fermat showed that the congruence holds when n
is prime. He proved the following, more general result.

FERMAT'S LITILE THEOREM If p is prime and a is an integer not divisible
by p, then

aP-t = I (modp).

Furthermore, for every integer ø we have

aP =a (modp).

The proof of Theorem 5 is outlined in Exercise 17 at the end of this section.

PIERRE DE FERIúÂ*T (1601-1665) pierre de Fermat, one of the most important mathematicians
of the seventeenth century, was a lawyer by profession. He is the most famous amateur mathematician
in history. Fermat published little of his mathematical discoveries. It is through his correspondence with
other mathematicians that we know of his work. Fermat was one of the inventors of analytic geometry and
developed some of the fundamental ideas of calculus. Fermat, along with Pascal, gave probability theory a
mathematical basis. Fermat formulated what was the most famous unsolved problem in mathematics. He
asserted that the equation xn I Jn : ¿" has no nontrivial positive integer sólutions when n is an integer
greater than 2. For more than 300 years, no proof (or counterexample) was found. In his copy of the works
of the ancient Greek mathematician Diophantus, Fermat wrote that he had a proof but that.it would not
fit in the margin. Because the first proof, found by Andrew Wiles in 1994, relies on sophisticated, modern
mathematics, most people think that Fermat thought he had a proof, but it was incorrect. However, he
may have been tempting others to look for a proof, not being able to find one himself.

THEOREM 5

t;

i

I

I
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Unfortunately, there are composite integers r? such that 2"-t : I (mod n). Sucþ

integers are called pseudoprimes to the base 2.

EXAMPLE I The integer 34L is a pseudoprime to the base 2 since it is composite (341 : l1 .31) and as

Exercise 27 shows

2340 :1 (mod 341)

We can use an integer other than 2 as the base when we study pseudoprimes.

DEFINITION I. l.'el b be a positive integer. If n is a composite positive integer, and bn-r : 1 (mod
n), then n is called a pseudoprime to the base b.

Given a positive integer ¡2, determining whether 2"-t : 1 (mod n) is a useful test that
provides some evidence concerning whether n is prime. In particular, if ¡z satisfies this
congruence, then it is either prime or a pseudoprime to the base 2; if n does not satisfy

this congruence, it is composite.'We can perform similar tests using bases b other than 2
and obtain more evidence whether n is prime. If n passes all such tests, it is either prime
or a pseudoprime to all the bases å we have chosen. Furthermore, among the positive
integers not exceeding x, where "t is a positive real number, compared to primes there
are relatively few pseudoprimes to the base b,wherc b is a positive integer. For example,

less than l0r0 there are 455,052,512 primes, but only 14,884 pseudoprimes to the base 2.

Unfortunately, we cannot distinguish between primes and pseudoprimes just by choosing

suff,ciently many bases, because there are composite integers n that pass all tests with
bases with gcd(b, n) : 1. This leads to Definition 2.

DEFINITION 2 A composite integer n that satisfies the congruence bn-l : I (mod n) for all posi-
tive integers å with gcd(b,n) : t is called a Carmichael number. (These num-
bers are named after Robert Carmichael, who studied them in the early twentieth
century.)

EXAMPLE 10 The integer 561 is a Carmichael number. To see this, first note that 561 is composite
since 561 : 3 . 11 . 17. Next, note that if gcd(á,561) : 1, then gcd(å,3) : gcd(å, 11) :
gcd(b,17) : L

Using Fermat's Little Theorem we find that

b2 = I (mod 3), brÙ : | (mod 11), andbrá: 1 (mod 17).

ROBERT DANIEL CARMICHAEL (1879-1967) Robert Daniel Carmichael was born in Alabama.
He received his undergraduate degree from Lineville College in 1898 and his Ph.D. in 1911 from Princeton.
Carmichael held positions at Indiana University from 1911 until 1915 and at the University oflllinois from
1915 until 1"947. Carmichael was an active researcher in a wide variety of areas, including number theorf
real analysis,differential equations,mathematicalphysics,and group theory. His Ph.D. thesis,written under
the direction of G. D. Birkhofl is considered the first signiflcant American contribution to the subject of
differential equations.
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It follows that

6s6o - (b2¡zto : 1 (mod 3),

6s6o - (bto',sø: 1 (mod 11),

6560 - (bts¡zs: I (mod l7).

By Exercise 23 atthe end of this section, it follows that b560 : 1 (mod 561) for all positive
integers b with gcd(å, 561) : L Hence 561 is a Carmichael number. <

Although there are infinitely many Carmichael numbers, more delicate tests, de-
scribed in the exercise set at the end of this section, can be devised that can be used as
the basis for efficient probabilistic primality tests. Such tests can be used to quickly show
that it is almost certainly the case that a given integer is prime. More precisely, if an inte-
ger is not prime, then the probability that it passes a series of tests is close to 0. We will
describe such a test in Chapter 5 and discuss the notions from probability theory that this
test relies on. These probabilistic primality tests can be used, and are used, to find large
primes extremely rapidly on computers.

PUBLIC KEY CRYPTOGRAPITY

In Section 2.4 we introduced methods for encrypting messages based on congruences.
When these encryption methods are used, messages, which are strings of charatters, are
translated into numbers. Then the number for each character is transformed into another
number, either using a shift or an affine transformation modulo 26. These methods are
examples of private key cryptosystems. Knowing the encryption key lets you quickly f,nd
the decryption key. For example, when a shift cipher is used with encryption key k, a
number p representing a letter is sent to

c : (p * k) mod26.

Decryption is carried out by shifting by -k;that is,

p : (c - k) mod26.

when a private key cryptosystem is used, a pair of people who wish to communicate
in secret must have a separate key. Since anyone knowing this key can both encrypt and
decrypt messages easily, these two peopre need to securely exchange the key.

In the mid-1970s, cryptologists introduced the concept of public key cryptosystems.
rühen such cryptosystems are used, knowing how to send someone a message does not
help you decrypt messages sent to this person. In such a system, every person can have
a publicly known encryption key. only the decryption keys are kept secret, and only
the intended recipient of a message can decrypt it, since the encryptiòn key does not lei
someone flnd the decryption key without an extraordinary amount of work (such as more
than 2 billion years of computer time).

rn 7976, three researchers at M.I.T.-Ronald Rivest, Adi Shamir, and Leonard
Adleman-introduced a public key cryptosystem, known as the RSA system, from the ini-
tials of its inventors. The RSA cryptosystem is based on modular exponentiation modulo,
the product of two large primes, which can be done rapidly using Álgorithm 5 in Section
2.5. Each individual has an encryption key consisting of a modulus n : pq,where p and
q arelarge primes, say, with 200 digits each, and an exponent ¿ that is relatively prime to
(p - 1)(q - 1).To produce a usable key, two large primes must be found. This can be

'''| "'":: , tLinks::.:::..:
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, 4.,

done quickly on a computer using probabilistic primality tests, referred to earlier'rh this

section. However, the product of these primes n : pq, with approximately 400 digits,

cannot be factored in a reasonable length of time. As we will see, this is an important

reason why decryption cannot be done quickly without a separate decryption key.

RSAENCRYPTION

In the RSA encryption method, messages are translated into sequences of integers. This

can be done by translating each letter into an integer, as is done with the Caesar cipher.

These integers are grouped together to form larger integers, each representing a block of
letters. The encryption proceeds by transforming the integer M, representing the plain-

text (the original message), to an integer Ç representing the ciphertext (the encrypted

message), using the function

C : M'mod ¡z

(To perform the encryption, we use an algorithm for fast modular exponentiation, such

as Algorithm 5 in Section 2.5.) We leave the encrypted message as blocks of numbers and

send these to the intended recipient.

Example 11 illustrates how RSA encryption is performed. For practical reasons we

use small primes p and q in this example, rather than primes with 100 or more digits. Al-
though the cipher described in this example is not secure, it does illustrate the techniques

used in the RSA cipher.

Encrypt the message STOP using the RSA cryptosystem with p : 43 and 4 : 59, so

that n : 43 . 59 : 2537,and with e : l3.Note that

gcd(e, (p - l)(q - 1)).: gcd(l3, 42' 58) : l.

RONALD RIVEST (BORN 1948) Ronald Rivest received a B.A. from Yale in 1969 and his Ph.D.

in computer science from Stanford in19'14. Rivest is a computer science professor at M.I.T. and was

a cofounder of RSA Data Security, which held the patent on the RSA cryptosystem that he invented

together with Adi Shamir and Leonard Adleman. Areas that Rivest has worked in besides cryptography

include machine learning, VLSI design, and computer algorithms. He is a coauthor of a popular text on

algorithms ([CoLeRiSt0l]).

ADI SIIAMIR (BORN 1952) Adi Shamir was born in Tþl Aviv, Israel. His undergraduate degree is

from Tel Aviv University (1972) and his Ph.D. is from the Weizmânn Institute of Science (1977). Shamir

was a research assistant at the University of Warwick and an assistant professor at M.I.T. He is currently

a professor in the Applied Mathematics Department at the Weizmann Institute and leads a group study-

ing computer security. Shamir's contributions to cryptography, besides the RSA cryptosystem, include

crãcking knapsack cryptosystems, cryptanalysis of the Data Encryption Standard (DES), and the design

of many cryptographic protocols.

LEONARD ADLEMAN (BORN 1945) Leonard Adleman was born in San Francisco, California. He

received a B.S. in mathematics (1968) anci his Ph.D. in computer science (1976) from the University of

California, Berkeley. Adleman was a member of the mathematics faculty at M.LT. from1976 until 1980'

where he was a co-inventor of the RSA cryptosystem, and in 1980 he took a position in the computer

science department at theUniversity of Southern California (USC). Hewas appointed to a chaired position

at USC in 1985. Adleman has worked on computer security, computational complexity, immunology, and

molecular biology. He invented the term "computer virus." Adieman's recent work on DNA computing

has sparked great interest. He was a technical adviser for the movie Sneakers, in which computer security

played an important role.

EXAMPLE I.1
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Solution: We translate the letters in STOP into their numerical equivalents and then
group the numbers into blocks of four. We obtain

1819 t415.

\üe encrypt each block using the mapping

C : M13 mod2537.

Computations using fast modular multiplication show that 181913 mod 2537 : 2081
and 141513 mod2537 :2l82.The encryptedmessage is20812182. <

RSA DECRYPTION

The plaintext message can be quickly recovered when the decryption key d, an inverse of e
modulo (p-l)(q- 1),isknown. [Suchaninverseexistssincegcd(e, (p-l)(q- 1)): 1.]
To see this, note fhat if de : 1 (mod (p - I)(q - 1)), there is an integer k such that
de : 7 + k(p - I)(q - 1). It follows that

Cd : (M")d : Md" - ¡41+k(p-1)(ø-1)1¡nodn).

By Fermat's Little Theorem fassuming fhaf gcd(M, p) : gcd(M, q) : 1, which holds
except in rare cases], it follows that Mp-1 : 1 (mod p) and Mq-t = 1 (mod 4).
Consequently,

Cd = M' (Mn-t¡r'1n-D : M' | : M(modP)

and

Cd : M . (Ma t'rr'1r-t) : M . | : M(modq).

Since gcd(p, e) : l,it follows by the Chinese Remainder Theorem that

Cd:M(mod,pq).

Example 12 illustrates how to decrypt messages sent using the RSA cryptosystem.

EXAMPLE L2 We receive the encrypted message 0981 0461. What is the decrypted message if it was
encrypted using the RSA cipher from Example 11?

Solution: The message was encrypted using the RSA cryptosystem with n : 43 . 59 and
exponent 13. As Exercise 4 shows, d :937 is an inverse of 13 modulo 42 . 58:2436.We
use 937 as our decryption exponent. Consequently, to decrypt a block C, we compute

P : çezt mod253l.

To decrypt the message, we use the fast modular exponentiation algorithm to compute
098P37 mod 2531 : 0704 and 046re37 mod 2537 : 1115. consequãntly, the numerical
version of the original message is 0704 1115. Tianslating this back to English letters, we
see that the message is HELP. <

RSA AS A PUBLIC KEY SYSTEM

Why is the RSA cryptosystem suitable for public key cryptography? When we know the
factorization of the modulus n, that is, when we know p and q,we can use the Euclidean
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algorithm to quickly find an exponent d inverse to e modulo (p - I)(q - 1). This lets us

decrypt messages sent using our key. However, no method is known to decrypt messages
that is not based on finding a factorization of n, or that does not also lead to the fac-
torization of n. Factorization is believed to be a difficult problem, as opposed to finding
large primes p and q,which can be done quickly. The most efficient factorization methods
known (as of 2002) require billions of years to factor 400-digit integers. Consequently,
when p and q are 200-digit primes, messages encrypted using n - pq as the modulus
cannot be found in a reasonable time unless the primes p and q are known.

Active research is under way to f,nd new ways to efficiently factor integers. Integers
that were thought, as recently as several years ago, to be far too large to be factored in a
reasonable amount of time can now be factored routinely. Integers with more than 100
digits, as well as some with more than 150 digits, have been factored using team efforts.
When new factorization techniques are found, it will be necessary to use larger primes to
ensure secrecy of messages. Unfortunately, messages that were considered secure earlier
can be saved and subsequently decrypted by unintended recipients when it becomes
feasible to factor lhe n : pq in the key used for RSA encryption.

The RSA method is now widely used. However, the most commonly used crypto-
systems are private key cryptosystems. The use of public key cryptography, via the RSA
system, is growing. However, there are applications that use both private key and public
key systems. For example, a public key cryptosystem, such as RSA, can be used to dis-
tribute private keys to pairs of individuals when they wish to communicate. These people
then use a private key system for encryption and decryption of messages.

E axercrses
1. Express the greatest common divisor of each of these

pairs of integers as a linear combination of these in-
tegers.

a) 10,11 b\ 21,44 c) 36,48
d) 34,55 e\ IL7,2I3 f) 0,223
g) 123,2347 h) 3454,4666 i) 9999,1.11.1.1

2. Express the greatest common divisor of each of these
pairs of integers as a linear combination of these in-
tegers.

a) 9,11 b) 33,44 c) 35,78
d')21,55 e) 101.,203 Ð 124,323
g) 2002,2339 h) 3457,4669 i') 10001,13422

3. Show that 15 is an inverse of 7 modulo 26.
4. Show that937 is an inverse of 13 modulo 2436.
5. Find an inverse of 4 modulo 9.

6. Find an inverse of 2 modulo 17.

7. Find an inverse of 19 modulo 141.
8. Find an inverse of 144 modulo 233.

* 9. Show that if a and m are relatively prime positive inte-
gers,then the inverse of a modulo rn is unique modulo
m.lHint: Assume that there are two solutions b and c
of the congruefice ax : I (mod re). Use Theorem 2
to show fhatb = c (mod m ).]

10. Show that an inverse of a modulo m does not exist if
gcd(a, m) > l.

11. Solve the congruence 4x :5 (mod 9).

12. Solve the congruence 2x :7 (mod 17).
* 13. Show thaf iÎ m is a positive integer greater than 1 and

ac = bc (mod ru), then a : b mod m / gcd(c, m).

14. a) Show that the positive integers less than 11, ex-

cept 1 and 10, can be split into pairs of integers
such that each pair consists of integers that are
inverses of each other modulo 11.

b) Use part (a) to show that l0! : -1 (mod 11).

15. Show that if p is prime, the only solutions of x2 =
1 (mod p) are integers x such that x = I (mod p) and
x = -1 (mod p).

*16. a) Generalize the result in part (a) of Exercise 14;

that is, show that lf p is a prime, the positive inte-
gers less than p, except 1 and p - l, can be split
ínto (p - 3) /2 pairs of integers such that each pair
consists of integers that are inverses of each other.
(Hint: Use the result of Exercise 1 5.)

b) From part (a) conclude that (p - 1)! : -1
(mod p) whenever p is prime.This'result is known
as Wilson's Theorem.

c) What can we conclude if n is a positive integer
such that (n - l)l t' -l (mod n)?

*17. This exercise outlines a proof of Fermat's Little The-
orem.
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â) Suppose that a is not divisible by the prime p.

Show that no two of the integers 1 ' a,2'a, ...,
@ - l)a are congruent modulo p.

b) Conclude from part (a) that the product of
|,2, . . ., p - I is congruent modulo p to the prod-

uct of a,2a, . . . , (p - 1)a. Use this to show that

(p - 1)l = at' | (p - 1)! (mod p).

c) Use Wilson's theorem (proved in Exercise 16) to
show that ar'-r : I (mod P)iÎ P X a.

d) Use part (c) to show thaf ap : a (mod p) for all
integets a'

16. Find all solutions to the system of congruences.

x :2 (mod3)
x = 1 (mod4)
,:3(mod5)

D. Find all solutions to the system of congruences.

"r=1(mod2)
x -- 2 (mod3)

"r:3(mod5)
x :4 (mod 1l)

*20. Find all solutions, if any, to the system of congruences.

"r=5(mod6)
"r=3(mod10)
¡=8(mod15)

*21. Find all solutions, if any, to the system of congruences.

"r=7(mod9)
x=4(mod12)
x = 16 (mod 21)

22. Use the Chinese RemainderTheorem to show that an

integer a, with 0 < a < n1 : mtm2... ffin,where the
integers mt, m2, . . . , ffi, are pairwise relatively prime,
can be represented uniquely by the n-tuple (amodm1,
amodm2, .. . ,amodm,,).

*23. Let tnt,mz,...,ffi, be pairwise relatively prime in-
tegers greater than or equal to 2. Show that if a :
b (mod m¡) for I : 1,2, .. . ,n,Then a = b (mod m),
wherem:mtm2...mn,

*24. Complete the proof of the Chinese Remainder The-

25.

26,

orem by showing that the simultaneous solution
of a system of linear congruences modulo pair-
wise relatively prime integers is unique modulo
the product of these moduli. (lllrzr; Assume that x
and l, are two simultaneous solutions. Show that
m¡ I x - y for all i. Using Exercise 23, conclude that
m=mrm2.m,, lx-).)
Which integers leave a remainder of 1 when divided
by 2 and also leave a remainder of 1 when divided
bv 3?

Which integers are divisible by 5 but leave a remain-
der of L when divided by 3?
a) Show rhat23ao : 1 (mod 11) by Fermat's Little

Theorem and noting that 2ra0 : (2r0)14.
b) Show that 23a0 : 1 (mod 31) using the fact that

2la0-12s¡68_1208
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c) Conclude from parts (a) and (b) that 2340:
I (mod 341).

28. a) Use Fermat's Little Theorem to compute
3302 mod 5, 3302 mod 7 , and 3302 mod I 1.

b) Use your results from part (a) and the Chinese
Remainder Theorem to flnd 3302 mod 385. (Note
that385:5'7.11.)

29. a) Use Fermat's Little Theorem to compute
52003 -o¿ 7,52003 mod 11, and 52003 mod 13.

b) Use your results from part (a) and the Chi-
nese RemainderTheorem to find 52003 mod 1001.

(Note that 1001 : 7 . 11. 13.)

Let n be a positive integer and let n - 7 : 2"/, where s

is a nonnegative integer and r is an odd positive integer.
We say that n passes Miller's test for the base å if either
bt : l(rnod n) or b2jr : -1 (mod n) for some j with
0 < j < s - 1.It can be shown (see [Ro00]) that a com-
posite integer ¡? passes Miller's test for fewer than nf 4
basesåwiÍhl <b <n.
30. Show that if n is prime and ó is a positive integer with

n I b,then,? passes Miller's test to the base b.

31. Show that2047 passes Miller's test to the base 2, but
that it is composite. A composite positive infeger n

that passes Miller's test to the base å is called a strong
pseudoprime to the base b. It follows that2047 is a
strong pseudoprime to the base 2.

32. Show fhat1729 is a Carmichael number.
33. Show that282I is a Carmichael number.

*34. Show that if n : ptpz. . .pr, where pt, p2,..., pk

are distinct primes that satisfy pj - l ln - 1 for
¡ : 1,2,. . . , A, then r¿ is a Carmichael number.

35. a) Use Exercise 34 to show that every integer of the
form (6m -f l)(12m * 1)(1812 * 1), where z is a
positiveinteger and6m*1,12m * 1,and 18m-ll
are all primes, is a Carmichael number.

b) Use part (a) to show that 172,947,529 is a Car-
michael number.

36. Find the nonnegative integer ø less than 28 repre-
sented by each of these pairs, where each pair repre-
sents (a mod 4,a mod 7).

a) (0,0) b) (1,0) c) (1,1)
d) (2,r) e) (2,2) Ð (0,3)

c) (2,0) h) (3,s) Ð (3,6)

:

i

rl

I

37.

38.

39.

*40.

'k*4L.

Express each nonnegative integer a less than 15 using
the pair (a mod 3, a mod 5).
Explain how to use the pairs found in Exercise 37 to
add,4 and7.
Solve the system of congruences that arises in Exam-
ple 8.

Show that if a and å are positive integers, then
(2' - 1) mod (2b - 7) : 2" mod l' - 1.

Use Exercise 40 to show fhat if a and å are posi-
tive integers, then gcd(2n - l,zh - 7) - 2scdt"'b) - 7.

[11lnr; Show that the remainders obtained when the
Euclidean algorithm is used to compute gcd(2" - l,
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2b - l) are of the form 2' - 1, where r is a remainder
arising when the Euclidean algorithm is used to find

scd(a, b).1

42. l)se Exercise 41 to show that the integers 23s - l,
2ra - 1,233 - 1,23t - 1,22e - l. and 223 - I are pairwise
relatively prime.

43. Show that tf p is an odd prime, then every divisor of
the Mersenne number 2p * I is of the form 2kp -l 1,

where k is a nonnegative inte ger. (Hint: Use Fermat's
Little Theorem and Exercise 41.)

44. Use Exercise 43 to determine whether Mn : 2t3 -
1 : 8191 and M7:)23 - 1 : 8,388,607 are prime.

*45. Show that we can easily factor n when we know that
¡z is the product of two primes, p and q, and we know
the value of (p - l)(q - l).

46. Encrypt the message ATTACK using the RSA system

with ¡¿ : 43 . 59 and e : 13, translating each letter
into integers and grouping together pairs of integers,

as done in Example 11.

47. What is the original message encrypted using the
RSA system with n : 43 . 59 and e : 13 if the
encrypted message is 0667 L941 0671? (Noler Some

computational aid is needed to do this in a realistic
amount of time.)

The extended Euclidean algorithm can be used to express
gcd(a, b) as a linear combination with integer coefficients
of the integers a and å. We set so : 1, sr : 0, /o : 0, and

/r : 1 andlets; : sj-2-qj1sj-1 andt¡ :tj-z- Q¡ ú¡ t

for j - 2,3, ..., n, where the q¡ arc the quotients in
the divisions used when the Euclidean algorithm finds
gcd(a,b) (see page 178). It can be shown (see [Ro00])
fhat gcd(a, b) : s,a * t,,b.

48. Use the extended Euclidean algorithm to express
gcd(252,356) as a linear combination of 252 and356.

49. Use the extended Euclidean algorithm to express
gcd(144,89) as a linear combination of 144 and89.

50. Use the extended Euclidean algorithm to express
gcd ( I 001, 1 00001 ) as a linear combination of 1001 and

100001.

51. Describe the extended Euclidean algorithm using
pseudocode.

If lz is a positive integer, the integer a is a quadrafic
residue of m if gcd(a,m):1 and the congruence
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x2 = a (mod m) has a solution. In other words, a quadratic
residue of ¡z is an integer relatively prime to rn that is a
perfect square modulo m. For example,2 is a quadratic
residue of 7 since gcd(2,7) : I and 32 = 2 (mod7 ) and 3

is a quadratic nonresidue of 7 since gcd(3,7) : I and
x2 :3 (mod7) has no solution.

52. Which integers are quadratic residues of 11?

53. Show that if p is an odd prime and a is an integer not
divisible by p, then the congruence x2 = a (mod p)
has either no solutions or exactly two incongruent
solutions modulo p.

54. Show that if p is an odd prime, then there are exactly
(p * l) /2 quadratic residues of p among the integers
1,2,..., p - 1.

If p is an odd prime and a is an integer not divisible by

p, the Legendre symbol lg) " 
deflned to be 1 if a is a

\p)
quadratic residue of p and -l otherwise.

55. Show that if p is an odd prime and ,¿ and å are integers

witha:å(modp),then
/a\ /b\
('¡,1 : (.;J

56. Prove that iÎ p is an odd prime and a is a positive
integer not divisible by p, then

lq) = atp t)t2(mod p).
\p)

57. Use Exercise 56 to show that if p is an odd prime and

a and b are integers not divisible by p, then

/ nt¡\ / "\ (b_\ 
.(';,1 :\r)vrt

58. Show that if p is an odd prime, then -1 is a quadratic
residue of p iÎ p : 1 (mod 4) and 1 is not a quadratic
residue of p if p = 3 (mod4). (Hint:Use Exer'
cise 56.)

59. Find allsolutions ofthecongruencex2 : 29 (mod 35).

(Hint: Find the solutions of this congruence modulo
5 and modulo 7, and then use the Chinese Remainder
Theorem.)

60. Find all solutions of the congruence x2 :16
(mod 105). (Hint: Find the solutions of this congru-
ence modulo 3, modulo 5, and modulo 7, and then use

the Chinese Remainder Theorem.)

C. Matrices

:l ::Links;.¡':,'

INTRODUCTION

Matrices are used throughout discrete mathematics to express relationships between ele-

ments in sets. In subsequent chapters we will use matrices in a wide variety of models. For

instance, matrices will be used in models of communications networks and tt'ansportation


