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IXpan- in this position is used for positive integers, and a 1 bit A Cantor expansion is a sum of the form
:Xpan- - this position is used for negative integers, just as in
| glne’s C(!mplement expansions. For a positive integer, the apnl 4 @y (0 = DU 4 a2t adl,
remaining bits are identical to the binary expansion of where g; is an integer with O <a; <ifori =1,2,....n.
if and the theger. For.a negative in.teger, tl:elremaining t’)its are 44. Find the Cantor expansions of
by 3, the bits of the b}lrlary expan‘m(‘)nl (?f‘2 - |x]. Two’s com- a) 2. b) 7. 0 19.
if and plement expanalon.:? -:)f II"IT.Lgt‘TB al.c o.llcn t_:s'ed hy.(l:mn- d) §7. e) 1000, f) 1,000,000,
al dig- uters _because il(.!(.llf.lt)!l and hllhllilClI(lF'l of integers can . ) i
of ifa pe performed easily using these expansions, where these 45. Describe an algorithm that finds the Cantor expan-
visible integers can be either positive or negative. . sion Of an integer g ) ]
46. Describe an algorithm to add two integers from their
. 36. Answer Exercise 30, but this time find the two’s com- Cantor expansions.
lfﬁm_ltd plement expansion using bit strings of length six. 47. Add (10111), and (11010), by working through each
binilrs 37. Answer Exe1‘c1s.e 31 if each expansion is a two’s com- step of the algorithm for addition given in the text.

3 y plement expansion of length five. 48. Multiply (1110), and (1010), by working through each
Y 38. Answer Exercise 32 for two’s complement expan- step of the algorithm for multiplication given in the
sed to sions. ‘ text.

e and 39, Answer Exercise 33 for two’s complement expan- 49. Describe an algorithm for finding the difference of
atotal sions. two binary expansions.
nt the 40. Answer Exercise 34 for two’s complement expan- 50. Estimate the number of bit operations used to sub-
tegers, sions. tract two binary expansions.
Legers. 41. Show that the integer m with two’s complement rep- 51. Devise an algorithm that, given the binary expansions
10?1 to resentation (a,_1a,—, - - - @ ao) can be found using the of the integers a and b, determines whether a > b,
> inte- equationm = —a,_, 2 g, 0202 a2+ a. a=>b,ora <b.
ng the 42. Give a simple algorithm for forming the two’s com- 52. How many bit operations does the comparison algo-
o1, and plement representation of an integer from its one’s rithm from Exercise 51 use when the larger of a and &
where complement representation. has n bits in its binary expansion?
ofal 43. Sometimes integers are encoded by using four-digit 53, Estimate the complexity of Algorithm 1 for finding
binary expansions to represent each decimal digit. the base b expansion of an integer = in terms of the
ing bit This produces the binary coded decimal form of the number of divisions used.
integer. For instance, 791 is encoded in this way by *54., Show that Algorithm 5 uses O ((log m)? log ) bit op-
011110010001. How many bits are required to repre- erations to find »" mod m.
S co sent a number with n decimal digits using this type of 55. Show that Algorithm 4 uses O(qloglal) bit opera-
nt? encoding? tions, assuming that a > 4.
11
cone’s . .
g Eﬁ Applications of Number Theory
ngth n
of the
- INTRODUCTION
of the Number theory has many applications, especially to computer science. In Section 2.4
. one’s we described several of these applications, including hashing functions, the generation
? of pseudorandom numbers, and shift ciphers. This section continues our introduction to
nt rep- number theory, developing some key results and presenting two important applications:
ing the a method for performing arithmetic with large integers and a recently invented type of
sy cryptosystem, called a public key system. In such a cryptosystem, we do not have to keep
encryption keys secret, since knowledge of an encryption key does not help someone
¢ also decrypt messages in a realistic amount of time. Privately held decryption keys are used
I more to decrypt messages.
ns. To Before developing these applications, we will introduce some key results that play
-1 for a central role in number theory and its applications. For example, we will show how
; useq. to solve systems of lincar congruences modulo pairwise relatively prime integers using
0 bit the Chinese Remainder Theorem, and then show how to use this result as a basis for
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performing arithmetic with large integers. We will introduce Fermat’s Little Theorem
and the concept of a pseudoprime and will show how to use these concepts to develop a
public key cryptosystem.

SOME USEFUL RESULTS

An important result we will use throughout this section is that the greatest common
divisor of two integers a and b can be expressed in the form

sa+1b,

where s and # are integers. In other words, ged(a, b) can be expressed as a linear combi-
nation with integer coefficients of ¢ and b. For example, gcd(6, 14) = 2,and 2 = (—2) - 6
+ 1 - 14. We state this fact as Theorem 1.

If a and b are positive integers, then there exist integers s and ¢ such that ged(a, b) =
sa+th.

We will not give a formal proof of Theorem 1 here (see Exercise 66 in Section 3.3 and
[Ro00] for proofs), but we will provide an example of a method for finding a linear
combination of two integers equal to their greatest common divisor. (In this section, we
will assume that a linear combination has integer coefficients.) The method proceeds by
working backward through the divisions of the Euclidean algorithm. (We also describe an
algorithm called the extended Euclidean algorithm that can be used to express gcd(a, b)
as a linear combination of ¢ and b in the preamble to Exercise 48.)

Express gcd(252,198) = 18 as a linear combination of 252 and 198.

Solution: To show that ged(252,198) = 18, the Euclidean algorithm uses these divisions:

252 =1-198+54
198 =3-54 436
54=1-36+18
36 =218

Using the next-to-last division (the third division), we can express ged(252,198) = 18 as
a linear combination of 54 and 36. We find that

18 =54 —1- 36.
The second division tells us that
36 =198 — 3 - 54,

Substituting this expression for 36 into the previous equation, we can express 18 as a
linear combination of 54 and 198. We have

18=54—-1.36=54—1-(198—3-54)=4.54 —1-198.

The first division tells us that

54 =252 —-1-198.
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Substituting this expression for 54 into the previous equation, we can express 18 as a
linear combination of 252 and 198. We conclude that

18=4-(252—1-198) —1-198 =4-252 —5- 198,

completing the solution. «

We will use Theorem 1 to develop several useful results. One of our goals will be
to prove the part of the Fundamental Theorem of Arithmetic asserting that a positive
integer has at most one prime factorization. We will show that if a positive integer has a
factorization into primes, where the primes are written in nondecreasing order, then this
factorization is unique.

First, we need to develop some results about divisibility.

If a, b, and ¢ are positive integers such that ged(a, b) = 1 and a | be, thena | c.

Proof: Since ged(a, b) = 1,by Theorem 1 there are integers s and ¢ such that
sa+th=1.

Multiplying both sides of this equation by ¢, we obtain
sac +tbc =c.

Using Theorem 1 of Section 2.4, we can use this last equation to show that ¢ | ¢. By
part 2 of that theorem, a | thc. Since a | sac and a | tbc, by part 1 of that theorem, we
conclude that a divides sac -+ tbc, and hence a | c. This finishes the proof. <

We will use the following generalization of Lemma 1 in the proof of uniqueness of
prime factorizations. (The proof of Lemma 2 is left as an exercise in Section 3.3, since it
can be most easily carried out using the method of mathematical induction, which will be
covered in that section.)

If p is a prime and p | a1a4; - - - a, where each g; is an integer, then p | a; for
some i.

We can now show that a factorization of an integer into primes is unique. That is, we
will show that every integer can be written as the product of primes in nondecreasing
order in at most one way. This is part of the Fundamental Theorem of Arithmetic. We will
prove the other part, that every integer has a factorization into primes, in Section 3.3.

Proof (of the uniqueness of the prime factorization of a positive inte-
ger): Wewilluse a proof by contradiction. Suppose that the positive integer n can be writ-
ten as the product of primes in two different ways,say,n = p1p2--- Ps andn =q192- - q:,
each p; and g; are primes such that py < py <--- = ps andg; <g2 < -+ <q.

When we remove all common primes from the two factorizations, we have

PisPir + Piy = 4jy4jo** Djur
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where no prime occurs on both sides of this equation and u and v are positive integers,
By Lemma 1 it follows that p;, divides g, for some k. Since no prime divides another
prime, this is impossible. Consequently, there can be at most one factorization of # into
primes in nondecreasing order. <

Lemma 1 can also be used to prove a result about dividing both sides of a congru-
ence by the same integer. We have shown (Theorem 10 in Section 2.4) that we can mul-
tiply both sides of a congruence by the same integer. However, dividing both sides of
a congruence by an integer does not always produce a valid congruence, as Example 2
shows.

The congruence 14 = 8 (mod 6) holds, but both sides of this congruence cannot be divided
by 2 since 14/2 = 7 and 8/2 = 4, but 7 & 4 (mod 6). <

However, using Lemma 1, we can show that we can divide both sides of a congruence
by an integer relatively prime to the modulus. This is stated as Theorem 2.

Let m be a positive integer and let a, b, and ¢ be integers. If ac = bc (mod m) and
ged(c, m) = 1,thena = b (mod m).

Proof: Since ac = bc (modm), m|ac—bc=c(a—>b). By Lemma 1, since
ged(c, m) = 1,it follows that m | a — b. We conclude that a = b (mod m). <

LINEAR CONGRUENCES

A congruence of the form
ax = b (mod m),

where m is a positive integer, a and b are integers, and x is a variable, is called a linear
congruence. Such congruences arise throughout number theory and its applications.

How can we solve the linear congruence ax = b (mod m), that is, find all integers x
that satisfy this congruence? One method that we will describe uses an integer @ such
that aa = 1 (mod m), if such an integer exists. Such an integer @ is said to be an inverse
of a modulo m. Theorem 3 guarantees that an inverse of @ modulo m exists whenever a
and m are relatively prime.

If a and m are relatively prime integers and m > 1, then an inverse of ¢ modulo m
exists. Furthermore, this inverse is unique modulo m. (That is, there is a unique positive
integer @ less than m that is an inverse of @ modulo m and every other inverse of a
modulo m is congruent to @ modulo m.)

Proof: By Theorem 1, since gcd(a, m) = 1, there are integers s and ¢ such that
sa—+tm=1.

This implies that

sa +tm =1 (mod m).
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Since tm = 0 (mod m), it follows that
sa = 1 (mod m).
Consequently, s is an inverse of a modulo m. That this inverse is unique modulo m is left

as Exercise 9 at the end of this section. <

The proof of Theorem 3 describes a method for finding the inverse of @ modulo m
when a and m are relatively prime: find a linear combination of @ and m that equals 1
(which can be done by working backward through the steps of the Euclidean algorithm);
the coefficient of ¢ in this linear combination is an inverse of @ modulo m. We illustrate
this procedure in Example 3.

Find an inverse of 3 modulo 7.

Solution: Since ged(3, 7) = 1, Theorem 3 tells us that an inverse of 3 modulo 7 exists. The
Euclidean algorithm ends quickly when used to find the greatest common divisor of 3
and 7:

7=2-3+1.
From this equation we see that
-2.341-7=1.

This shows that —2 is an inverse of 3 modulo 7. (Note that every integer congruent to —2
modulo 7 is also an inverse of 3,such as 5, —9,12, and so on.) <

When we have an inverse a of a modulo m, we can easily solve the congruence

ax = b (mod m) by multiplying both sides of the linear congruence by @, as Example 4
illustrates. .

What are the solutions of the linear congruence 3x = 4 (mod 7)?

Solution: By Example 3 we know that —2 is an inverse of 3 modulo 7. Multiplying both
sides of the congruence by —2 shows that

—2-3x=—-2-4(mod 7).

Since —6 = 1 (mod 7) and —8 = 6 (mod 7), it follows that if x is a solution, then
x=-—-8=6(mod?7).

We need to determine whether every x with x = 6 (mod 7) is a solution. Assume that
x = 6 (mod 7). Then, by Theorem 10 of Section 2.4, it follows that

3x=3-6=18 =4 (mod7),

which shows that all such x satisfy the congruence. We conclude that the solutions to the
congruence are the integers x such that x = 6 (mod 7), namely, 6, 13, 20, ... and —1, -8,
—15,.... <

THE CHINESE REMAINDER THEOREM

Systems of linear congruences arise in many contexts. For example, as we will see later,
they are the basis for a method that can be used to perform arithmetic with large integers.
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Such systems can even be found as word puzzles in the writings of ancient Chinese and
Hindu mathematicians, such as that given in Example 5.

In the first century, the Chinese mathematician Sun-Tsu asked:

There are certain things whose number is unknown. When divided by 3, the re-
mainder is 2; when divided by 5, the remainder is 3; and when divided by 7, the
remainder is 2. What will be the number of things?

This puzzle can be translated into the following question: What are the solutions of
the systems of congruences

x = 2 (mod 3),
x = 3 (mod 5),
x =2 (mod7)?
We will solve this system, and with it Sun-Tsu’s puzzle, later in this section. <

The Chinese Remainder Theorem, named after the Chinese heritage of problems
involving systems of linear congruences, states that when the moduli of a system of linear

congruences are pairwise relatively prime, there is a unique solution of the system modulo
the product of the moduli.

THE CHINESE REMAINDER THEOREM Let mi, ma, .

.., m, be pairwise
relatively prime positive integers. The system

X = a; (mod m,),

X = ay (mod my),

X = a, (mod m,)

has a unique solution modulo 71 = mmj - - -m,. (That is, there is a solution x with
0 < x < m, and all other solutions are congruent modulo m to this solution.)

Proof: To establish this theorem, we need to show that a solution exists and that it is
unique modulo m. We will show that a solution exists by describing a way to construct

this solution; showing that the solution is unique modulo m is Exercise 24 at the end of
this section.

To construct a simultaneous solution, first let

Mk = m/mk

fork=1,2,..., n. Thatis, My is the product of the moduli except for . Since m; and
my have no common factors greater than 1 when i # k, it follows that ged(my, My) = 1.

Consequently, by Theorem 3, we know that there is an integer yy,an inverse of M) modulo
my, such that

My = 1 (mod my).
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To construct a simultaneous solution, form the sum
x=aMiyi +aMay, + -+ ayMyy,.

We will now show that x is a simultaneous solution. First,note thatsince M; = 0 (mod my)
whenever j # k,all terms except the kth term in this sum are congruent to 0 modulo mz;.
Since My, = 1 (mod my) we see that

x = axMyyr = ar (mod my),

for k=1,2,...,n. We have shown that x is a simultancous solution to the =
congruences. <

The following example illustrates how to use the construction given in the proof of
Theorem 4 to solve a system of congruences. We will solve the system given in Exam-
ple 5, arising in Sun-Tsu’s puzzle.

To solve the system of congruences in Example 5, first let m =3-5.-7 =105, M; =
m/3 =35 My =m/5 =21,and M3 = m/7 = 15. We see that 2 is an inverse of M| = 35
modulo 3, since 35 = 2 (mod 3); 1 is an inverse of M, =21 modulo 5, since 21 = 1 (mod
5); and 1 is an inverse of M3 = 15 (mod 7), since 15 = 1 (mod 7). The solutions to this
system are those x such that

x=aMiyi +aMay, + asMzy3; =2-35-2+3.21-1+2-15-1
= 233 = 23 (mod 105).

It follows that 23 is the smallest positive integer that is a simultaneous solution. We
conclude that 23 is the smallest positive integer that leaves a remainder of 2 when divided
by 3, a remainder of 3 when divided by 5, and a remainder of 2 when divided by 7.

COMPUTER ARITHMETIC WITH LARGE INTEGERS

Suppose that m, ma, ..., m, are pairwise relatively prime integers greater than or equal
to 2 and let m be their product. By the Chinese Remainder Theorem, we can show (see
Exercise 22) that an integer a with 0 < a < m can be uniquely represented by the n-tuple
consisting of its remainders upon division by m;, i = 1, 2, ..., n. That is, we can uniquely
represent a by

(amod mi,amodm,, ..., amodm,).

What are the pairs used to represent the nonnegative integers less than 12 when they
arc represented by the ordered pair where the first component is the remainder of the
integer upon division by 3 and the second component is the remainder of the integer
upon division by 4?

Solution: We have the following representations, obtained by finding the remainder of
each integer when it is divided by 3 and by 4:

0=(0,00 4=(01,00 8=(2,0

I=(11 5=@2,1) 9=(0,1)

2=(2,2) 6=(0,2) 10=(1,2)

3=(0,3) 7=(1,3) 11=(2,3).
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To perform arithmetic with large integers, we select moduli m;, ma, ..., m,, where
eachm; isaninteger greater than2,ged(m;, m;) = 1 wheneveri # j,andm =mymy---m,
is greater than the result of the arithmetic operations we want to carry out.

Once we have selected our moduli, we carry out arithmetic operations with large
integers by performing componentwise operations on the n-tuples representing these
integers using their remainders upon division by m;,i = 1,2, ..., n. Once we have com-
puted the value of each component in the result, we recover its value by solving a system
of n congruences modulo m;, i = 1,2, ..., n. This method of performing arithmetic with
large integers has several valuable features. First, it can be used to perform arithmetic with
integers larger than can ordinarily be carried out on a computer. Second, computations
with respect to the different moduli can be done in parallel, speeding up the arithmetic.

Suppose that performing arithmetic with integers less than 100 on a certain processor is
much quicker than doing arithmetic with larger integers. We can restrict almost all our
computations to integers less than 100 if we represent integers using their remainders
modulo pairwise relatively prime integers less than 100. For example, we can use the
moduli of 99,98, 97, and 95. (These integers are relatively prime pairwise, since no two
have a common factor greater than 1.)

By the Chinese Remainder Theorem, every nonnegative integer less than 99 - 98 - 97
- 95 = 89,403,930 can be represented uniquely by its remainders when divided by these
four moduli. For example, we represent 123,684 as (33, 8, 9, 89), since 123,684 mod 99
= 33,123,684 mod 98 = 8; 123,684 mod 97 = 9; and 123,684 mod 95 = 89. Similarly, we
represent 413,456 as (32, 92,42, 16).

To find the sum of 123,684 and 413,456, we work with these 4-tuples instead of these
two integers directly. We add the 4-tuples componentwise and reduce each component
with respect to the appropriate modulus. This yields

(33,8,9,89) +(32,92,42, 16)
= (65 mod 99, 100 mod 98, 51 mod 97, 105 mod 95)
= (65, 2,51, 10).

To find the sum, that is, the integer represented by (65,2,51,10), we need to solve the
system of congruences

65 (mod 99)

2 (mod 98)
51 (mod 97)
= 10 (mod 95)

X
X
X
X

It can be shown (see Exercise 39) that 537,140 is the unique nonnegative solution
of this system less than 89,403,930. Consequently, 537,140 is the sum. Note that it is only
when we have to recover the integer represented by (65, 2, 51, 10) that we have to do
arithmetic with integers larger than 100. <

Particularly good choices for moduli for arithmetic with large integers are sets of
integers of the form 2% — 1, where k is a positive integer, since it is easy to do bi-
nary arithmetic modulo such integers, and since it is easy to find sets of such integers
that are pairwise relatively prime. [The second reason is a consequence of the fact that
ged(2¢ — 1,20 — 1) = 2ecd(@.b) _ | as Exercise 41 shows.] Suppose, for instance, that we
can do arithmetic with integers less than 2% easily on our computer, but that working
with larger integers requires special procedures. We can use pairwise relatively prime
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moduli less than 2% to perform arithmetic with integers as large as their product. For
example, as Exercise 42 shows, the integers 2%° — 1,23 — 1,23 — 1,231 — 122 _ 1
and 2% — 1 are pairwise relatively prime. Since the product of these six moduli ex-
ceeds 2184 we can perform arithmetic with integers as large as 2!84 (as long as the results
do not exceed this number) by doing arithmetic modulo for each of these six moduli,
none of which exceeds 233.

PSEUDOPRIMES

In Section 2.4 we showed that an integer » is prime when it is not divisible by any prime
p with p < /n. Unfortunately, using this criterion to show that a given integer is prime
is inefficient. It requires that we find all primes not exceeding /n and that we carry out
trial division by each such prime to see whether it divides n.

Are there more efficient ways to determine whether an integer is prime? According
to some sources, ancient Chinese mathematicians believed that n was prime if and only if

2"~ = 1 (mod n).

If this were true, it would provide an efficient primality test. Why did they believe this
congruence could be used to determine whether an integer is prime? First, they observed
that the congruence holds whenever n is prime. For example, 5 is prime and

2271 =24 =16 =1 (mod 5).

Second, they never found a composite integer # for which the congruence holds. The an-
cient Chinese were only partially correct. They were correct in thinking that the congru-
ence holds whenever n is prime, but they were incorrect in concluding that n is necessarily
prime if the congruence holds.

The great French mathematician Fermat showed that the congruence holds when 7
is prime. He proved the following, more general result.

FERMAT’S LITTLE THEOREM If p is prime and a is an integer not divisible
by p, then

aP™! =1 (mod p).

Furthermore, for every integer a we have
a? = a (mod p).

'The proof of Theorem 5 is outlined in Exercise 17 at the end of this section.

PIERRE DE FERMAT (1601-1665) Picrre de Fermat, one of the most important mathematicians
of the seventeenth century, was a lawyer by profession. He is the most famous amateur mathematician
in history. Fermat published little of his mathematical discoveries. It is through his correspondence with
other mathematicians that we know of his work. Fermat was one of the inventors of analytic geometry and
developed some of the fundamental ideas of calculus. Fermat, along with Pascal, gave probability theory a
mathematical basis. Fermat formulated what was the most famous unsolved problem in mathematics. He
asserted that the equation x” + y" = 7" has no nontrivial positive integer solutions when # is an integer
greater than 2. For more than 300 years, no proof (or counterexample) was found. In his copy of the works
of the ancient Greek mathematician Diophantus, Fermat wrote that he had a proof but that it would not
fit in the margin. Because the first proof, found by Andrew Wiles in 1994, relies on sophisticated, modern
mathematics, most people think that Fermat thought he had a proof, but it was incorrect. However, he
may have been tempting others to look for a proof, not being able to find one himself.
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Unfortunately, there are composite integers n such that 2"~! = 1 (mod n). Such
integers are called psendoprimes to the base 2.

The integer 341 is a pseudoprime to the base 2 since it is composite (341 = 11 -31) and as
Exercise 27 shows

2340 = 1 (mod 341).

We can use an integer other than 2 as the base when we study pseudoprimes.

Let b be a positive integer. If n is a composite positive integer, and b*~! =1 (mod
n), then n is called a pseudoprime to the base b.

Given a positive integer n, determining whether 2"l = 1 (mod n) is a useful test that
provides some evidence concerning whether » is prime. In particular, if # satisfies this
congruence, then it is either prime or a pseudoprime to the base 2; if n does not satisfy
this congruence, it is composite. We can perform similar tests using bases b other than 2
and obtain more evidence whether n is prime. If n passes all such tests, it is either prime
or a pseudoprime to all the bases b we have chosen. Furthermore, among the positive
integers not exceeding x, where x is a positive real number, compared to primes there
are relatively few pseudoprimes to the base b, where b is a positive integer. For example,
less than 10'0 there are 455,052,512 primes, but only 14,884 pseudoprimes to the base 2.
Unfortunately, we cannot distinguish between primes and pseudoprimes just by choosing
sufficiently many bases, because there are composite integers n that pass all tests with
bases with gcd(b, n) = 1. This leads to Definition 2.

A composite integer n that satisfies the congruence b*~! = 1 (mod n) for all posi-
tive integers b with ged(b, n) = 1 is called a Carmichael number. (These num-
bers are named after Robert Carmichael, who studied them in the eatly twentieth
century.)

The integer 561 is a Carmichael number. To see this, first note that 561 is composite
since 561 = 3. 11 - 17. Next, note that if ged(b, 561) = 1, then ged(b, 3) = ged(b, 11) =
ged(b, 17) = L.

Using Fermat’s Little Theorem we find that

b?> =1 (mod 3), b'° = 1 (mod 11), and b'® = 1 (mod 17).

ROBERT DANIEL CARMICHAEL (1879-1967) Robert Daniel Carmichael was born in Alabama.
He received his undergraduate degree from Lineville College in 1898 and his Ph.D. in 1911 from Princeton.
Carmichael held positions at Indiana University from 1911 until 1915 and at the University of Illinois from
1915 until 1947. Carmichael was an active researcher in a wide variety of areas, including number theory,
real analysis, differential equations, mathematical physics,and group theory. His Ph.D. thesis, written under
the direction of G. D. Birkhoff, is considered the first significant American contribution to the subject of
differential equations.
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It follows that

b0 = (b = [ (mod 3),
b0 = (6193 = 1 (mod 11),
b0 = (5193 = | (mod 17).

By Exercise 23 at the end of this section, it follows that 550 = { (mod 561) for all positive
integers b with ged(b, 561) = 1. Hence 561 is a Carmichael number. <

Although there are infinitely many Carmichael numbers, more delicate tests, de-
scribed in the exercise set at the end of this section, can be devised that can be used as
the basis for efficient probabilistic primality tests. Such tests can be used to quickly show
that it is almost certainly the case that a given integer is prime. More precisely, if an inte-
ger is not prime, then the probability that it passes a series of tests is close to 0. We will
describe such a test in Chapter 5 and discuss the notions from probability theory that this
test relies on. These probabilistic primality tests can be used, and are used, to find large
primes extremely rapidly on computers.

PUBLIC KEY CRYPTOGRAPHY

In Section 2.4 we introduced methods for encrypting messages based on congruences.
When these encryption methods are used, messages, which are strings of characters, are
translated into numbers. Then the number for each character is transformed into another
number, either using a shift or an affine transformation modulo 26. These methods are
examples of private key cryptosystems. Knowing the encryption key lets you quickly find
the decryption key. For example, when a shift cipher is used with encryption key k, a
number p representing a letter is sent to

¢ = (p+ k) mod 26.
Decryption is carried out by shifting by —k: that is,
p = (c — k) mod 26.

When a private key cryptosystem is used, a pair of people who wish to communicate
in secret must have a separate key. Since anyone knowing this key can both encrypt and
decrypt messages casily, these two people need to securely exchange the key.

In the mid-1970s, cryptologists introduced the concept of public key cryptosystems.
When such cryptosystems are used, knowing how to send someone a message does not
help you decrypt messages sent to this person. In such a system, every person can have
a publicly known encryption key. Only the decryption keys are kept secret, and only
the intended recipient of a message can decrypt it, since the encryption key does not let
someone find the decryption key without an extraordinary amount of work (such as more
than 2 billion years of computer time).

In 1976, three researchers at M.I.T.—Ronald Rivest, Adi Shamir, and Leonard
Adleman—introduced a public key cryptosystem, known as the RSA system, from the ini-
tials of its inventors. The RSA cryptosystem is based on modular exponentiation modulo,
the product of two large primes, which can be done rapidly using Algorithm 5 in Section
2.5. Each individual has an encryption key consisting of a modulus 1 = pq,where p and
q are large primes, say, with 200 digits each, and an exponent e that is relatively prime to
(p — D(g — 1). To produce a usable key, two large primes must be found. This can be
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Links

done quickly on a computer using probabilistic primality tests, referred to earlier ih this
section. However, the product of these primes n = pq, with approximately 400 digits,
cannot be factored in a reasonable length of time. As we will see, this is an important
reason why decryption cannot be done quickly without a separate decryption key.

RSA ENCRYPTION

In the RSA encryption method, messages are translated into sequences of integers. This
can be done by translating each letter into an integer, as is done with the Caesar cipher.
These integers are grouped together to form larger integers, each representing a block of
letters. The encryption proceeds by transforming the integer M, representing the plain-
text (the original message), to an integer C, representing the ciphertext (the encrypted
message), using the function

C = M° mod n.

(To perform the encryption, we use an algorithm for fast modular exponentiation, such
as Algorithm 5 in Section 2.5.) We leave the encrypted message as blocks of numbers and
send these to the intended recipient.

Example 11 illustrates how RSA encryption is performed. For practical reasons we
use small primes p and g in this example, rather than primes with 100 or more digits. Al-
though the cipher described in this example is not secure, it does illustrate the techniques
used in the RSA cipher.

Encrypt the message STOP using the RSA cryptosystem with p = 43 and g = 59, s0
that n = 43 - 59 = 2537, and with ¢ = 13. Note that

ged(e, (p — 1)(q — 1)) = ged(13,42 - 58) = 1.

RONALD RIVEST (BORN 1948) Ronald Rivest received a B.A. from Yale in 1969 and his Ph.D.
in computer science from Stanford in 1974. Rivest is a computer science professor at M.LT. and was
a cofounder of RSA Data Security, which held the patent on the RSA cryptosystem that he invented
together with Adi Shamir and Leonard Adleman. Areas that Rivest has worked in besides cryptography
include machine learning, VLSI design, and computer algorithms. He is a coauthor of a popular text on
algorithms ([CoLeRiSt01]).

ADI SHAMIR (BORN 1952) Adi Shamir was born in Tel Aviv, Israel. His undergraduate degree is
from Tel Aviv University (1972) and his Ph.D. is from the Weizmann Institute of Science (1977). Shamir
was a research assistant at the University of Warwick and an assistant professor at M.IT. He is currently
a professor in the Applied Mathematics Department at the Weizmann Institute and leads a group study-
ing computer security. Shamir’s contributions to cryptography, besides the RSA cryptosystem, include
cracking knapsack cryptosystems, cryptanalysis of the Data Encryption Standard (DES), and the design
of many cryptographic protocols.

LEONARD ADLEMAN (BORN 1945) Leconard Adleman was born in San Francisco, California. He
received a B.S. in mathematics (1968) and his Ph.D. in computer science (1976) from the University of
California, Berkeley. Adleman was a member of the mathematics faculty at M.LT. from 1976 until 1980,
where he was a co-inventor of the RSA cryptosystem, and in 1980 he took a position in the computer
science department at the University of Southern California (USC). He was appointed to a chaired position
at USC in 1985. Adleman has worked on computer security, computational complexity, immunology, and
molecular biology. He invented the term “computer virus.” Adleman’s recent work on DNA computing
has sparked great interest. He was a technical adviser for the movie Sneakers, in which computer security
played an important role.




EXAMPLE 12

Links

2.6 Applications of Number Theory 193

Solution: We translate the letters in STOP into their numerical equivalents and then
group the numbers into blocks of four. We obtain

1819 1415.
We encrypt each block using the mapping
C = M" mod 2537.

Computations using fast modular multiplication show that 181913 med 2537 = 2081
and 1415'3 mod 2537 = 2182. The encrypted message is 2081 2182. <

RSA DECRYPTION

The plaintext message can be quickly recovered when the decryption key d, an inverse of e
modulo (p—1)(g—1),isknown. [Such an inverse exists since gcd(e, (p—1)(g—1)) = 1]
To see this, note that if de = 1 (mod (p — 1)(g — 1)), there is an integer k such that
de =14 k(p — 1)(g — 1). It follows that

Cd - (Me)d - Mde — M1+k(P*1)(q—1)(mod n).

By Fermat’s Little Theorem [assuming that ged(M, p) = ged(M, g) = 1, which holds
except in rare cases], it follows that MP~! = 1 (mod p) and M7~! = 1 (mod q)-
Consequently,

Cl=M- - (MP~HHI=D = p .1 = M (mod p)
and
Cl'=M- - (M9 HYPD = .1 =M (mod g).
Since ged(p, g) = 1, it follows by the Chinese Remainder Theorem that
C? = M (mod pq).
Example 12 illustrates how to decrypt messages sent using the RSA cryptosystem.

We receive the encrypted message 0981 0461. What is the decrypted message if it was
encrypted using the RSA cipher from Example 11?

Solution: The message was encrypted using the RSA cryptosystem with n = 43 - 59 and
exponent 13. As Exercise 4 shows, d = 937 is an inverse of 13 modulo 42 - 58 = 2436. We
use 937 as our decryption exponent. Consequently, to decrypt a block C, we compute

P = C%" mod 2537.

To decrypt the message, we use the fast modular exponentiation algorithm to compute
0981%%7 mod 2537 = 0704 and 0461°%" mod 2537 = 1115. Consequently, the numerical
version of the original message is 0704 1115. Translating this back to English letters, we
see that the message is HELP. <4

RSA AS APUBLIC KEY SYSTEM

Why is the RSA cryptosystem suitable for public key cryptography? When we know the
factorization of the modulus #, that is, when we know p and g, we can use the Euclidean

li




194 2/ The Fundamentals: Algorithms, the Integers, and Matrices

2-76

algorithm to quickly find an exponent d inverse to e modulo (p — 1)(g — 1). This lets us
decrypt messages sent using our key. However, no method is known to decrypt messages
that is not based on finding a factorization of n, or that does not also lead to the fac-
torization of n. Factorization is believed to be a difficult problem, as opposed to finding
large primes p and g, which can be done quickly. The most efficient factorization methods
known (as of 2002) require billions of years to factor 400-digit integers. Consequently,
when p and g are 200-digit primes, messages encrypted using n = pg as the modulus
cannot be found in a reasonable time unless the primes p and g are known.

Active research is under way to find new ways to efficiently factor integers. Integers
that were thought, as recently as several years ago, to be far too large to be factored in a
reasonable amount of time can now be factored routinely. Integers with more than 100
digits, as well as some with more than 150 digits, have been factored using team efforts. |
When new factorization techniques are found, it will be necessary to use larger primes to | ‘

ensure secrecy of messages. Unfortunately, messages that were considered secure earlier
can be saved and subsequently decrypted by unintended recipients when it becomes
feasible to factor the n = pq in the key used for RSA encryption.

The RSA method is now widely used. However, the most commonly used crypto- ‘
systems are private key cryptosystems. The use of public key cryptography, via the RSA
system, is growing. However, there are applications that use both private key and public
key systems. For example, a public key cryptosystem, such as RSA, can be used to dis-
tribute private keys to pairs of individuals when they wish to communicate. These people ‘
then use a private key system for encryption and decryption of messages.

®
Exercises
1. Express the greatest common divisor of each of these 11. Solve the congruence 4x = 5 (mod 9).
pairs of integers as a linear combination of these in- 12. Solve the congruence 2x = 7 (mod 17).
tegers. *13. Show that if m is a positive integer greater than 1 and
a) 10,11 b) 21,44 c) 36,48 ac = bc (mod m), then a = b mod m / ged(c, m).
d) 34,55 e) 117,213 f) 0,223 14. a) Show that the positive integers less than 11, ex-

g) 123,2347 h) 3454,4666 i) 9999,11111

. Express the greatest common divisor of each of these

pairs of integers as a linear combination of these in-
tegers.

a) 9,11

d) 21,55

2) 2002,2339

b) 33,44
e) 101,203
h) 3457, 4669

¢) 35,78
f 124,323
i) 10001, 13422

ged(a, m) > 1.

15.

cept 1 and 10, can be split into pairs of integers
such that each pair consists of integers that are
inverses of each other modulo 11.
b) Use part (a) to show that 10! = —1 (mod 11).
Show that if p is prime, the only solutions of x* =
1 (mod p) are integers x such that x = 1 (mod p) and
= —1 (mod p).

orem.

3. Show that 15 is an inverse of 7 modulo 26. *16. a) Generalize the result in part (a) of Exercise 14; |
4. Show that 937 is an inverse of 13 modulo 2436. that s, showsthagir piis ajprimegtherpositive inleg l
5. Find an inverse of 4 modulo 9 gers less than p, except 1 and p — 1, can be split !
6. Find an inverse of 2 modulo 17 into (p — 3)/2 pairs of integers such that each pair |
7. Find an inverse of 19 modulo 141 consists of integers that are inverses of each other. !
8. Find an inverse of 144 modulo 233. (Hint: Use the result of Exercise 15.) |
*9, Show thatif a and m are relatively prime positive inte- h) From part (a) cor}clufie tha.t = .1)! =-1 :|
gers, then the inverse of a modulo m is unique modulo (mod p) vs,/henever pis prime. This result is known il
m. [Hint: Assume that there are two solutions b and ¢ as Wilson’s Theorem. o L il

of the congruence ax = 1 (mod m). Use Theorem 2 ¢) What can we conclude if # is a positive integer
to show that b = ¢ (mod m).] such that (n — D! # —1 (mod n)? I

10. Show that an inverse of @ modulo m does not exist if *17. This exercise outlines a proof of Fermat’s Little The-
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18.

19.

*20.

*21.

22

*23.

*24,

25,

a) Suppose that a is not divisible by the prime p.
Show that no two of the integers 1.4, 2-a, ...,
(p — Da are congruent modulo p.

b) Conclude from part (a) that the product of
1.2...., p—liscongruent modulo p to the prod-

uctof a,2a, ..., (p — Da. Use this to show that

(p—D'=a""'(p— 1! (mod p).

¢) Use Wilson’s theorem (proved in Exercise 16) to

show thata?~' =1 (mod p)if p f a.

d) Use part (c) to show that a” = a (mod p) for all
integers d.

Find all solutions to the system of congruences.

x =2 (mod 3)

x =1 (mod 4)

x =3 (mod 5)

Find all solutions to the system of congruences.

x =1 (mod 2)

x =2 (mod 3)

x =3 (mod 5)

x =4 (mod 11)

Find all solutions,if any, to the system of congruences.

x =5 (mod 6)

x = 3 (mod 10)

x =8 (mod 15)

Find all solutions, if any, to the system of congruences.

x =7 (mod9)

x =4 (mod 12)

x = 16 (mod 21)

Use the Chinese Remainder Theorem to show that an
integer a, with 0 <a <m =mm, --- m,, where the
integers m,, ms, ..., m, are pairwise relatively prime,
can be represented uniquely by the n-tuple (a mod m,,
amod my,...,a modm,).

Let m,, my, ..., m, be pairwise relatively prime in-
tegers greater than or equal to 2. Show that if a =
b(mod m;) fori = 1,2,...,n,then a = b(mod m),
where m =mymsy - - -m,.

Complete the proof of the Chinese Remainder The-
orem by showing that the simultaneous solution
of a system of linear congruences modulo pair-
wise relatively prime integers is unique modulo
the product of these moduli. (Hint: Assume that x
and y are two simultaneous solutions. Show that
m; | x — y for all i. Using Exercise 23, conclude that
m=mmy---m,|x—y.)

Which integers leave a remainder of 1 when divided

by 2 and also leave a remainder of 1 when divided
by 37

26. Which integers are divisible by 5 but leave a remain-

der of 1 when divided by 3?

21. a) Show that 20 = 1 (mod 11) by Fermat’s Little

Theorem and noting that 2*0 = (2103,

b) Show that 230 = 1 (mod 31) using the fact that
2340 — (25)68 — 3268.

28.

29.

2.6 Exercises 195

¢) Conclude from parts (a) and (b) that 2*° =
1 (mod 341).

a) Use Fermat’s Little Theorem to compute
32 med 5, 3°2 mod 7, and 3°%” mod 11.

b) Use your results from part (a) and the Chinese
Remainder Theorem to find 3°2 mod 385. (Note
that385=5.7-11.)

a) Use Fermat’s Little Theorem to compute
52003 mod 7, 5%%% mod 11, and 5%°°° mod 13.

b) Use your results from part (a) and the Chi-
nese Remainder Theorem to find 52°°° mod 1001.
(Note that 1001 =7-11-13.)

Let n be a positive integer and let n — 1 = 2°r, where s
is a nonnegative integer and ¢ is an odd positive integer.
We say that n passes Miller’s test for the base b if either
b = 1 (mod n) or b’ = —1 (mod n) for some ; with
0 < j <s — 1. It can be shown (see [Ro00]) that a com-
posite integer n passes Miller’s test for fewer than n/4
bases bwith 1 < b < n.

30.

31.

32.
33.
*34,

35.

36.

37.

38.

39.

*40.

*xq1,

Show that if n is prime and b is a positive integer with

n ) b, then n passes Miller’s test to the base b.

Show that 2047 passes Miller’s test to the base 2, but

that it is composite. A composite positive integer n

that passes Miller’s test to the base b is called a strong

pseudoprime to the base b. It follows that 2047 is a

strong pseudoprime to the base 2.

Show that 1729 is a Carmichael number.

Show that 2821 is a Carmichael number.

Show that if n = p\p,--- px, Wwhere py, pa, ..., Pk

are distinct primes that satisfy p; — 1|n — 1 for

j=1,2,...,k, then n is a Carmichael number.

a) Use Exercise 34 to show that every integer of the
form (6m + 1)(12m + 1)(18m + 1), where m is a
positive integer and 6m +1,12m + 1,and 18m + 1
are all primes, is a Carmichael number.

b) Use part (a) to show that 172,947,529 is a Car-
michael number.

Find the nonnegative integer a less than 28 repre-

sented by each of these pairs, where each pair repre-

sents (¢ mod 4,a mod 7).

a) (0,0) b) (1,0) o (1,1)
d) (2,1) e) (2,2) B (0,3)
g (2,0) h) 3,5) i) (3,0

Express each nonnegative integer a less than 15 using
the pair (¢ mod 3, @ mod 5).

Explain how to use the pairs found in Exercise 37 to
add 4 and 7.

Solve the system of congruences that arises in Exam-
ple 8.

Show that if @ and b are positive integers, then
(29— 1mod (2> — 1) =20 medb 1,

Use Exercise 40 to show that if 2 and b are posi-
tive integers, then ged(2” — 1,2" — 1) = 28¢d@ b _ 1,
[Hint: Show that the remainders obtained when the
Euclidean algorithm is used to compute ged(2* — 1,
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2 — 1) are of the form 2" — 1, where r is a remainder
arising when the Euclidean algorithm is used to find
gcd(a, b).]

42. Use Exercise 41 to show that the integers 2 — 1,
2% 1,273 1,23 —1,2% —1,and 2% — 1 are pairwise
relatively prime.

43, Show that if p is an odd prime, then every divisor of
the Mersenne number 27 — 1 is of the form 2kp 4 1,
where k is a nonnegative integer. (Hint: Use Fermat’s
Little Theorem and Exercise 41.)

44. Use Exercise 43 to determine whether M; = 2" —
1 = 8191 and M» = 22 — 1 = 8,388,607 are prime.

*45. Show that we can easily factor n when we know that
n is the product of two primes, p and ¢, and we know
the value of (p — 1)(g — 1).

46. Encrypt the message ATTACK using the RSA system
with n = 43 . 59 and e = 13, translating each letter
into integers and grouping together pairs of integers,
as done in Example 11.

47. What is the original message encrypted using the
RSA system with n = 43 - 59 and ¢ = 13 if the
encrypted message is 0667 1947 0671? (Note: Some
computational aid is needed to do this in a realistic
amount of time.)

The extended Euclidean algorithm can be used to express
gcd(a, b) as a linear combination with integer coefficients
of the integers a and b. We set sp = 1,51 = 0,4 = 0,and
t; = 1 and let S; =Sj—2—qj-15j-1 and tp=1tj2—qj-1lj1
for j = 2,3,...,n, where the ¢, are the quotients in
the divisions used when the Euclidean algorithm finds
ged(a, b) (see page 178). It can be shown (see [Ro00])
that ged(a, b) = s,a + t,b.

48. Use the extended Euclidean algorithm to express
ged (252, 356) as a linear combination of 252 and 356.

49, Use the extended Euclidean algorithm to express
ged(144, 89) as a linear combination of 144 and 89.

50. Use the extended Euclidean algorithm to express
gcd (1001, 100001) as alinear combination of 1001 and
100001.

51. Describe the extended Euclidean algorithm using
pseudocode.

If m is a positive integer, the integer a is a quadratic
residue of m if ged(a,m) =1 and the congruence

m Matrices

x? = a (mod m) has a solution. In other words, a quadratic
residue of m is an integer relatively prime to m that is a
perfect square modulo m. For example, 2 is a quadratic
residue of 7 since ged(2,7) = 1 and 3> = 2 (mod 7) and 3
is a quadratic nonresidue of 7 since ged(3,7) = 1 and
x? = 3 (mod 7) has no solution.

52. Which integers are quadratic residues of 117

53. Show thatif p is an odd prime and a is an integer not
divisible by p, then the congruence x*> = a (mod p)
has either no solutions or exactly two incongruent
solutions modulo p.

54. Show that if p is an odd prime, then there are exactly
(p — 1)/2 quadratic residues of p among the integers
,2,...,p—1.

If p is an odd prime and a is an integer not divisible by

p, the Legendre symbol (3 is defined tobe 1 ifa is a
p

quadratic residue of p and —1 otherwise.

55. Show thatif p is an odd prime and ¢ and b are integers
with a = b (mod p), then

(5)-(G)

56. Prove that if p is an odd prime and a is a positive
integer not divisible by p, then

(ﬁ) = g®» D2 (mod p).
p

57. Use Exercise 56 to show that if p is an odd prime and
a and b are integers not divisible by p, then

5)=CG)G)

58. Show thatif p is an odd prime, then —1 is a quadratic
residue of p if p = 1 (mod 4) and 1 is not a quadratic
residue of p if p = 3(mod4). (Hint: Use Exer-
cise 56.)

59. Find all solutions of the congruence x? = 29 (mod 35).
(Hint: Find the solutions of this congruence modulo
5 and modulo 7, and then use the Chinese Remainder
Theorem.)

60. Find all solutions of the congruence x*=16
(mod 105). (Hint: Find the solutions of this congru-
ence modulo 3, modulo 5, and modulo 7,and then use
the Chinese Remainder Theorem.)

INTRODUCTION

Links

Matrices are used throughout discrete mathematics to express relationships between ele-

ments in sets. In subsequent chapters we will use matrices in a wide variety of models. For
instance, matrices will be used in models of communications networks and transportation




