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2% — 1) are of the form 2" — I, where r is a remainder
arising when the Euclidean algorithm is used to find
gcd(a, b).]

42. Use Exercise 41 to show that the integers 2% — I,
23 1,23 1,23 —1,2% — |,and 2% — | are pairwise
relatively prime.

43. Show that if p is an odd prime, then every divisor of
the Mersenne number 2¥ — 1 is of the form 2kp + 1,
where k is a nonnegative integer. (Hint: Use Fermat’s
Little Theorem and Exercise 41.)

44. Use Exercise 43 to determine whether M3 = 213 —
1 = 8191 and My; =22 — 1 = 8,388,607 are prime.

*45, Show that we can easily factor n when we know that
n is the product of two primes, p and g, and we know
the value of (p — 1)(g — 1).

46. Encrypt the message ATTACK using the RSA system
with n = 43 - 59 and e = 13, translating each letter
into integers and grouping together pairs of integers,
as done in Example 11.

47, What is the original message encrypted using the
RSA system with n = 43 - 59 and e = 13 if the
encrypted message is 0667 1947 0671? (Note: Some
computational aid is needed to do this in a realistic
amount of time.)

The extended Euclidean algorithm can be used to express
ged(a, b) as a linear combination with integer coefficients
of the integers a and b. We set sp = 1,51 = 0,7 = 0, and
=1 and let S; =8j—2—qj-15j-1 and tp=tja—¢qjlj
for j = 2,3,...,n, where the ¢; are the quotients in
the divisions used when the Euclidean algorithm finds
ged(a, b) (see page 178). It can be shown (see [Ro00])
that ged(a, b) = s,a + t,b.

48. Use the extended Euclidean algorithm to express
ged (252, 356) as a linear combination of 252 and 356.

49. Use the extended Euclidean algorithm to express
ged(144, 89) as a linear combination of 144 and 89.

50. Use the extended Euclidean algorithm to express
ged (1001, 100001) as alinear combination of 1001 and
100001.

51. Describe the extended Euclidean algorithm using
pseudocode.

If m is a positive integer, the integer a is a quadratic
residue of m if ged(a,m)=1 and the congruence
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x? = g (mod m) has a solution. In other words, a quadratic
residue of m is an integer relatively prime to m that is a
perfect square modulo m. For example, 2 is a quadratic
residue of 7 since ged(2,7) = 1 and 3% = 2 (mod 7) and 3
is a quadratic nonresidue of 7 since ged(3,7) = 1 and
x? = 3 (mod 7) has no solution.

52. Which integers are quadratic residues of 117

53. Show that if p is an odd prime and a is an integer not
divisible by p, then the congruence x* = a (mod p)
has either no solutions or exactly two incongruent
solutions modulo p.

54. Show that if p is an odd prime, then there are exactly
(p — 1)/2 quadratic residues of p among the integers
L,2,...,p—1L

If p is an odd prime and a is an integer not divisible by

p, the Legendre symbol <£> is defined tobe 1 ifa is a
p

quadratic residue of p and —1 otherwise.

55. Show thatif pis an odd prime and a and b are integers
with a = b (mod p), then

()-G)

56. Prove that if p is an odd prime and « is a positive
integer not divisible by p, then

(£> = a2 (mod p).
p

57. Use Exercise 56 to show that if p is an odd prime and
a and b are integers not divisible by p, then

2)-())

58. Show that if p is an odd prime, then —1 is a quadratic
residue of p if p =1 (mod4) and 1 is not a quadratic
residue of p if p = 3(mod4). (Hint: Use Exer-
cise 56.)

59. Find allsolutions of the congruence x? = 29 (mod 35).
(Hint: Find the solutions of this congruence modulo
5 and modulo 7, and then use the Chinese Remainder
Theorem.)

60. Find all solutions of the congruence x*= 16
(mod 105). (Hint: Find the solutions of this congru-
ence modulo 3, modulo 5,and modulo 7,and then use
the Chinese Remainder Theorem.)

INTRODUCTION

Links

Matrices are used throughout discrete mathematics to express relationships between ele-

ments in sets. In subsequent chapters we will use matrices in a wide variety of models. For
instance, matrices will be used in models of communications networks and transportation




reviews matrix arithmetic that will be used in these algorithms.

DEFINITION 1 A matrix is a rectangular array of numbers. A matrix with m rows and n columns
is called an m x n matrix. The plural of matrix is matrices. A matrix with the same
number of rows as columns is called square. Two matrices are equal if they have

the same number of rows and the same number of columns and the corresponding
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systems. Many algorithms will be developed that use these matrix models. This section
|
I
entries in every position are equal. .l
f
|

1 1
EXAMPLE 1 Thematrix |0 2| isa?3 x 2 matrix. |
1 3

We now introduce some terminology about matrices. Boldface uppercase letters will |
be used to represent matrices. '

DEFINITION 2 Let |

ain a1z o ayp

a1 axp o Ay
A=| "~

Qnl Gp2 -+ QOpp

The ith row of A is the 1 X n matrix [a;1, @i, - . ., @in]. The jth column of A is the
n X 1 matrix

alj
azj

a,,j

The (i, j)th element or entry of A is the element @jj, that is, the number in the
ith row and jth column of A. A convenient shorthand notation for expressing the
matrix A is to write A = [a;; ], which indicates that A is the matrix with its (i, j)th
element equal to a;;.

MATRIX ARITHMETIC

The basic operations of matrix arithmetic will now be discussed, beginning with a defini-
tion of matrix addition.

DEFINITION 3

Let A = [g;;] and B = [b; ;1 be m x n matrices. The sum of A and B, denoted
by A + B, is the m x n matrix that has a;; + b;; as its (i, j)th element. In other
words, A + B = [a,-j aF b,'j].
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The sum of two matrices of the same size is obtained by adding elements in the corre-
sponding positions. Matrices of different sizes cannot be added, since the sum of two
matrices is defined only when both matrices have the same number of rows and the same
number of columns.

1 0 -1 3 4 -1 4 4 =2
EXAMPLE 2 We have [2 2 =3+ 1 =3 0} = [3 —1 —3}
34 0 -1 1 2 2 5 2

We now discuss matrix products. A product of two matrices is defined only when the
number of columns in the first matrix equals the number of rows of the second matrix.

DEFINITION 4 Let A be an m X k matrix and B be a k x n matrix. The product of A and B, denoted
by AB, is the m X n matrix with its (i, j)th entry equal to the sum of the products
of the corresponding elements from the ith row of A and the jth column of B. In
other words, if AB = [¢;;], then

cij = aibij + ainbaj + - + aikby;-

In Figure 1 the colored row of A and the colored column of B are used to compute

the element ¢;; of AB. The product of two matrices is not defined when the number of

columns in the first matrix and the number of rows in the second matrix are not the same.
We now give some examples of matrix products.

2 4
and B:{l 1}.
5 30

Find AB if it is defined.

EXAMPLE 3

Solution: Since A is a 4 x 3 matrix and B is a 3 x 2 matrix, the product AB is de-
fined and is a 4 x 2 matrix. To find the elements of AB, the corresponding elements of
the rows of A and the columns of B are first multiplied and then these products are
added. For instance, the element in the (3, 1)th position of AB is the sum of the prod-
ucts of the corresponding elements of the third row of A and the first column of By namely,

a ]
@u | b bz
by b

C,'j

bfi‘] bra - oo Cml  Cm2

Ldm1  Om2 Gk

FIGURE 1 The Product of A = [a;;] and B = [b;;].




EXAMPLE 4
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3:24+1:140-3 =7. When all the clements of AB are computed, we see that

14 4
8 9
7 13
8 2 <

AB =

Matrix multiplication is not commutative. That is, if A and B are two matrices, it is
not necessarily true that AB and BA are the same. In fact, it may be that only one of these
two products is defined. For instance, if A is2 x 3 and B is 3 x 4, then AB is defined and
is 2 x 4; however, BA is not defined, since it is impossible to multiply a 3 X 4 matrix and
a2 x 3 matrix.

In general, suppose that A is an m x n matrix and B is an # X s matrix. Then AB is
defined only when n = r and BA is defined only when s = m. Moreover, even when AB
and BA are both defined, they will not be the same size unlessm = n = r = g. Hence, if
both AB and BA are defined and are the same size, then both A and B must be square
and of the same size. Furthermore, even with A and B both n x n matrices, AB and BA
are not necessarily equal, as the following example demonstrates.

Let

1 1 2 1
A:[2 1] and Bz{l ]].

Does AB = BA?

Solution: We find that
AB:F 2} and BA=[4 3}.

53
Hence, AB # BA.

3 2

ALGORITHMS FOR MATRIX MULTIPLICATION

The definition of the product of two matrices leads to an algorithm that computes the
product of two matrices. Suppose that C = [¢i;]is the m x n matrix that is the product
of the m x k matrix A = [q;;] and the k x n matrix B = [bi;]. The algorithm based on
the definition of the matrix product is expressed in pseudocode in Algorithm 1.

ALGORITHM 1 Matrix Multiplication.

procedure matrix multiplication(A, B: matrices)
fori :=1tom
for j :=1ton

forg :=1tok
Cij 1= Cij + aigby;
end
{C = [ci;] is the product of A and B}
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EXAMPLE 5

Links

EXAMPLE 6

We can determine the complexity of this algorithm in terms of the number of additions
and multiplications used.

How many additions of integers and multiplications of integers are used by Algorithm |
to multiply two n x n matrices with integer entries?

Solution: There are n’ entries in the product of A and B. To find each entry requires a
total of n multiplications and n — 1 additions. Hence, a total of n3 multiplications and
n?(n — 1) additions are used. <«

Surprisingly, there are more efficient algorithms for matrix multiplication than that
given in Algorithm 1. As Example 5 shows, multiplying two n x n matrices directly from
the definition requires O (n*) multiplications and additions. Using other algorithms, two
n X n matrices can be multiplied using O(nﬁ) multiplications and additions. (Details of
such algorithms can be found in [CoLeRiSt01].)

MATRIX-CHAIN MULTIPLICATION There is another important problem in-
volving the complexity of the multiplication of matrices. How should the matrix-chain
AjA; -+ A, be computed using the fewest multiplications of integers, where A, Ay,
..., A, are my X my, my X ms, ..., m, X m, ) matrices, respectively, and each has
integers as entries? (Since matrix multiplication is associative, as shown in Exercise 13
at the end of this section, the order of the multiplication used does not matter.) Before
studying this problem, note that mm,m3 multiplications of integers are performed to
multiply an m; X m, matrix and an m, X m3 matrix using Algorithm 1 (see Exercise 23
at the end of this section). Example 6 illustrates this problem.

In which order should the matrices A1, Ay, and As—where Ay is 30 x 20, Ay is
20 x 40,and A is 40 x 10, all with integer entries—be multiplied to use the least number
of multiplications of integers?

Solution: There are two possible ways to compute A A, As. These are Aj(AzA3) and
(A1A2)A;.

If A, and Az are first multiplied, a total of 20 - 40 - 10 = 8000 multiplications of
integers are used to obtain the 20 x 10 matrix A, A3. Then, to multiply A| and ArAs
requires 30 - 20 - 10 = 6000 multiplications. Hence, a total of

8000 4 6000 = 14,000

multiplications are used. On the other hand, if A and A; are first multiplied, then 30 -
20 - 40 = 24,000 multiplications are used to obtain the 30 x 40 matrix AjA,. Then, to
multiply A; A; and Aj requires 30 x 40 x 10 = 12,000 multiplications. Hence, a total of

24,000 4 12,000 = 36,000

multiplications are used.
Clearly, the first method is more efficient. <

Algorithms for determining the most efficient way to carry out matrix-chain multi-
plication are discussed in [CoLeRiStO1].




DEFINITION 5

DEFINITION 6

EXAMPLE 7

DEFINITION 7
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TRANSPOSES AND POWERS OF MATRICES

We now introduce an important matrix with entries that are zeros and ones.

The identity matrix of order nis the n x n matrix I,, = [8:5], where §;; = 1ifi = j
and §;; = 0if i # j. Hence

1 0 -.- 0
0

Multiplying a matrix by an appropriately sized identity matrix does not change this matrix.
In other words, when A is an m x n matrix, we have

AL, =1,A = A.
Powers of square matrices can be defined. When A is an n x n matrix, we have
A=1,, A" =AAA.--A.
—_——
r times

The operation of interchanging the rows and columns of a square matrix is used in
many algorithms.

Let A = [a;;] be an m x n matrix. The transpose of A, denoted by A’ is the n x m
matrix obtained by interchanging the rows and columns of A. In other words, if
A’ = [bj;],thenb;; = ajifori =1,2,...,nand j =1,2,....m

11203
The transpose of the matrix [ 4 5 6

1 4
J is the matrix I:Z 5} 3 <
3 6

Matrices that do not change when their rows and columns are interchanged are often
important.

A square matrix A is called symmetric if A = A'. Thus A = [a; 71 is symmetric if
ajj=ajforalliand jwithl <i <nandl < j <n.

Note that a matrix is symmetric if and only if it is square and it is symmetric with respect
to its main diagonal (which consists of entries that are in the ith row and ith column for
some 7). This symmetry is displayed in Figure 2.

1 10
The matrix { 1 01 ] is symmetric,
010
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ZERO-ONE MATRICES

ag
A matrix with entries that are either O or 1 is called a zero—one matrix. Zero—one matrices
a;;

are often used to represent discrete structures, as we will see in Chapters 7 and 8. Algo-
rithms using these structures are based on Boolean arithmetic with zero—one matrices,
This arithmetic is based on the Boolean operations Vv and A, which operate on pairs of

bits, defined by
FIGURE2 A

Symmetric Matrix. by A by = {1 ithy =by =1
0

otherwise,

B by — 1 ifb1=101‘b2:1
: 2= 0 otherwise.

DEFINITION 8 Let A = [g;;] and B = [b;;] be m x n zero-one matrices. Then the join of A
and B is the zero—one matrix with (i, j)th entry a;; V b;;. The join of A and B is
denoted by A Vv B. The meet of A and B is the zero—one matrix with (i, j)th entry
a;j A bjj. The meet of A and B is denoted by A A B.

EXAMPLE 9 Find the join and meet of the zero—one matrices
1 0 1 010
A_[OIO]' B_{l IO]'
Solution: We find that the join of A and B is

Ivo Ov1 1vO| |1 1 1
Ovli 1vl Ovo|l |1 1 0]

The meet of A and B is
1A0 OA1 1/\0]_{0 0 0}

A\/B:[

AAB:{OAI 1Al 0AO| = [0 1 0

We now define the Boolean product of two matrices.

DEFINITION 9 Let A = [a;;] be an m X k zero—one matrix and B = [b;;] be a k X n zero-one
matrix. Then the Boolean product of A and B, denoted by A O B, is the m x n
matrix with (i, j)th entry [c;;] where

cij = (ain A byj) V(@2 Abaj) V-V (Gik A byj).

Note that the Boolean product of A and B is obtained in an analogous way to the
ordinary product of these matrices, but with addition replaced with the operation V and

| with multiplication replaced with the operation A. We give an example of the Boolean
products of matrices.

EXAMPLE 10 Find the Boolean product of A and B, where

10
A:[o 1}. B:[(l) } ﬂ
10
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Solution: The Boolean product A © B is given by

_(1/\1)\/(0/\0) AADVOAL AADVOALD
AOB=|O0OADVAAD OADVAALD OA)VIAD
L AADVOAD AADVOAD AADVOALD
r[1v0o 1vO0 OVO}

Ov0o Ovl 0vl
L1v0 1vO0 0OvO

1 1 0

01 1].

L1 1 0 <
Algorithm 2 displays pseudocode for computing the Boolean product of two

matrices.

ALGORITHM 2 The Boolean Product.

procedure Boolean product (A, B: zero-one matrices)
fori :=1tom
forj :=1ton

forg :=1tok
Cij = Cjj V (a,-q A bqj)
end
{C = [ci;]is the Boolean product of A and B}

We can also define the Boolean powers of a square zero—one matrix. These powers
will be used in our subsequent studies of paths in graphs, which are used to model such
things as communications paths in computer networks.

DEFINITION 10 Let A be a square zero—one matrix and let r be a positive integer. The rth Boolean

power of A is the Boolean product of r factors of A, The rth Boolean product of
A is denoted by A", Hence

Al= AGAOAO ... OA.

r times

(This is well defined since the Boolean product of matrices is associative.) We also
define A% to be I,.

001
EXAMPLE 11 LetA = { 10 O} . Find A" for all positive integers n.
1 10

Solution: We find that

1 10
Nﬂ:AQAz[oo q‘
1 0 1
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EXAMPLE 12

We also find that

1 0 1 1 1 1
AB]:A”]@A:[I 1 oJ, Al‘”:AB]@A:[l 0 |JA
1 1 1 1 1 1

Additional computation shows that
I 11
AP =11 1 1],
111

The reader can now see that A"l = A for all positive integers n with n > 5. <

The number of bit operations used to find the Boolean product of two n X 12 matrices
can be easily determined.

How many bit operations are used to find A © B, where A and B are n x n zero—one
matrices?

Solution: There are n’ entriesin A ©® B, Using Algorithm 2, a total of n ORs and n ANDs
are used to find an entry of A © B. Hence, 2n bit operations are used to find each entry.
Therefore, 213 bit operations are required to compute A © B using Algorithm 2. |

Exercises

1
1. Let A = [2
1

a) What size is A?

b) What is the third column of A?
¢) What is the second row of A?
d) Whatis the element of A in the (3,2)th position?

e) Whatis A’?
. Find A + B, where

1 0
a) A= -1 2
0

=9
-1
B=| 2
2

e
—4

. Find AB if

a) A= [2 1],B:

3 2

bl
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5.

Find a matrix A such that

2 3]._13 0

{1 4} A= {1 2}'
(Hint: Finding A tequires that you solve systems of
linear equations.)

Find a matrix A such that

3 2 7 1 3
1 A= 1 0 3
0 3 -1 -3 7

1
2
4

Let A be an m x n matrix and let 0 be the m x n
matrix that has all entries equal to zero. Show that

Show that matrix addition is commutative; that is,

show that if A and B are both m x n matrices, then

. Show that matrix addition is associative; that is, show

that if A, B, and C are all m x n matrices, then
A+B+C =(A+B)+C.

. Let A be a 3 x 4 matrix, B be a 4 x 5 matrix, and C

be a 4 x 4 matrix. Determine which of the following
products are defined and find the size of those that
are defined.
a) AB
d) CA

b) BA
e) BC

¢) AC
f) CB

. What do we know about the sizes of the matrices A

and B if both of the products AB and BA are defined?

. In this exercise we show that matrix multiplication is

distributive over matrix addition.

a) Suppose that A and B are m x k matrices
and that C is a k x n matrix. Show that
(A+B)C =AC +BC.

b) Suppose that C is an m x k matrix and that
A and B are k x n matrices, Show that
C(A+B)=CA+CB.

- In this exercise we show that matrix multiplication is

associative. Suppose that A is an m x p matrix, B is
a p x k matrix, and Cis a k x n matrix. Show that
A(BC) = (AB)C.

The n x n matrix A = [g; ;1is called a diagonal matrix
if ;; = 0 when i # J. Show that the product of two
n X n diagonal matrices is again a diagonal matrix.
Give a simple rule for determining this product.

. Let

16.
17.

IfA

Fin(l a formula for A", whenever n is a positive
Integer,

Show that (A" = A,

Let A and B be two i » n matrices. Show that

2 (A+B)Y =A' +B'. b) (AB) = B'A’.

and B are n x n matrices with AB = BA = I,,then B

i : : , . .
Called the inverse of A (this terminology is appropriate
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since such a matrix B is unique) and A is said to be invert-
ible. The notation B = A~ denotes that B is the inverse

of A.

18. Show that

[ 2
1

-1

[ 7
—4
1

2
-1

inverse of

-8
5
-1

—17

-3
1

Jd

. Let A be a2 x 2 matrix with

A= [" ] '
¢
Show that if ad — be # 0, then
d —b
ad — bc
—c a

ad — bc

ad — be

ad — be

a) Find A~'. (Hint: Use Exercise 19.)

b) Find A>,

¢) Find (A7")3,

d) Use your answers to (b) and (c) to show that
(A" is the inverse of A2,

. Let A be an invertible matrix. Show that (A")~' =

(A™"" whenever n is a positive integer.

. Let A be a matrix. Show that the matrix AA’ is sym-

metric. (Hint: Show that this matrix equals its trans-
pose with the help of Exercise 17b.)

. Show that the conventional algorithm uses m,m,m,

multiplications to compute the product of the | x m,
matrix A and the m, x m5 matrix B.

. What is the most efficient way to multiply the matri-

ces A, A;, and A, with sizes

a) 20 x 50,50 x 10, 10 x 40?
b) 10 x5,5x 50,50 x 1?

. Whatis the most efficient way to multiply the matrices

A,A;, A;,and A, if the dimensions of these matrices
are 10 x 2,2 x 5,5 x 20,and 20 x 3, respectively?

. a) Show that the system of simultaneous linear

equations

apx; + aX, + w4 Xy = bl

Ay Xy + apxy + - + ayx, = b

an1 X + Xy + -+ + App Xy = bu
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in the variables x,, x,, ..., x, can be expressed as
AX = B, where A = [q;;], X is an n x 1 matrix
with x; the entry in its ith row, and B is an n x 1|
matrix with b; the entry in its ith row.

b) Show that if the matrix A = [q;;]1s invertible (as
defined in the preamble to Exercise 18), then the
solution of the system in part (a) can be found
using the equation X = A~'B.

27. Use Exercises 18 and 26 to solve the system
Tx) —8xp4+5x3 =5

—dxy +5x —3x3 = -3

)C]—X2+X3:0

s ey

28. Let

1 0

b) A AB.

29. Let

o
5
a
==}

I

=

oo~

_

Find
a) AvB.

b) A AB.
¢) AOB.

30. Find the Boolean product of A and B, where

1 0 0
A=10 1 0 1 and B =
I 1 1

— — O —
o = = O

31. Let

A =

S — -
- O O
o = O

Find

a) A2, b) ABL ) Av AP v ABL

32. Let A be a zero-one matrix. Show that

a) AvA=A.
b) AAA = A.

33. In this exercise we show that the meet and join opera-
tions are commutative. Let A and B be m xn zero—one
matrices. Show that

a) AvB=BVA.
b) BAA=AAB.

34. In this exercise we show that the meet and join op-
erations are associative. Let A, B, and C be m x n
zero—one matrices. Show that

a) AvB)vC=Av BvVCOC).
b) (AAB)AC=AABAC).

35. We will establish distributive laws of the meet over
the join operation in this exercise. Let A, B, and C be
m X n zero—one matrices. Show that
a) AVIBACO =(AVvB)AA V).
b) AABVvC)=AAB)VAACQC).

36. Let A be an n x n zero—one matrix. Let Ibe the n x n
identity matrix. Show that AOT =10 A = A.

37. In this exercise we will show that the Boolean prod-
uct of zero—one matrices is associative. Assume that
Ais an m x p zero-one matrix, B is a p x k zero-one
matrix, and C is a k x n zero—one matrix. Show that
AOBOC)=(AOB)OC.

Key Terms and Results

TERMS

algorithm: a finite set of precise instructions for perform-
ing a computation or solving a problem

searching algorithm: the problem of locating an element
in a list

linear search algorithm: a procedure for searching a list
element by element

binary search algorithm: a procedure for searching an or-
dered list by successively splitting the list in half

sorting: the reordering of the elements of a list into non-
decreasing order

greedy algorithm: an algorithm that makes the best
choice at each step

f(x)is O(g(x)): thefactthat| f(x)| < Clg(x)|forallx > k
for some constants C and &

witness to the relationship f(x) is O(g(x)): a pair C and
k such that | f(x)| < C|g(x)| whenever x > k

f(x)is Q(g(x)): the factthat | f(x)| > Clg(x)|forallx > k
for some positive constants C and &

J(x) is ©(g(x)): the fact that f(x)is O(g(x)) and f(x)is
Q(g(x))

time complexity: the amount of time required for an al-
gorithm to solve a problem

space complexity: the amount of storage space required
for an algorithm to solve a problem

worst-case time complexity: the greatest amount of time
required for an algorithm to solve a problem of a
given size

average-case time complexity: the average amount of
time required for an algorithm to solve a problem
of a given size
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divides b): there is an integer ¢ such that b = ae

al bla Sl e : g . L
a positive integer greater than 1 with exactly two

rime:

positive integer divisors
posite: 4 positive integer greater than 1 that is not

com .
prime . .
Mersenne prime: a prime of the form 27 — 1, where p is
prime .
cd(@ b) (greatest u:onu:ngu divisor of a and b): the
largest integer that dw!dcs both @ and »
relatively prime integers: integers a and b such that
ged(a, b) =1
airwise relatively prime integers: a set of integers with
the property that every pair of these integers is rela-
tively prime
lem(a, b) (least common multiple of a and b): the
smallest positive integer that is divisible by both a
and b
amod b: the remainder when the integer a is divided by
the positive integer b
a = b (mod m) (a is congruent to b modulo m): a — b is
divisible by m
encryption: the process of making a message secret
decryption: the process of returning a secret message to
its original form
n = (aya1-+-a1ap): the base b representation of n
binary representation: the base 2 representation of an in-
teger
hexadecimal representation: the base 16 representation
of an integer
octal representation: the base 8 representation of an in-
teger
linear combination of a and b with integer coefficients: a
number of the form sa +¢b where s and 7 are integers
inverse of @ modulo m: an integer @ such that za =
1 (mod m)
linear congruence: a congruence of the form ax =
b (mod m) where x is a variable
pseudoprime to the base 2: a composite integer n such
that 2" = 1 (mod n)
pseudoprime to the base b: a composite integer n such
that "' = | (mod n)
Carmichael number: a composite integer » such that » is
4 pseudoprime to the base b for all positive integers
b with ged(b, n) = 1
Dl'ivat_e key encryption: encryption where both encryp-
tion keys and decryption keys must be kept secret
Public key encryption: encryption where encryption keys
are public knowledge, but decryption keys are kept
seerel
Matrix: a rectangular array of numbers
Mmatrix addition: see page 197
mai.rix multiplication: see page 198
n (llllznlil_\.r matrix of order n): the n x n matrix that has
X entries equal to 1 on its diagonal and 0s elsewhere
(transpose of A): the matrix obtained from A by in-
lerch:mging the rows and columns
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symmetric: a matrix is symmetric if it equals its transpose

zero—one matrix: a matrix with each entry equal to either
Oor1l

A Vv B (the join of A and B): see page 202

A A B (the meet of A and B): sce page 202

A O B (the Boolean product of A and B): see page 202
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linear and binary search algorithms: (given in Section2.1)

bubble sort: a sorting that uses passes where successive
items are interchanged if they are out of order

insertion sort: a sorting that at the jth step inserts the
Jth element into the correct position in the list of the
sorted first j — 1 elements

The linear search has O (n) complexity.

The binary search has O (log n) complexity.

The bubble and insertion sorts have O (n?) complexity.

logntis O(nlogn).

If f1(x) 18 O(g1(x)) and f>(x) is O(gy(x)), then (f; + f2) (x)
is O(max(g(x), g2(x)) and (f1f2)(x) is O(g (x)
82(x)).

It ag,ai,...,a, are real numbers with a, # 0, then
apx" +a, 1 x" '+ 4 aix +apis O(x") and O (x").

Fundamental Theorem of Arithmetic: Every positive in-
teger can be written uniquely as the product of
primes, where the prime factors are written in order
of increasing size.

division algorithm: Let o and d be integers with d pos-
itive. Then there are unique integers ¢ and r with
0 <r <dsuchthata =dq +r.

If a and b are positive integers, then ab = ged(a, b)-
lem(a, b).

Euclidean algorithm: for finding greatest common divi-
sors (see Algorithm 6 in Section 2.5)

Let b be a positive integer greater than 1. Then if » is a
positive integer, it can be expressed uniquely in the
formn = aqb* +a, (B + -k ayb + ay.

The algorithm for finding the base b expansion of an in-
teger (see Algorithm 1 in Section 2.5)

The conventional algorithms for addition and multiplica-
tion of integers (given in Section 2.5)

The modular exponentiation algorithm (see Algorithm 5
in Section 2.5)

The greatest common divisor of two integers can be ex-
pressed as a linear combination with integer coeffi-
cients of these integers.

If m is a positive integer and ged(a, m) = 1, then g has a
unique inverse modulo .

Chinese Remainder Theorem: A system of linear con-
gruences modulo pairwise relatively prime integers
has a unique solution modulo the product of these
moduli.

Fermat’s Little Theorem: If p is prime and p [ a), then
a’t =1 (mod p).




