
196 2lTine Fundamentals: Algorithms, the Integers, and Matrices

2b - l¡ are of the form 2' - I , where r is a remainder
arising when the Euclidean algorithm is used to find
gcd(a, b).1

42. rJse Exercise 4L to show that the integers 23s - I,
23a - 1,233 - l,2t' - 1,22e - l, and 223 - | are pairwise
relatively prime.

43. Show that if p is an odd prime, then every divisor of
the Mersenne number 2p - I ts of the form 2kp -l l,
where fr is a nonnegative integer. (Hint: Use Fermat's
Little Theorem and Exercise 41.)

44. Use Exercise 43 to determine whether Mn : 2t3 -
1 : 8191 and My :223 - 1 : 8,388,607 are prime.

*45. Show that we can easily factor n when we know that
n is the product of two primes, p and q, and we know
the value of (p - l)(q - 1).

46. Encrypt the message ATTACK using the RSA system

with ¡z : 43 . 59 and e : 13, translating each letter
into integers and grouping together pairs of integers,

as done in Example 11.

47. What is the original message encrypted using the
RSA system with n : 43 '59 and ¿ : 13 if the
encrypted message is 0667 L947 067I? (Note: Some

computational aid is needed to do this in a realistic
amount of time.)

The extended Euclidean algorithm can be used to express

gcd(a, b) as a linear combination with integer coefflcients
of the integers a and å. We set so : 1, sr : 0, /o : 0, and

fr : l andlets; : sj-2-qj,,sj-1 andl :tj-z-Q¡ rt¡-r
for j : 2,3,...,n,where Ihe q¡ are the quotients in
the divisions used when the Euclidean algorithm fìnds

gcd(a,b) (see page 178). It can be shown (see [Ro00])
that gcd(4, b) : s,,a ! t',b.

48. Use the extended Euclidean algorithm to express
gcd(252,356) as a linear combination o1252 and356.

49. Use the extended Euclidean algorithm to express
gcd(144,89) as a linear combination of 1'44 and89.

50. Use the extended Euclidean algorithm to express
gcd ( I 001, 1 0000 I ) as a linear combination of 1001 and

100001.

51. Describe the extended Euclidean algorithm using
pseudocode.

If ¡ø is a positive integer, the integer a is a quadratic
residue of m tf gcd(a,m):l and the congruence

2-7s

x2 = a (mod m) has a solution. In other words, a quadratic
residue of rz is an integer relatively prime to ¡z that is a
perfect square modulo m. For example, 2 is a quadratic
residue of 7 since gcd(2,1): I and 32 = 2(mod7) and 3

is a quadratic nonresidue of 7 since gcd(3,7) : I and

"r2 = 3 (mod7) has no solution.

52. Which integers are quadratic residues of 11?

53. Show thatil p is an odd prime and a is an integer not
divisible by p, then the congruence x2 = a (mod p)
has either no solutions or exactly two incongruent
solutions modulo p.

54. Show that if p is an odd prime, then there are exactly

@ - D 12 quadratic residues of p among the integers

1,2,...,p-1.
If p is an odd prime and a is an integer not divisible by

p, the Legendre symbol lq) tr defined to be I if a is a
\p)

quadratic residue of p and -l otherwise.

55. Showthatif p is an odd prime anda and å are integers

witha:å(modp),then
/a\ /b\(';l : (.;/

56. Prove that iÎ p is an odd prime and c is a positive
integer not divisible by p, then

/ ^\l-ì--\pt)12| - t:u
\p / 

(mod P)'

57. Use Exercise 56 to show that if p is an odd prime and

a and b are integers not divisible by p, then

(!!\: l'l r4l
\p/ ,,pl\p)'

58. Show that if p is an odd prime, then -1 is a quadratic
residue of p if p : I (mod 4) and l" is not a quadratic
residue of p if p = 3 (mod4). (Hint:Use Exet-
cise 56.)

59. Findallsolutionsofthecongruencex2 : 29 (mod35).
(Hint: Find the solutions of this congruence modulo
5 and modulo 7, and then use the Chinese Remainder
Theorem.)

60. Find all solutions of the congruence x2: 16

(mod 105). (Hint: Find the solutions of this congru-
ence modulo 3, modulo 5, and modulo 7, and then use

the Chinese Remainder Theorem.)

Ì

i

rc' Matrices

INTRODUCTION

Matrices are used throughout discrete mathematics to express relationships between ele-

ments in sets. In subsequent chapters we will use matrices in a wide variety of models. For

instance, matrices will be used in models of communications networks and transportation
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systems. Many algorithms will be developed that use these matrix models. This section
reviews matrix arithmetic that will be used in these algorithms.

DEFINITION 1 A mqtrix is a rectangular array of numbers. A matrix with m rows and n columns
is called aî m x n matrix. The plural of matrix is matrices. A matrix with the same
number of rows as columns is called square. Two matrices are equal if they have
the same number of rows and the same number of columns and the corresponding
entries in every position are equal.

EXAMPLE I The matrix
1

0
I

1

2
3

isa3 x Zmatrix.

'We now introduce some terminology about matrices. Boldface uppercase letters will
be used to represent matrices.

DEFINITION 2 Let

An
azt

An
422

Qln

o?,

a'nn

A_

Qnl an2

The i th row of. A is the I x n matríx fai t, ai2, . . ., a¡ nf . TIte j th columnof A is the
r¿ x I matrix

atj
AJì

anj

The (i, i)th element or entry of A is the element a¡¡, thatig the number in the
ith row and jth column of A. A convenient shorthand notation for expressing the
matrix A is to write A : [a;¡], which indicates that A is the matrix wittr its (¡, i)trr
element equalto ø¡¡.

MATRIX ARITHMETIC

The basic operations of matrix arithmetic will now be discussed, beginning with a def,ni-
tion of matrix addition.

Let A : [a¡¡) andB : fb¡¡)be m x n matrices. Tl'e sumof A and B, denoted
by A * B, is the m x n matrix that has a¡j * b¡j as its (1, j)th element. In other
words,A+B:Ia¡¡ *b¡¡1.

DEFINITION 3
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The sum of two matrices of the same size is obtained by adding elements in the corre-

sponding positions. Matrices of different sizes cannot be added, since the sum of two

Åut.i"", i, defìned only when both matrices have the same number of rows and the same

number of columns.

EXAMPLE 2 We have
t1
lz
L:

0
2
4

_ål.l?
ol L-r

4

-J
1

-1
0
2

4
3

2

4-2
l-3
52

We now discuss matrix products. A product of two matrices is defined only when the

number of columns in the f,rst matrix equals the number of rows of the second matrix'

DEFINITION 4 Let A be an m x/< matrix and B be a k x n matrix. The p ro duct of A' and B, denoted

by AB, is the rn x ¡¿ matrix with its (t, i)th entry equal to the sum of the products

oi the .orresponding elements from the ith row of A and the ith column of B. In

other words, if AB : [c¿;], then

c¡j : a¡tbtj I a¡2b2¡ +' " + a¡rb*j'

In Figure 1 the colored row of a and the colored column of B are used to compute

the element c¡; of AB. The product of two matrices is not defined when the number of

columns in thefirst matrix and the number of rows in the second matrix are not the same'

We now give some examples of matrix products'

EXAMPLE 3 Let

":lå
0
1

1

2 il
and B-

2
I
J

4
1

0

Find AB if it is deflned.

Solution: Since A is a 4 x 3 matrix and B is a 3 x 2 malrix,the product AB is de-

fined and is a 4 x 2 ma]rix.To f,nd the elements of AB, the corresponding elements of

the rows of A and the columns of B are first multiplied and then these products are

added. For instance, the element in the (3, 1)th position of AB is the sum of the prod-

ucts of the corresponding elements of the third row of A and the first column of B; namely'

An

a2l

a12

a2z

atk

azk bn
bzt

bn
bzz

btj
b,,

br,t

bzn

ctl
c2t

ct2

c22

cln

c2,t

ait a¡z aik

t brz brj bm ml Cnt2

I Qnt2 atnk

FIGURE 1 The Product of A = [a¡;] and B : [á¿;]'

cíj
c nrt,
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3 . 2 + 1 . 1 + 0. 3 : 7. When all the elements ofAB are computed,we see that

AB_
t44
89
713
82

Matrix multiplication is not commutative. That is, if A and B are two matrices, it is
not necessarily true that AB and BA are the same. In fact, it may be that only one of these
two products is defined. For instance, if A is 2 x 3 and B is 3 x 4, then AB is def,ned and
is2 x 4;however, BA is not defined, since it is impossible to multiply a3 x 4matrix and
a2 x 3 matrix.

In general, suppose that A is anm x z matrix and B is aîr x s matrix. ThenAB is
defined only when n : r aîd BA is def,ned only when s : m. Moreover, even when AB
and BA are both defined, they will not be the same size unless m : n : r : s. Hence, if
both AB and BA are defined and are the same size, then both A and B must be square
and of the same size. Furthermore, even with A and B both n x n matrices, AB urrà nA
are not necessarily equal, as the following example demonstrates.

EXAMPLE 4 Let

A- 11 and B- 2
12l

Does AB : BA?

Solution: We find that

AB: 32
53 and BA: 43

32
Hence,AB + BA.

ALGORITHMS FOR MATRIX MULTIPLICATION

The definition of the product of two matrices leads to an algorithm that computes the
product of two matrices. Suppose that C : lc¡ jl is fhe m x n matrix that is the product
of the m x k matrix Ã : la¡¡land the k x n matrixB : fb¡¡l.The algorithm based on
the definition of the matrix product is expressed in pseudocode in Algorithm 1.

ALGORITHM r Matrix Multiplication.

procedure matrix multiplication(A, B: matrices)
fori :: ltom

forj::lton
begin

c¡¡ ::0
forq::ltok

c¡¡ t: c¡¡ * ainbn¡
end

{C : [c¡;] is the product of A and B]
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'We can determine the complexity of this algorithm in terms of the number of additions

and multiplications used.

EXAMPLE 5 How many additions of integers and multiplications of integers. are used by Algorithm 1

to multiply two ru x t? matrices with integer entries?

Solution: There are n2 entries in the product of A and B. To f,nd each entry requires a

total of zl multiplications and ru - 1 additions. Hence, a total of n3 multiplications and

n2(n - 1) additions are used. <

Surprisingly, there are more efficient algorithms for matrix multiplication than that
given in Algorithm 1. As Example 5 shows, multiplying two n x r¿ matrices directly from
the definition requires O (n3) multiplications and additions. Using other algorithms, two

n x n matrices can be multiplied using O (r r'7) multiplications and additions. (Details of
such algorithms can be found in [CoLeRiSt0l].)

:: r:.Links--r:':.1
M¡(TRIX-CIIAIN MULTIPLICATION There is another important problem in-
volving the complexity of the multiplication of matrices. How should the matrix-chain

ArAz. ..4, be computed using the fewest multiplications of integers, where At, Az,
..., Ln are ml x m2,m2 x m3, ..., mn x ffLn*1 matrices, respectively, and each has

integers as entries? (Since matrix multiplication is associative, as shown in Exercise 13

at the end of this section, the order of the multiplication used does not matter.) Before

studying this problem, note that mrm2m3 multiplications of integers are performed to
multiply aî mt x m2 matríx and an m2 x m3 matrix using Algorithm 1 (see Exercise 23

at the end of this section). Example 6 illustrates this problem.

EXAMPLE 6 In which order should the matrices Ar,A2, and A3-where A1 is 30 x 20,4.2 is
20 x 40,and A3 is 40 x 10, all with integer entries-be multiplied to use the least number

of multiplications of integers?

Solution: There are two possible ways to compute AIAzA¡. These are A1(4243) and

(ArAz)A:.
If A2 and A3 are first multiplied, a total oT20 '40 ' 10 : 8000 multiplications of

integers are used to obtain the 20 x 10 matrix AzA¡.Then, to multiply At and AzA¡
requires 30 .20. 10 : 6000 multiplications. Hence, a total of

8000+6000:14000

multiplications are used. On the other hand, if A1 and L2 ane first multiplied, then 30 '

20 . 40 :24900 multiplications are used to obtain the 30 x 40 matrix AlAz.Then, to

multiply A1A2 and A3 requires 30 x 40 x 10 : 12,000 multiplications. Hence, a total of

24,000 + 12,000:36.000

multiplications are used.

Clearly, the first method is more eff,cient

Algorithms for determining the most efficient way to carry out matrix-chain multi-

plication are discussed in [CoLeRiStOl].
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TRANSPOSES AND POWERS OF 1VTATRTCES

We now introduce an important matrix with entries that are zeros and ones.

DEFINITIONS Theidentitymatrixof ordernisther¿ x n matrixln : [ð¡;],whereð¡¡ - I if i : j
andô¡;:0if i I j.Hence

l0 0
0l 0

ln:

00 1

Multiplying a matrix by an appropriately sized identity matrix does not change this matrix.
In other words, when A is an m x n mafrix,we have

AI, : I,nA: A.

Powers of square matrices can be defined. When A is an n x n matrix, we have

Ao:Ir, A'':€j.
r times

The operation of interchanging the rows and columns of a square matrix is used in
many algorithms.

DEFINITION 6 Let A : [a¡¡] be an m x r¿ matrix. The transposeof A, denoted by A¡, is the n x m
matrix obtained by interchanging the rows and columns of A. In other words, if
Lt : [b¡¡),thenb¡¡ : aj¡for i : 1,2,...,n aîd j : 1,2,...,ffi.

ExAMnLE z rhe rranspose or rhe marrix 
11 3 ¿] , rh. -"r,i" 

[j å]

Matrices that do not change when their rows and columns are interchanged are often
important.

jl

i

I

l

DEFINITION 7 A square matrix A is called symmetric if A : At. Thus Ã : [a¡¡] is symmetric if
aij : ajiforalli and j with I < i < n andl < j < n.

Note that a matrix is symmetric if and only if it is square and it is symmetric with respect
to its main diagonal (which consists of entries that are in the ith row and i th column for
some l). This symmetry is displayed in Figure 2.

EXAI\{PLE 8 The marrix 11 å ?t
Lorol

is symmetric.
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ZERO-ONE MATRICES
oji

a¡j

A matrix with entries that are either 0 or 1 is called a zero-one matrix. Zero-one matrices

are often used to represent discrete structures, as we will see in Chapters 7 and 8. Algo-
rithms using these structures are based on Boolean arithmetic with zero-one matrices.

This arithmetic is based on the Boolean operations v and A, which operate on pairs of
bits, def,ned by

FIGURE 2 A
Symmetric Matrix. b nn.: [l-[0

vlrr:[l'[0

if b1 : bz:1
otherwise,

if bl - I or b2: I
otherwise.

b

DEFINITION 8 Let A : laijl and B : [b¡¡lbem x n zero-one matrices.Then the joinof A
and B is the zero-one matrix with (1, j)th entry a¡¡ v b¡¡. The join of A and B is
denoted by A v B. The meeî of A and B is the zero-one matrix with (i, j)th entry
a¡¡ A b¡¡.The meet of A and B is denoted by A n B.

EXAMPLE I Find the join and meet of the zero-one matrices

": lå ? ål B- 0 0
1 0

Solution: We find that the join of A and B is

AvB:[åY? ?Yl åY3]:Il I å]

The meet of A and B is

AnB: in0 0n1 1n0
0n1 1n1 0n0

loool
[o r o]

'We now define the Boolean product of two matrices.

DEFINITION 9 Let A : la¡¡lbe aî m x k zero-onematrix and B : [b¡;] be a k x n zero-one
matrix. Then the Boolean product of A and B, denoted by A O B, is the m x n

matrix with (i, j)th entry [c¡;] where

c¡j : (a¡t ¡ 11¡) v (a¡2 Abz¡) v ... v (a¡* ¡ b*¡).

Note that the Boolean product of A and B is obtained in an analogous way to the

ordinary product of these matrices, but with addition replaced with the operation v and

with multiplication replaced with the operation n. We give an example of the Boolean
products of matrices.

EXAMPLE 10 Find the Boolean product of A and B, where

1

1

0
0 I

I

A-
10
01
10

B-
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Solution: The Boolean product A O B is given by

AOB:
(1 n l) v (0n0) (l n 1) v (0n 1)
(0n 1) v (1 n0) (0¡ 1) v (l n 1)
(1 n 1) v (0^0) (1 n 1) v (0^ 1)

(1n0)v(0^1)
(0n0)v(1n1)
(1n0)v(0n1)

1v0 1v0 0v0
0v0 0v1 0vl
1v0 1v0 0v0

t?

I
1

1

0l
ll
0l

Algorithm 2 displays pseudocode for computing the Boolean product of two
matrices.

i

We can also define the Boolean powers of a square zero-one matrix. These powers
will be used in our subsequent studies of paths in graphs, which are used to model such
things as communications paths in computer networks.

DEFINITION 10 Let A be a square zero-one matrix and let r be a positive integer. The rfh Boolean
power of A is the Boolean product of r factors of A. The rth Boolean product of
A is denoted by dt']. Hence

A lr oAoAo...o l

I

(This is well defined ,,::î;" Boolean product of matrices is associative.) V/e also
define Atol to be I,,.

EXAMPLE 11 Ler A :
r-0 0 1"1lr o ol
Lr 1 ol

Find Atnl for all positive integers n

Solution: We f,nd that

¡tz] -AOA:

ALGORITHM z The Boolean Product.

procedure Boolean product (^,8: zero-one matrices)
fori::ltom

forj::llon
begin

c¡¡ ::0
forq::Itok

cij i: cij V (a¡r, n bq¡)
end

{C : lc¡¡l is the Boolean product of A and B}

11 1 01
lo o r I

Lr o rl
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We also find that

4r:,-Ar2,o": ii i i]
[1 I

Li?
I

4t+l - 4t:l gd:

Additional computation shows that

4ts1 -
111
111
111

EXAMPLE 12

The reader can now see that At'?l - Atsl for all positive integers n with n > 5. <

The number of bit operations used to find the Boolean product of two n x n matrices
can be easily determined.

Howmanybitoperations areused tofindA o B,whereA and B are n x nzero-'one
matrices?

solution: There are n2 entries in A o B. using Algorithm 2, a total of noÃs and n AN Ds
are used to find an entry of A O B. Hence, 2n bit operatlons are used to ûnd each entry.
Therefore, 2n3 bit operations are required to compute A o B using Algorithm 2. <

Exercises

1. LetA:
[l r

lz o

Lr r

1

4

3

?

3l

il b) A:
l-r

lo
lz

-l
I

3

B
3 -2 -t102

a) What size is A
b) What is the third column of A?
c) What is the second row of A?
d) What is the element of A in the (3,2)th position?
e) What is A¡?

2. Find A + B, where

,":f-í - 3-l

-11.>l

;l
B: -l 32-21

t 4 -3]0

l.
1

I

0

0

2

-,)

3

2

-J

;l
-31

.51

-31
ol

4. Find the product AB, where

a) A:

a) A:
101
0 -1 -1

-1 I 0
,B: t?

i-r

r - rl
-1 0l
0rli-rB: I 2

lz
b) A: [i

lz

.:l_l
t-:

-30
22
1 -lb) A: -1

-4
0s 6'l

3 5 -2|l',

B -3
0

9 3

I N
-1

0
a

2

-1

0

3l

N

a

3. Find AB if

lz

l: N,.: l? :]
l- o -ll.rn:l; zln:I4 -l 23 ol-' ''- 
L-; _i)'"-l-' o 3 4 t)

a) A:
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since such a matrix B is unique) and A is said to be invert-
ible. The notation B : A I denotes that B is the inverse
of A.
18. Show that

5. Find a matrix A such that

r) ?l t¡ 0l

l; olo:L' 2l

tHint: Finding A lequires that you solve systems of

ìineal equations'¡

ó. Find a matrix A such that

lz 3

lr 2

i-r -l
is the inverse of

-1
1

-)

A:

j, Let Ã be an m x n mat¡ix and let 0 be the m x n

matrix that has all entries equal fo zeÍo. Show that
4=OiA:A+0.

g. Show that matrix addition is commutative; that is,

show that if A and B are both m x n matrices, then
A*B=B+4.

9. Show that matrix addition is associative; that is, show
that if A, B, and C are all m x n matrices, then
A+(B+C):(A+B)+C.

10. LetA be a 3 x 4 matrix,B be a4 x 5 matrix,and C
be a 4 x 4 matrix. Determine which of the following
products are defined and find the size of those that
are defined.

a) AB b) BA c) AC
d)CA e)BC ÐCB

11. What do we know about the sizes of the matrices A
and B if both of the products AB and BA are defined?

12. In this exercise we show that matrix multiplication is
distributive over matrix addition.

a) Suppose that A and B are m x k matrices
and that C is a k x n matrix. Show that
(a+B)c:AC+BC.

b) Suppose that C is an ¡z x k matrix and that
A and B are k x n matrices. Show that
C(A+B):CA+CB.

13. In this exercise we show that matrix multiplication is
associative. Suppose that A is afi m x p matrix, B is
a p x k matrix, and C is a k x n matrix. Show that
A(BC) = (AB)C.

14. The ¿ x ¡z matrix Ã : la¡¡lis called a diagonal mafrix
if a¡¡ - 0 when I I 7. Show that the prðduct of two
n x n diagonal matrices is again a diagonal matrix.

_ - Give a simple rule for determining this product.
15. Let

lt -8 5.1

l_.q 5 -31I r -1 rl
19. Lef"A be a 2 x 2 matrix with

I
2

4

I
0

--lti
J

I

0

2

I
3

3l
3l
7)

abA:

Show that if ad - bc t' O,then

A

-b
"r)- b,

a

"d- 
b,

20. Let
frrlA:t :'-t.
LI J]

a) Find Ã-t . (Hint:IJse Exercise 19.)
b) Find Ar.
c) Find (A-')3.
d) Use your answers to (b) and (c) to show that

(A-')3 is the inverse of A3.

21. Lef A be an invertible matrix. Show that (4,.¡-t -
{A r¡" whenever n is a positive integer.

22. Let A be a matrix. Show that the matrix AA, is sym-
metric. (11lzf Show that this matrix equals its trans-
pose with the help of Exercise 17b.)

23. Show that the conventional algorithm ùses tn1m2r?t1

multiplications to compute the product of the m 1 x m2
matrix A and the ftt2 X t7\ matrix B.

24. What is the most efficient way to multiply the rnatri-
ces 41, 42, and Ar with sizes

a) 20 x 50,50 x 10, 10 x 40?
b) 10 x 5,5 x 50,50 x 1?

25. What is the most efficient way to multiply the matrices
41,42,43, and Aa if the dimensions of these matrices
are 10 x 2,2 x 5,5 x 20, and 20 x 3, respectively?

26. a) Show that the system of simultaneous linear
equations

¡¿
lad*bc:l*

cd

ct11x1 I anxz I
0ztxt * azzxz *

* Qy,rx,, : b1

I ct2,rx,, : b2

A=[r 1.l

LO IJ
Find a formula for A',, whenever n is a positive
integer.

16. Shoi, rhat iA,.¡, : d.r'l' Let A and B be lwor x n matrices. Show {hat
a) (A + B)¡ : 4r + 8,. b) (AB)' : B.A'.

Ï1,:"g B are n x ¡r marrices with AB : BA : I,,,then B¡s called the inverse of A (this terminology is appiopriate a,txt * a,zxz * ", I a,r,,x,, : þ,,



206 2 / "lhe Fundamentals: Algorithms, the Integers, and Matrices

in the variables rl, ,r2, . . . , r¡¡ can be expressed as

AX : B,where A : la¡¡l,X is an n x I matrix
with .r¡ the entry in its lth row, and B is an tL x I

matrix with b¡ the entry in its i th row.
b) Show that if the matrix A : [a¡r] is invertible (as

defined in the preamble to Exercise 18), then the
solution of the system in part (a) can be found
using the equation X : A-rB.

27. Use Exercises 1.8 atd26 to solve the system
7x:-8x2*5xr:5

*4rt+5x2-34:-J

xl -x2-l-"rr:0
28. Let

[t rì and B:19 ll^: Lo rl Lr ul

Find

a)AvB. b)AnB.
c) AOB.

29. Let

Find

a) AvB.
b) AnB.
c) AOB.

30. Find the Boolean product of A and B, where

2-88

31. Let

Find

a) At2ì. b) AI3l. c) A v At2l y 4t:1.

32. Lef. A be a zero-one matrix. Show that

a) AvA:4.
b) A¡A:4.

33. In this exercise we show that the meet and join oper.a-
tions are commutative. Let A and B be ¡a x n zero-one
matrices. Show that

a) AvB:BvA.
b) BnA:AnB.

34. In this exercise we show that the meet and join op-
erations are associative. Let A, B, and C be m x n
zero-one matrices. Show that

a) (AvB)vC:Av(BvC).
b) (AnB)nC:An(B¡C).

35. We will establish distributive laws of the meet over
the join operation in this exercise. Let A, B, and C be
m x n zero-one matrices. Show that

a) Av (B nC) : (AvB) 
^ 

(AvC).
b) An (B vC) : (A^B) v (AnC).

36. Let A be an n x n zero-one matrix. Let I be the n x n
identity matrix. Show that AOI : IOA : A.

37. In this exercise we will show that the Boolean prod-
uct of zero-one matrices is associative. Assume that
A is an m x p zefo-one matrix,B is a p x k zero-one
matrix, and C is a k x n zero-one matrix. Show that
AO(BOC): (AOB)OC.

l-r o ol
l:lr o rl

Ltlro]

l-o r rls:lr o rl
lrorl

and
trorla:lr r ol

loo rl

and.:liil
lr 'l

trooll
l:lo r o rl

[r rr1]
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Key Terms and Results
TERMS

algorithm: a flnite set of precise instructions for perform-
ing a computation or solving a problem

searching algorifhm: the problem of locating an element
in a list

linear search algorithm: a procedure for searching a list
element by element

binary search algorithm: a procedure for searching an or-
dered list by successively splitting the list in half

sorting: the reordering of the elements of a list into non-
decreasing order

greedy algorithm: an algorithm that makes the best
choice at each step

f (x)isO(g(x)): thefactthat l,f (x)l < CIS(r)lforall¡ > fr

for some constants C and À

witness to the relationship/(x) is O(g(r)): a pair C and
fr such that l"f (x)l : CIS(x)l whenever x > fr

/(x) is O(g(r)): the fact that lf Q)l > Cls(x) | tor allx > k
for some positive constants C and k

/(¡) is @(g(x)): the fact that /(x) is O(s(.r)) and /("r) is

o (s(x))
time complexity: the amount of time required for an al-

gorithm to solve a problem
space complexity: the amount of storage space required

for an algorithm to solve a problem
worst-case time complexity: the greatest amount of time

required for an algorithm to solve a problem of a

given size

average-case fime complexity: the avefage amount of
time required for an algorithm to solve a problem
of a given size

I
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, t b (a divides á): there is an integer c such that b : ac

üi*", upositive integer greater than 1 with exactly two
' nositive lnteger otvlsors

coniosile: a positive integer greater than I that is not

u.rjJ,iÏ""o.,-e: a prime of the form 2p - t,where p is
prnne

ocdØ, bl (greatest common divisor of a and ó): the
"- lorg.t, integer that divides both a and å

relatively prime integers: integers a and b such that
gcd(a, b) : I

oairwise relafively prime integers: a set of integers with
the property that every pair of these integers is rela-
tivelY Prime

þm(q b) (least common mulfiple of ø and ó): the
smallest positive integer that is divisible by both a

and b

a mod bz the remainder when the integer a is divided by
the positive integer ó

a = b (mod m) (a is congruent to ó modulo m): a * b is
divisible bY lø

encryption: the process of making a message secret
decryption: the process of returning a secret message to

its original form
n = (a¡ø¡-1. . . a1a¡)6i the base å fepresentation of n
binary represenfation: the base 2 representation of an in-

teger
hexadecimal represenfation: the base 16 representation

of an integer
octal representation: the base 8 representation of an in-

teger
linear combination of ø and á with integer coefÊcients: a

number of the lorm sa+tb where s and I are integers
inverse of ø modulo rn: an integer a such that aa :

1 (mod lz)
linear congruence: a congruence of the form ax =

å (mod lø) where x is a variable
pseudoprime to the base 2: a composite integer ¡z such

fhaf 2^-1 : 1 (mod n)
pseudoprime fo fhe base å: a composite integer ¡z such

^ that btt -t : | (mod n)
Carmichael number: a composite integer n such that n is

a pseudoprime to the base å for all positive integers
b wtth gcd(b, n¡ : 1

privafe key encrypfion: encryption where both encryp-

--, ,ji:n keys and decryption Leys must be kept secret
public key encrypfion: óncryption where encryþtion keys

are public knowledge, but decryption keys are kept
secret

malrix: a reclangular array of numbers
mafr¡x add¡t¡on: see pase 197
tnatuix mulfiplication: sãe page t9g
ra (identity matrix of order z): the n x n matrixthat has

^, 
,entries equal to 1 on its diagonal and 0s elsewhererr' (transpose of A): the matrix obtained from A by ìn-
terchanging the rows and columns
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symmetric: a matrix is symmetric if it equals its transpose
zero-one matrix: a matrix with each entry equal to either

0or1
A v B (the join of A and B): see page202
A n B (the meet of A and B): see page202
A O B (fhe Boolean product ofA and B): see page202

RESULTS

linear and binary search algorithms: (given in Secti on2.L)
bubble sort: a sorting that uses passes where successive

items are interchanged if they are out of order
insertion sorf: a sorting that at the jth step inserts the

jth element into the correct position in the list of the
sortedflrst j - I elements

The linear search has O(n) complexity.
The binary search has O(logn) complexity.
The bubble and insertion sorts have O(ru2) complexity.
logn!is O(nlogn).
If f1(x) is O(sr(x)) and f2Q) is O(s2(x)),rhen(ft-t fù(x)

is O(max(s1(.r), sr(r))) and (f1f)@) is O(s1(x)
sz?)).

If a6, a1, . . . , alt are real numbers with a,, f 0, then
e,,x" !a,,-1x" t+..'+ atx+a|is O(x,') and @(x").

Fundamental Theorem of Arifhmetic: Every positive in-
teger can be written uniquely as the product of
primes, where the prime factors are written in order
of increasing size.

division algorithm: Let a and d be integers with d pos,
itive. Then there are unique integers q and r with
0 < r < ¿1 such that a : dq I r.

If a and å are positive integers, then ab : gcd,(a,b).
lcm(a, b).

Euclidean algorithm: for finding greatest common divi-
sors (see Algorithm 6 in Section 2.5)

Let b be a positive integer greater than 1. Then if ¡z is a
positive integer, it can be expressed uniquely in the
formz : arbk i a*_þk I +... + atb * ao.

The algorithm for finding the base å expansion of an in-
teger (see Algorithm 1 in Section 2.5)

The conventional algorithms for addition and multiplica-
tion of integers (given in Section 2.5)

The modular exponentiation algorithm (see Algorithm 5
in Section 2.5)

The greatest common divisor of two integers can be ex-
pressed as a linear combination with integer coeffi-
cients of these integers.

If m is a positive integer and gcd(a, m) : 7,then a has a
unique inverse modulo ln.

Chinese Remainder Theorem: A system of linear con-
gruences modulo pairwise relatively prime integers
has a unique solution modulo the product of these
moduli.

Fermat's Little Theorem: If p is prime and p / ø), then
aP-t=1(modp).


