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*43. We say that a function is computable if there is a com-

puter program that finds the values of this function.

Use Exercises 4t and 42 to show that there are func-

tions that are not comPutable.
*44. Prove that the set of positive rational numbers is

countable by setting up a lunction that assigns to a

rational number p lq with gcd(p, q) : 1 the base 11

number formed from the decimal representation of
p followed by the base 11 digit A, which corresponds

to the decimal number 10, followed by the decimal

represenfation o[ 4.
*45. Prove that the set of positive rational numbers is

countable by showing that the function K is a one-

to-one correspondence between the set of positive

rational numbers and the set of positive integers

if K(m/nt : p2:' p3"' "' pl" qlo'-'qìo" " ql'"' t'

where gcd(ru, n) : l and the prime-power factor-

izations of m and n are m : p'it pi'' .'pf" and n =
b¡ l¡¡ b,

Qt'Qz' " 'Qt '

Show that the union of a countable number of count-

able sets is countable.
Show that the set Z+ x Z+ iscountable.
Show that the set of all bit strings is countable.

Show that the set of real numbers that are solutions

of quadratic equations axz + bx { c : 0, whete a, b,

and c are integers, is countable.
Show that the set of all computer programs in a par-

ticular programming language is countable. (Hint: A
computer program written in a programming lan-

guage can be thought of as a string of symbols from
a flnite alphabet.)
Show that the set of functions from the positive in-
tegers to the set Í0,1,2,3,4,5,6,7,8,9) is uncount-

able. fHint: First set up a one-to-one correspondence

between the set of real numbers between 0 and 1 and

a subset of these functions. Do this by associating to

the real number O.døz . . .d,, . . . the function / with

f (n) : d".)

38.
*39.
*40.

*41.

*42.

G Mathematical Induction

INTRODUCTION

What is a formula for the sum of the first n positive odd integers? The sums of the first ¡¿

positive odd integers for n : 1,2,3,4,5 are

1:1, Il3:4, 1+3+5:9,
1+3+ 5+7:16, 1+3+ 5+1+9:25.

From these values it is reasonable to guess that the sum of the first n positive odd integers

is n2. We need a method fo prove that this g¿¿ess is correct, if in fact it is.

Mathematical induction is an extremely important proof technique that can be used

to prove assertions of this type. As we will see in this section and in subsequent chapters,

mathematical induction is used extensively to prove results about a large variety of dis-

crete objects. For example, it is used to prove results about the complexity of algorithms,

the correctness of certain types of computer programs, theorems about graphs and trees,

as well as a wide range of identities and inequalities.

In this section we will describe how mathematical induction can be used and why it is

a valid proof technique. It is extremely important to note that mathematical induction can

be used only to prove results obtained in some other way. Il is not a tool for discovering

formulae or theorems.
There are several useful illustrations of mathematical induction that can help you

remember how this principle works. One of these involves a line of people, person one,

person two, and so on. A secret is told to person one, and each person tells the secret to the

next person in line, if the former person hears it. Let P (n) be the proposition that person

rz knows the secret. Then P (1) is true, since the secret is told to person orc; P (2) is true,

since person one tells pefson two the secre| P(3) is true, since person two tells person

three the secret; and so on. By the principle of mathematical induction, every person in

line learns the secret. This is illustrated in Figure 1. (Of course, it has been assumed that

each person relays the secret in an unchanged manner to the next person, which is usually

not true in real tife.)
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Person I Pe'son

FIGURE 1

6

,Person 
3

People Telling Secrets. FIGURE 2 Illustraling How
Mathematical Induction Works
Using Dominos.

Another way to illustrate the principle of mathematical induction is to consider
an infinite row of dominos, labeled 1,2,3, ... ,,4, where each domino is standing up.
Let P (n) be the proposition that domino n is knocked over. If the first domino is knocked
over-i.e., if P (1) is true-and if, whenever the nth domino is knocked over, it also knocks
the (r -F l)th domino over-i.e., if P(n) -+ P(n * l) is true-then all the dominos are
knocked over. This is illustrated in Figure 2.

IT{ATHEMATICAL INDUCTION

Many theorems state fhat P (n) is true for all positive integers n, where P (n ) is a proposi-
tionalfunction,suchasthestatementthatl+2+.'.+n:n(n*l)/2orthestatement
tha| n < 2n.Mathematical induction is a technique for proving theorems of this kind. In
other words, mathematical induction is used to prove propositions of the form Yn P(n),
where the universe of discourse is the set of positive integers.

A proof by mathematical inductionfha'f. P(n) is true for every positive inleger n
consists of two steps:

BASIS STEP: The proposition P(1) is shown to be true.

INDUCTM STEP: The implication P (ft) --> P (k * 1) is shown to be true for every
positive integer k.

Here, the statement P (k) for a flxed positive integer À is called the inductive hypothesis.
rühen we complete both steps of a proof by mathematical induction, we have proved that
P(n) is true for all positive integers n;Ihatis,we have shown tha|Y nP(n) is true.

Expressed as a rule of inference, this proof technique can be stated as

tP(1) n Y k(P(k) --> P(k + 1))l --> Y nP(n).

Since mathematical induction is such an important technique, it is worthwhile to explain
in detail the steps of a proof using this technique. The first thing we do to prove that P (zr)

\ I
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is true for all positive integers z is to show that P(1) is true. This amounts to showing

that the particular statement obtained when r¿ is replaced by 1 in P(ru) is true. Then vys

must show IhaL P (k) --> P (k * 1) is true for every positive integer fr. To prove that this
implication is true for every positive integer fr, we need to show fhat P (k a 1) cannot
be false when P (k) is true. This can be accomplished by assuming that P (k) is true and
showing that under this hypothesß P (k + 1) must also be true.

Remq.rh: In a proof by mathematical inductionif is not assumed that P(fr) is true for
all positive integers! It is only shown that if it is assumed that P (k) is true, then P (fr -¡- 1¡

is also true. Thus, a proof by mathematical induction is not a case of begging the question,
or circular reasoning.

'When we use mathematical induction to prove a theorem, we first show that P (1) is true.

Then we know that P (2) is true, since P ( 1) implies P (2). Further, we know that P (3) ig
true, since P (2) implies P (3). Continuing along these lines, we see that P (n) is true, for
every positive integer n.

EXAMPLES OF PROOFS
BY IÚÂ-THE MATI CAL IND UC T I O N

'I ,.Links -: ':.:
We will use a variety of examples to illustrate how theorems are proved using mathe-
matical induction. We begin by proving a formula for the sum of the f,rst n odd positive
integers. (Many theorems proved in this section via mathematical induction can be proved
using different methods. However, it is worthwhile to try to prove a theorem in more than
one way, since one method of attack may succeed whereas another approach may not.)

HISTORICAL NOTE The first known use of mathematical induction is in the work of the sixteenth-
century mathematician Francesco Maurolico (1494-1575). Maurolico wrote extensively on the works of
classical mathematics and made many contributions to geometry and optics. In his bookArilhmeticorun
Libri Duo, Maurolico presented a variety of properties of the integers together with proofs of these

properties. To prove some of these properties he devised the method of mathematical induction. His first

use of mathematical induction in this book was to prove thât the sum of the first rx odd positive integers
equals n2.

: Extra:Examples:,

EXAMPLFI 1 Use mathematical induction to prove that the sum of the first n odd positive integers

is n2.

Solution: Let P (n) denote the proposition that the sum of the first r? odd positive integers

is r¿2. We must first complete the basis step; that is, we must show that P (1) is true. Then
we must carry out the inductive step; that is, we must show that P (k + 1) is true when
P(t) is assumed to be true.

BASIS STEP: P(1) statesthatthesumof thefirstoneoddpositiveintegeris 12.Thisis
true since the sum of the first odd positive integer is 1.

INDUCTM STEP: To complete the inductive step we must show that the proposition
P (k) --> P (k + 1) is true for every positive integer k. To do this, suppose that P(k) is

true for a positive integer k; that is,

1+3+5+"'+(2k-7):k2.

Links l
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[Note that the frth odd positive integer is (2ft - 1) , since this integer is obtained by adding
2atotalof k - | times to 1.]We must show that P(k + 1) is true, assuming that P(fr) is
true. Note fhaf P (k * 1) is the statement that

1 + 3 +5 +... + (2k - l) + (2k+ 1) : (t< + t)2.

So, assuming that P (k) is true, it follows that

1 + 3 + 5 + . . . + (2k - t) + (2k + 1) : [1 + 3 + . . . + (2k - 1)] + (2k + t)

jnn',:::::'
: (k + r)2.

This shows that P (k * 1) follows from P (fr). Note that we used the inductive hypothesis
P(fr) in the second equality to replace the sum of the first k odd positive integers by fr2.

Since P(l) is true and the implication P(k) --> P(k+ 1) is true for all positive
integers k, the principle of mathematical induction shows thaf P (n) is true for all positive
integers n. <

Example 2 uses the principle of mathematical induction to prove an inequality.

EXAMPLE 2 Use mathematical induction to prove the inequality

n <2n

for all positive integers n.

Solution: Let P (n) be the proposition "¡z < 2' ."

BAS/S STEP: P(l) is true, since I < 2t :2.

INDUCTM STEP: Assume that P (k) is true for the positive integer fr. That is, assume

that k < 2k.We need to show that P(k + 1) is true. That is, we need to show that
k + I < zk+r. Addingl to both sides of k .2k,and then noting that 1 < 2k,gives

k+l<2k+1.2k+2k:2k+1.

We have shown that P (k -l1) is true, namely, that k + I < 2k*1, based on the assumption
fhaf P (k) is true. The induction step is complete.

Therefore, by the principle of mathematical induction, it has been shown fhat n < 2''
is true for all positive integers ru. <

\üe will now use mathematical induction to prove a theorem involving the divisibility
of integers.

EXAMPLE 3 Use mathematical induction to prove thaf n3 - n is divisible by 3 whenever n is a positive
integer.

Solution: To construct the proof, let P(n) denote the proposition:"n3 - n is divisible
bv 3."

BASIS STEP: P(l) is true, since 13 - 1 : 0 is divisible by 3.

i

,

i
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ìi

INDUCTM STEP: Assume that P (k) is true; that is, fr3 -* is divisible by 3' we must

show that P (k + 1) is true. That is, we must show that (k + 1)3 - (/r + i) is divisible by 3.

Note that

(k+1)3 -(k+ 1):(fr3 +3k2+3k+r) -(fr+1)
:(k3-Ð+3(k2+Ð.

Since both terms in this sum are divisible by 3 (the frfst by the assumption of the inductive

step, and the second because it is 3 times an integer), it follows that (k + 1)3 - (k + 1) is

akà diui.ibl" by 3. This completes the induction step. Thus, by the principle of mathemat-

ical induction ,n3 _ n is divisible by 3 whenever n is a positive integer. <

Sometimes we need to show that P (n) is true for n : b, b + I' b + 2'' "' where å

is an integer other than 1. Vy'e can use mathematical induction to accomplish this as long as

we change the basis step. For instance, consider Example 4, which proves that a summation

formula is valid for all nonnegative integers, so that we need to prove that P(n) is true

forn:0,1,2,....

EXAMPLE 4 Use mathematical induction to show that

I+2+22 +"'l2n :2n+1 -1
for all nonnegative integers n'

Solution: Lef p (n) be the proposition that this formula is correct for the inreger n.

BASIS STEP: P(0) is true since 20 : I :2r - I'

INDUCTM STEP: Assume that P (k) is true. To carry out the inductive step using this

assumption, it must be shown fhat' P (k f 1) is true' namely'

| +2+22 +...+2k +2ktt - 2k1-tt+t - I :2k+2 - l.

Using the inductive hypothesis P (k),if follows that

I +z+22 +...+2k +2k+t - 0 +2+22 + "'+2\ t2k+t

: (Zk+1 _ I) + 2t +t

_2.2t<+t _1

- 2k+2 - 7.

This finishes the inductive step, which completes the proof' <

As Example 4 demonstrates, to use mathematical induction to show that P (n ) is true

for n : b,b + l,b +2," ', where å is an integer other than 1'we show that P(b) is

true (the basis step) and then show that the implication P(k) --> P(k f 1) is true for

k: ù,b + 1,b +2,... (the inductive step). Note thatb canbe negative,zero,of posi-

tive. Following the domino analogy *" ,rr"d earlier, imagine that we begin by knocking

down the áthãomino (the basis siåp), and as each domino falls, it knocks down the next

domino (the inductive st"p). We leave it to the reader to show that this form of induction

is valid (see Exercise 76)'
The formula given in Example 4 is a special case of a general result for the sum of

terms of a geometric progression (Theorem 1 in Section :.2;. We will use mathematical

induction to provide an alternate proof of this formula'
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EXAMPLE 5 Sums of Geometric ProgÌessions Use mathematical induction to prove this formula for
the sum of a finite number of terms of a geometric progression:

Dor, : a * ar t ar2+.'. + ar' :#
l:0

whenr f I

Solution: To prove this formula using mathematical induction,lef P (n) be the proposi-
tion that the sum of the first n * 1 terms of a geometric progression in this formula is

correct.

BASIS STEP: P(0) is true, since

ar-a
r-l

INDUCTM STEP: Assume that P (k) is true. That is, assume

a+ar+ar2+ ,. ark*l - a
r tlt r-1

To show that this implies That P (k * i ) is true, add arktr fo both sides of this equation
to obtain

a+ar¡ar2* tark ¡ark+t -# +ark+l

Rewriting the right-hand side of this equation shows that

ark+I-a ,.,, qrk+r-a ark*2-ark+l
| -,.Kï t I

--ø' 

--r-l r-l r-l
ark*2 - a

r-I
Combining these last two equations gives

a I ar + ar2 +... + ark + arkt ' 
ark+z - a

r-l
This shows that if P(k) is true, then P(k + 1) must also be true. This completes the

inductive argument and shows that the formula for the sum of the terms of a geometric

series is correct. <

As previously mentioned, the formula in Example 4 is the case of the formula in
Example 5 with a : I and r : 2.T1te reader should verify that putting these values for a

and r in the general formula gives the same formula as in Example 4.

An important inequality for the sum of the reciprocals of a set of positive integers

will be proved in the next example.

EXAMPLE 6 An Inequality for Harmonic Numbers The harmonic numbers H ¡ , i : 1,2,3,
are defined by

11H':l+-+-+r23
1*;
J
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For instance,

11125H+:l+t+ j+ +: n.
Use mathematical induction to show that

n

2

whenever n is a nonnegative integer.

Solution: To carry out the proof, let P (n) be the proposition that H2, > | + n /2.

BASIS STEP: P(0) is true, since H2o : Ht : | > I + 012'

INDUCTM STEP: Assumethat P(fr) istrue,soThatH2* > | + klz.Itmustbeshown

That P(k I 1), which states that H2*+t 7 1 + (¿ + I)l2,must also be true under this

assumption. This can be done since

1H2k+t:I+t+

Hzu +1

1
I

at
J

1

+2k

1+t

111
I-I I...I-
',rk'ok-tl' '2k+l

L L

deflnition of
harmonic number

1
definition of harmonic number

11r-I.-.I-ìofrr'f t '1k+lL -T'
- ('.;)

- ('.:)

- ('.;)

1

by the inductive hyPothests

since there are 2t terms each not less than 1/2r+r

L

l

I

2r*t

EXAMPLE 7

k+l
-lr 2

This establishes the inductive step of the proof. Thus, the inequality for the harmonic

numbers is valid for all nonnegative integers n. <

Remq,rh: The inequality established here shows that the harmonic series

11 1l+;+;*"'+-+"'15n
is a divergent infinite series. This is an important example in the study of inflnite series'

Example 7 shows how mathematical induction can be used to verify a formula for

the number of subsets of a finite set'

The Number of Subsets of a Finite Set Use mathematical induction to show that if S

is a finite set with n elements, then S has 2" subsets. (We will prove this result directly in

several ways in ChaPter 4.)

Solution: Lef P (n) be the proposition that a set with n elements has 2" subsets'
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FIGURE 3 Generating Subsets of a Set with É * 1 Elements.
Here?=SU{ø}.

BASIS STEP: P(0) is true, since a set with zero elements, the empty set, has exactly
20 : I subsets, since it has one subset, namely, itself.

INDUCTM STEP: Assume that P (k) is true, that is, that every set with k elements has

2ft subsets. It must be shown that under this assumpti on P (k f 1 ), which is the statement
that every set with fr * 1 elements has 2fr+1 subsets, must also be true. To show this, let Z
be a set with fr * 1 elements.Then,it is possible to write Z : S U {a} where a is one of
the elements of I and S : Z - {a}. The subsets of T can be obtained in the following
way. For each subset X of S there are exactly two subsets of Z, namely, X and X U la\.
(This is illustrated in Figure 3.) These constitute all the subsets of I and are all distinct.
Since there are 2k subsets of S, there are 2 '2k : 2k+1 subsets of Z. This finishes the
induction argument. <

Show that if n is a positive integer,

l+2+...*n:n(n*7)12.

Solution: LeL P (n) be the proposition that the sum of the first n positive integers is
n(n * 1)/2.We must do two things to prove that P(n) is true for n : I,2,3, ....
Namely, we must show that P ( 1) is true and that the implication P (k) implies P (k + l)
is true for k :1,2,3, ....

BAS/S STEP: P(1) is true,since 1 : 1(1 + l)12.

INDUCTM STEP: Assume that P(k) holds so that

r+2+...+k:k(k-tr)12.

Under this assumption, it must be shown thal P (k * 1) is true, namely, that

| +2+...+ k + (¿ + 1) : (¿ + l)t(k + 1) + Ill2: (k + I)(k+2)12

EXAMPLE 8

i

l

a

T

XU {a}

a T



246 3 /Mathematical Reasoning, Induction, and Recursion 3_34

is also true. Add k * 1 to both sides of the equation in P (k) to obtain

I + 2 + . . . + k + (k + t) : k(k + r) 12 + (¿ + 1)

: [(k/z) + 1](/r + 1)

: (k + r)(k + 2)12.

This last equation shows that P(k + 1) is true. This completes the inductive step and
completes the proof. <

EXAMPLE9 Usemathematicalinductiontoprovethat2n < n!foreverypositiveintegernwifhn> {,.

Solution: LeI P(n) be the proposition that 2" < nl.

BASIS STEP: To prove the inequality for n > 4 requires that the basis step be P(4).
Note that P(4) is true, since 2a : 16 < 4! :24.

INDUCTM STEP: Assume that P (k) is true. That is, assume thaÍ 2k < fr!. We must
show that P (k + 1) is true. That is, we must show Íhatzk+r < (k + 1) l. Multiplying borh
sides of the inequality 2k < Hby 2,it follows that

2.2k <2.k|
<(k+1).k!
: (/c + 1)!.

This shows that P(k -l 1) is true when P(ft) is true. This completes the inductive step of
the proof. Hence, it follows lhat2n < n! is true for all integers n with n > 4. <

EXAMPLE 10 Use mathematical induction to prove the following generalization of one of De Morgan's
laws:

nn

llo,: UzJ,
i-l i-l

J-L .t-r

whenever At, Az, . .., Arare subsets of a universal set U and n > 2.

Solution: Let P (n) be the identity for n sets.

BÁS1S STEP: The statement P (2) asserts ¡hat At ll Az: ,4,1 U Az.fitt is one of De
Morgan's laws; it was proved in Section 1.7.

INDUCTM STEP: Assume thaf P(k) is true, that is,

k k

llor: Uq
j :1 j:r

whenever 41, Az, . . . , Ak are subsets of the universal set U. To carry out the inductive
step it must be shown that if this equality holds for any k subsets of U, it must also be
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valid for any k + 1 subsets of U. Suppose that 41, 42,..., At, Ap+t are subsets of U
When the inductive hypothesis is assumed to hold, it follows that

k+r

(,ó,^,) tAwtllo,:
j:t

: 
(ö^')

: (É,')

k+r: UZJ
l:1

U Aæt by De Morgan's law

U An+t by the inductive hypothesis

This completes the proof by induction.

Example 11 illustrates how mathematical induction can be used to prove a result
about covering chessboards with pieces shaped like the letter "L."

EXAMPLE 11 Let n be a positive integer. Show that any 2n x 2' chessboard with one square removed
can be tiled using L-shaped pieces, where these pieces cover three squares at a time, as

shown in Figure 4.

FIGURE 4 An
L-Shaped Piece.

Solution: Ler. P (n) be the proposition that any 2n x 2' chessboard with one square

removed can be tiled using L-shaped pieces. We can use mathematical induction to prove
that P (n) is true for all positive integers n.

BAS/S STEP: P(1) is true, since any of the four 2 x 2 chessboards with one square

removed can be tiled using one L-shaped piece, as shown in Figure 5.

INDUCTM STEP: Assume that P (k) is true; that is, assume that any 2k x 2k chess-

board with one square removed can be tiled using L-shaped pieces. It must be shown that
under this assumption P (k + 1) must also be true; that is, any 2k+1 

^ 
2k+1 chessboard

with one square removed can be tiled using L-shaped pieces.

To see this, consider a zk+r x 2¿+1 chessboard with one square removed. Split this
chessboard into four chessboards of size 2k x 2k ,by dividing it in half in both directions.
This is illustrated in Figure 6. No square has been removed from three of these four

FIGURE 5 Tiling 2 x 2 Chessboards with One Square Removed.
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I
FIGURE 6 Dividing a

2k+t x zk+r Chessboard into
Four 2¿ x 2¿ Chessboards.

EXAMPLE 12

--lT

3_36

FIGURE 7 Tiling the

zk+t x zk+r chessboard with

One Square Removed.

chessboards. The fourth 2k x 2k chessboard has one square removed, so by the inductive

hypothesis, it can be covered.by L-shaped pieces. Now temporarily remove the square

fiom each of the other three2k x 2ft chessboards that has the center of the original, larger

chessboard as one of its corners, as shown in Figure 7. By the inductive hypothesis, each of

these three 2k x 2k chessboards with a square removed can be tiled by L-shaped pieces'

Furthermore, the three squares that were temporarily removed can be covered by one

L-shaped piece. Hence, the entire 2k+t x 2ft+1 chessboard can be tiled with L-shaped

pieces. This completes the proof. <

Next, we provide an example that illustrates one of many ways mathematical induc-

tion is used inthe study of algorithms. We will show how mathematical induction can be

used to prove that a greedy algorithm yields an optimal solution. (For an introduction to

greedy algorithms, see Section 2.1".)

'We can use a greedy algorithm to schedule a subset of ru proposed talks t1 't2,.. ',t¡n

in a single lecture ha[.suppose that talk f; begins at time b¡ and ends at time ei' (No

two lectures can proceed-ut tt" same time and a lecture can begin at the same time

one ends.) We assume that the talks are listed in order of nondecreasing ending time, so

fhatel3ez<...3e*'ThegreedyalgorithmproceedsbyselectingateachStagea
talk with the earliest ending time among all those talks that begin after all talks already

scheduled end. (A lecture ri-ith an earliest end time is always added f,rst by the algorithm')

We will show that this greedy algorithm is optimal in the sense that it always schedules

the most talks possiblelro piouã the optimality of this algorithm we use mathematical

induction on the variab le n,-the numbeiof talks scheduled by the algorithm. We leI P (n)

be the proposition that if the greedy algorithm schedules n talks, then it is not possible to

schedule more than ¡¿ talks.

BAS/S STEP: Suppose that the greedy algorithm managed to schedule just one talk, fl '

This means that every other talk cannot start after e1 , the ending time of /1 ' Otherwise, the

first such talk we come to as we go through the talks in order of nondecreasing end time

could be added. Hence, at time et each of the remaining talks needs to use the lecture

hall since they all start at or before e1 aîd end after e1. It follows that no two talks can

be scheduled since both need to use the lecture hall at time e1'This shows that P(1) is

true and completes the basis steP.

INDUCTM STEP: Assume that P(k) is true,that is,that the greedy algorithm always

schedules the most possible talks when it selects fr talks, given any set of talks (no matter

I
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how large). Now assume that the algorithm has selected fr * I talks. We must show that the
greedy algorithm has selected the largest number of talks possible, given the assumption
that it always produces an optimal solution when it schedules fr talks. That is, we need to
show that P (k + 1) is true, assuming that P (k) is true.

To complete the inductive step, we first show there is a schedule including the most
talks possible that contains talk \, a talk with the earliest end time. This is easy to see

since a schedule that begins with the talk r¡ in the list, where i > 1, can be changed so that
talk fl replaces talk /;. To see this, note that since €t I €i, all talks that were scheduled
to follow talk /¡ can still be scheduled.

Once we included talk /1 , scheduling the talks so that as many as possible are sched-
uled is reduced to scheduling as many talks as possible that begin at or after time e1.

So, if we have scheduled as many talks as possible, the schedule of talks other than talk
/1 is an optimal schedule of the original talks that begin once talk /1 has ended. Since

the greedy algorithm schedules k talks when it creates this schedule, we can apply the
induction hypothesis to conclude that it has scheduled the most possible talks. It follows
that the greedy algorithm has scheduled the most possible talks, fr * 1, when it produced

a schedule with fr * 1 talks, so that P (k + 1) is true. This completes the induction step,

flnishing the proof fhat P (n) is true for all positive integers n, and completes the proof
of optimality. <

STRONG INDUCTION

There is another form of mathematical induction that is often useful in proofs. With this

form we use the same basis step as before, but we use a different inductive step. We

assume that P(j) is true for j : 1,...,k and show that P(k * 1) must also be true

based on this assumption. This is called strong induction (and is sometimes also known
as the second principle of mathematical induction).

We summarize the two steps used to show thaf P (n) is true for all positive inte-
gers n:

BASIS STEP: The proposition P(1) is shown to be true.

INDUCTM STEP: Itisshownthat [P(1) ^ 
P(2) 

^.'.^ 
P(k)] -+ P(k+ 1) is true

for every positive integer fr.

The two forms of mathematical induction are equivalent; that is, each can be shown

to be a valid proof technique assuming the other. We leave it as an exercise for the reader

to show this. We now give three examples that show how the strong induction is used.

Consider a game in which two players take turns removing any number of matches they

want from one of two piles of matches. The player who removes the last match wins the
game. Show that if the two piles contain the same number of matches initially, the second

player can always guarantee a win.

Solution: LeT n be the number of matches in each pile. We will use strong induction
to prove P (n), the statement that the second player can win when there are initially ru

matches in each pile.

BAS/S STEP: When n : 1, the first player has only one choice, removing one match

from one of the piles, leaving a single pile with a single match, which the second player

can remove to win the game.

t

EXAMPLE 13
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INDUCTM STEP: Suppose that P (j) is true for all j with I < i < /c, that is, that thg

second player can always win whenever there are j matches where I < i < ft in each of

the two piles at the start of the game. Now suppose that there are k l1 matches in each of

the two piles at the start of the game and suppose that the f,rst player removes j matches

(1 l,r < fr) fromoneof thepiles, leaving k+l - j matchesinthispile.Byremoving
the same number of matches from the other pile, player two creates the situation where

therearetwopileseachwith k+I - i matches.Because I < k+I - i < kthesecond

player can always win by the induction hypothesis. We complete the proof by noting that

if the first player ïemoves all k l- 1 matches from one of the piles, the second player can

win by removing all the remaining matches. <

Show that if n is an integer greater than 1, then ¡z can be written as the product of primes.

Solution: Lef P(n) be the proposition that n canbe written as the product of primes.

BASIS STEP: P(2) is true, since 2 canbe written as the product of one prime, itself'

[Note that P(2) is the f,rst case we need to establish.]

INDUCTM STEP: Assume that P(j) is true for all positive integers j with j < k. To

complete the inductive step, it must be shown that P(k f 1) is true under this assumption.

There are two cases to consider, namely, when ft a 1 is prime and when k f 1 is

composite. If /. + 1 is prime, we immediately see lhat P(k -l 1) is true. Otherwise, ft * 1

is composite and can be written as the product of two positive integers a and b with

2 < a < b < k + 1. By the induction hypothesis, both a and b canbe written as the

product of primes. Thus, if ft -l 1 is composite, it can be written as the product of primes,

namely, those primes in the factorization of a and those in the factorizarion of b. <

EXAMPLE I.5

Remarh: Since 1 is a product of primes, namely, the empty product of no primes, we

could have started the proof in Example 14 with P(1) as the basis step. We chose not to

do this because many people f,nd this confusing.

Note that Example 14 completes the proof of the Fundamental Theorem of Arith-

metic, which asserts that every nonnegative integer can be written uniquely as the product

of primes in nondecreasing order. We showed in Se ction2.6 (see page 183) that an integer

hai at most one such factorization into primes. Example 14 shows there is at least one

such factorization.
Using the principle of mathematical induction, instead of strong induction, to prove

the resuliin Example 14 is difficult. However, as Example 15 shows, some results can be

readily proved using either the principle of mathematical induction or strong induction.

Prove that every amount of postage of 12 cents or more can be formed using just 4-cent

and S-cent stamps.

Solution: We will prove this result using the principle of mathematical induction. Then

we will present a proof using strong induction. Let P (n) be the statement that postage

of ¡z cents can be formed using 4-cent and S-cent stamps.

We begin by using the principle of mathematical induction

BASIS STEP: Postage of 12 cents can be formed using three 4-cent stamps.

INDUCTM STEP: Assume that P (k) is true, so that postage of k cents can be formed

using 4-cent and 5-cent stamps. If at least one 4-cent stamp was used, replace it with

a 5-cent stamp to form postage of k * I cents. If no 4-cent stamps were used, postage

J_J8

EXAMPLE 14
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of fr cents was formed using just 5-cent stamps. Since k > 12, at least three S-cent stamps
were used. So, replace three 5-cent stamps with four 4-cent stamps to form postage of
fr + 1 cents. This completes the inductive step, as well as the proof by the principle of
mathematical induction.

Next, we will use strong induction. We will show that postage of 12, 13,14, and 15

cents can be formed and then show how to get postage of k * 1 cents for k à 15 from
postage ofk - 3 cents.

BAS/S STEP: We can form postage of 12,13,14, and 15 cents using three 4-cent stamps,
two 4-cent stamps and one S-cent stamp, one 4-cent stamp and two S-cent stamps, and
three 5-cent stamps, respectively.

INDUCTM STEP: Let k > 15. Assume that we can form postage of j cents, where
12. j < k.^lo formpostage ofki_ 1 cents,usethestampsthatformpostage ofk -3
cents together with a 4-cent stamp. This completes the inductive step, as well as the proof
by strong induction.

(There are other ways to approach this problem besides those described here. Can
you find a solution that does not use mathematical induction?) <

Rem.arh: Example 15 shows how we can adapt strong induction to handle cases where
the inductive step is valid only for sufficiently large values of fr. In particular, to prove that
P(n) istruefor ft: j, j +I, j +2,..., where j isaninteger,wefirstshowthat
P(j), P(j + l), P(j + 2),..., P(l) are true (the basis step), and then we show
that [P(j) ^ 

P (j -l- 1) n P (j + 2) n . .. 
^ 

P(¿)] --> P (k * 1) is truefor every integer
k > I (the inductive step). For example, the basis step of the second proof in the solution
of Example 15 shows thar" P(I2), P(I3), P(I4),and P(15) are true. We need to prove
these cases separately since the inductive step, which shows that tP (I2) 

^ 
P(13) 

^ 
. ' .

^P 
(k)l --> P (k * 1), holds only when k > 15.

THE WELL-ORDERING PROPERTY

The validity of mathematical induction follows from the following fundamental axiom
about the set of integers.

THE WELL-ORDERING PROPERTY Every nonempty set of nonnegative inte-
gers has a least element.

The well-ordering property can often be used directly in proofs.

Use the well-ordering property to prove the division algorithm. Recall that the division
algorithm states that if a is an integer and d is a positive integer, then there are unique
integers q and r with 0 < r < d and a : dq * r.

Solution: Let S be the set of nonnegative integers of the form a - dq where q is an
integer. This set is nonempty since -dq can be made as large as desired (taking q tobe
a negative integer with large absolute value). By the well-ordering property S has a least
elementr:a-dqo.

The integer r is nonnegative. It is also the case that r < d.If it were not, then there
would be a smaller nonnegative element in S, namely, a - d(qo + l). To see this, suppose
thatr > d.Sincee: dq¡+r,itfollowsfhata-d(qs+1) : (a-dqù-d:r-d > 0.

EXAMPLE 16



252 3 /Mathematical Reasoning, Induction, and Recursion 3-40

consequently,there areintegers q aîdr with0 < r < d.-fhe proof that{ andr ¿¡s

unique is left as an exercise for the reader' <
In a round-robin tournament every player plays every other player exactly once and

eachmatchhasawinnerandloser.Wesaythattheplayers Pt,Pz,...,Pmfotmacycle
if p1 beats p2, p2beafs Pz, . . . , Pm-1 beats pm,and p,n beats p1. Use the well-ordering

principle to show that if there is a cycle of length m (m > 3) among the players in ¿

round-robin tournament, there must be a cycle of three of these players.

EXAMPLE I-8

Solution: We assume that there is no cycle of three players. Since there is at least one

cycle in the round-robin tournament, the set of all positive integers n for which there is a

cycle of length n is nonempty. By the well-ordering property, this set of positive integers

has a least element t, which by assumption must be greater than three. Consequently,

there exists a cycle of players Pt, Pz, P3, . . ., pt andno shorter cycle exists.

Now suppose that there is no cycle of three of these players, so that k > 3. Consider

the first three elements of this cycle, p1, Pz, Pz. There are two possible outcomes of the

match between p1 and h.I1 h beats p1, it follows fhat p1, pz, pz is a cycle of length

three, contradicting our assumption that there is no cycle of three players. Consequently,

it must be the case that p1 beats p3. This means that we can omit p2ftom the cycle

pr, p2,p2,..., pkfoobtainthecycle Pt, P3, P+,..., pkoflengthfr - l,contradicting

the assumption that the smallest cycle has length ft.'We conclude that there must be a

cycle oflength three. <

INFINITE DESCENT We will now describe a proof method, the method of infinite

descent, introduced by Pierre de Fermat in the 1600s. The method of infinite descent is

often used to show that for a propositional function P(n), P(k) is false for all positive

integers ft. The method is based on the observation that if P(k) is true for at least one

integer k, then the well-ordering property implies that there is a least positive integer s

,u"h thut P(s) is true. The method proceeds by finding a positive integer s' with s' < s

for which P(s') is true. It follows that P (n) must be false for all positive integers. (This

technique is called the method of infinite descent since the procedure of f,nding smaller

integers for which the propositional function is true could be continued indefinitely, pro-

ducing an infinite sequence of decreasing positive integers, which is impossible by the

well-ordering property.) The method of infinite descent is often used to show that there

are no solutions in integers to certain equations. In particular, Fermat used it to prove the

n : 4 caseof Fermat's Last Theorem, which statei that the equation x4 + y4 - z4 hus

no solutions in positive integers. We illustrate the use of infinite descent in Example 18.

In Example 21 in Section 1.5 we showed that J, is irrational. Here we will provide a

different proof of this fact using inf,nite descent. First, suppos e thaf J2 is rational. Then

there exist positive integer s m and n such that J2 : m I n. By the well-ordering property,

there is a leastpositiveinteger N such fhatJr: MIN forsomepositive inleget M'
(This would make N the smallest possible denominator of ratios of two positive integers

thatequal J2.)
To carry out theproof byinfinite descent,wewill show thatJl : (2N - M) l(M -N)

and0 < M - N < N.Thiscontradictsthechoiceof Nastheleastpositiveintegersuch

that J, : M /N for some positive integer M' To show thaf Jl : (2N - M) l(M - N)

we need only show that (2N - M) /(M - N) : M /N ' To show this' first note that

because (M /Ð2 :z,iffollows that M2 :2N2. Consequently,

2N-M (2N-M)N 2N2-MN M2-MN (M-ÐM 
-M

M - N 
: 

7u -ffi 
: 

(M - N)N 
: 

(M - 
^ryN 

: 
çt't - t'r¡w = Ñ'

EXAMPLE 17
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To finish the proof, we need only show that the denominator, M * N , is positive and
smaller than N. To see this, note that because I . J1 < 2 and J2 : M /N, it follows
that 1 < M/N . 2,andhence,that N < M < 2N. Subtracting N,we concludethat
0<M-N<N. <

WHY MATHEMATICAL INDUCTION IS VALID

Why is mathematical induction a valid proof technique? The reason comes from the
well-ordering property. Suppose we know that P(1) is true and that the proposition
P (k) -> P (k + 1) is true for all positive integers k. To show that P (n) must be true for
all positive integers, assume that there is at least one positive integer for which P (n) is
false. Then the set S of positive integers for which P(n) is false is nonempty. Thus, by
the well-ordering property, ,S has a least element, which will be denoted by ru. We know
that m cannot be 1-, since P(1) is true. Since lø is positive and greater than 1, m - I is
a positive integer. Furthermore, since m - 1 is less than m, it is not in S, so P (m - l)
must be true. Since the implication P (m - 1) -+ P (m) is also true, it must be the case

that P (m) is true. This contradicts the choice of m. Hence, P (n) must be true for every
positive integer n.

E
Oxercrses

1. Find a formula for the sum of the flrst n even positive
integers.

2. Use mathematical induction to prove the formula
that you found in Exercise 1.

3. Use mathematical induction to prove that 3 * 3 . 5 *
3.52 + ... + 3 ' 5" :3(5"tt - l)/4 whenever r is a
nonnegative integer.

4. Use mathematical induction to prove that2 - 2 .'l -f
2.72 - .'.+2(-7)' : (l - (-7)'+1)/4 whenevern is
a nonnegative integer.

5. Find a formula for
111 I
,+ q+ s+...+ 2"

by examining the values of this expression for small
values of n. Use mathematical induction to prove
your result.

6. Find a formula for
llt

_t_l I_
1.2'2.3' 'nln*l)

by examining the values of this expression for small
values of n. Use mathematical induction to prove
your result.

7. Show that 12 + 22 + ... * n2 : n(n I 1)(2n + l)/6
whenever n is a positive integer.

8. Show that 13 + ), + . .. * n3" : [n(n -f 1)/2]2 when-
ever n is a positive integer.

9. Prove rhar 12 + 32 + 5í +... + (2n + D2 : @ * l,)

!2" + t)(zn + 3)13 whenever n is a nonnegative
rnteger.

10. Prove that 1' ll +2.2l +... I n. nl : (r f 1)! - 1

whenever n is a positive integer.
*11. Show by mathematical induction that if h > - l, then

7 + nh < (l + h)'for all nonnegative integers z. This
is called Bernoulli's inequality.

12. Prove that 3' < n ! whenever n is a positive integer
greater than 6.

13. Show that 2" > ¡¿2 whenever n is an integer greater
than 4.

14. Use mathematical induction to prove thaf nl < n"
whenever n is a positive integer greater than 1.

15. Prove using mathematical induction that

l. 2 +2. 3 +... t n(n -l l) : n(n + l)(n +2)/3
whenever n is a positive integer.

16. Use mathematical induction to prove that

l. 2. 3 + 2. 3. 4 +'.. + n(n * l)(n I 2)

: n(n I 1)(n * 2)(n + 3) /4.

17. Show that 12 - 22 + 32 - . . . + (-7¡'-t nz : (-l)n-tn
(n + 1) 12 whenever n is a positive integer.

18. Prove that
111+-+-49

I+-

I

i

I

ì1<2- -n
whenever n is a positive integer greater than L.

19. Show that any postage that is a positive integer num-
ber of cents greater than 7 cents can be formed using
just 3-cent stamps and 5-cent stamps.
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sible, the first player wins if ¿ : 4 j,4 j + 2, or 4j + 3
for some nonnegative integer j and the second player
wins in the remaining case when n : 4 j -l1 for so¡s
nonnegative integer j.

36. Prove that f,f _, k2k : (n - l)2+t i 2 using mathe-
matical induction.

37. Show thaf lf n is a positive integer, then

t :n'
la¡,...,a¡rlÇ11,2,...,n, 

at az "' at

(Here the sum is over all nonempty subsets of the set
of the r¿ smallest positive integers.)

38. Use mathematical induction to show that given a set
of n * | positive integers, none exceeding 2n, there
is at least one integer in this set that divides another
integer in the set.

*39. A knight on a chessboard can move one space hori-
zontally (in either direction) and two spaces vertically
(in either direction) or two spaces horizontally (in ei-
ther direction) and one space vertically (in either di-
rection). Use mathematical induction to show that for
every square a knight starting at (0, 0), the corner of
an infinite chessboard made up of all squares (rn, n),
where m and n are nonnegative integers, can visit this
square using a finite sequence of moves. (Hint: Use
induction on the variable s : m I n.)

40. Suppose you begin with a pile of r¿ stones and split
this pile into n piles of one stone each by successively
splitting a pile of stones into two smaller piles. Each
time you split apile you multiply the number of stones

in each of the two smaller piles you form, so that if
these piles have r and r stones in them, respectively,
you compute rs. Show that no matter how you split
the piles, the sum of the products computed at each

step equals n(n - l) /2.
41. (Calculus required) Use mathematical induction to

prove that the derivative of f(x) : xn eqluals nx"-l
whenever n is a positive integer. (For the inductive
step, use the product rule for derivatives.)

42. Suppose that

A-

where a and b are real numbers. Show that

^u -lo" 0 l" -t0 b')

for every positive irúeger n.

43. Suppose that A and B are square matrices with the

property AB : BA. Show that AB' - B'A for every
positive integer n.

44. Suppose that m is a positive integer. Use mathematt'
cal induction to prove that lf a and å are integers with
a : b (mod m),then ak = bk (mod m) whenever ft is

a nonnegative integer.

Use matþematical induction to show that 3 divides
n3 + 2n whenever z is a nonnegative integer.
Use mathematical induction to show that 5 divides
ns - nwhenever n is a nonnegative integer.
Use mathematical induction to show that 6 divides
n3 - n whenever r .is a nonnegative integer.
Use mathematical induction to show that n2 - I is

divisible by 8 whenever n is an odd positive integer.
Use mathematical induction to show thaf n2 -
7n -l 12 is nonnegative if ¡¿ is an integer greater than
-t-

Use mathematical induction to prove that a set with
r¡ elements has n(n - l)/2 subsets containing exactly
two elements whenever n is an integer greater than
or equal to 2.

Use mathematical induction to prove that a set with ø

elements has n(n - 1)(n -2) 16 subsets containing ex-
actly three elements whenever n is an integer greater
than or equal to 3.

Use mathematical induction to prove that f'l¡ :, io :
n(n * 1)(2n I l)(3nz +3n - 1)/30 whenever n is a pos-
itive integer.
For which nonnegative integers n ís n2 < r¿! ? Prove
your answer using mathematical induction.
For which nonnegative integers n is 2n + 3 < 2"?
Prove your ans\ryer using mathematical induction.
Use mathematical induction to show that 1/(2n) <

U' 3 . 5 . . . . . (2n - l)l I Q. 4 .' . . . 2n) whenever n is a
positive integer.
a) Determine which amounts of postage can be

formed using just 5-cent and 6-cent stamps.
b) Prove your answer to (a) using the principle of

mathematical induction.
c) Prove your answer to (a) using the second princi-

ple of mathematical induction.
Which amounts of money can be formed using just
dimes and quarters? Prove your answer using a form
of mathematical induction.
An automatic teller machine has only $20 bills and

$50 bills. Which amounts of money can the machine
dispense, assuming the machine has a limitless sup-
ply of these two denominations of bills? Prove your
answer using a form of mathematical induction.
Assume that a chocolate bar consists of n squares ar-
ranged in a rectangular pattern. The bar or a smaller
rectangular piece of the bar can be broken along a

vertical or a horizontal line separating the squares.

Assuming that only one piece can be broken at a time,
determine how many breaks you must successively
make to break the bar into r? separate squares. Use
strong induction to prove your answer.
Consider this variation of the game of Nim. The game
begins with n matches. Two players take turns remov-
ing matches, one, two, or three at a time. The player
removing the last match loses. Use strong induction
to show that if each player playS the best strategy pos-

0

b

a
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u) U Ao ç U'o' b) ll ¿o ç 0'o'
k=l k:l k=l t=l

47. lJse mathematical induction to prove that if ,41,

Az, ...,,4,, are subsets of a universal set U, then
-T¡

U oo: n 7;.
k=l k=l

48. Use mathematical induction to show that

-(pt v p2v . . .v p) is equivalent to -pt\
-pz A '.. A-Pn whenever Pt,Pz,...,p¡1 aÍepropo-
sitions'

*49. Show that

[@t-> p)n(pz+ pù A...A(pu r -+ p,)]

--> l@t A pz ¡. .' A pu_t) --> p,l

is a tautology whenever pt, pz, . . . , p, aÍe proposi-
tions.

50. What is wrong with this "proof"?

"Theorem" For every positive integer n,l'i-,i :
@ + +)2/2.

Basis Step: The formula is true for n : 1.

Inductiue Sfepr Suppose that f,':, i : @ + +\'z/2.
rnen lijl; : (I-r i) r (n + l). By rhe induc-
tive hypothesl., Dll,' ¡ : (n + Ð212 i n i 1 :
(n2 +.n + Ð/2 I n I I : (n2 -f 3n -l X>tz :
ø + )f 12: [(n * D + +]'z l2,completing the induc-
tive step.

51. What is wrong with this "proof" that all horses are the
same color?

Let P (n) be the proposition that all the horses in a
set of n horses are the same color.

Basis Step: Clearly, P(1) is true.

Inductiue Súep; Assume that P (k) is true, so that all
the horses in any set of k horses are the same color.
Consider any k I I horses; number these as horses
1,2,3, ..., k, k + 1. Now the first k of these horses all
must have the same color, and the last k of these must
also have the same color. Since the set of the first k
horses and the set of the last k horses overlap, all k + 1

must be the same color. This shows that P(fr + l) is
true and finishes the proof by induction.

52. What is wrong with this "proof"?
"Theorem" For every positive integer n, if x and y are
positive integers with max(x, !) : n,then r : y.
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Basis Step: Suppose that n : l. If max(.r,)) : 1

and x and y are positive integers, we have x : I and
): l.

Inductiue Step: Let À be a positive integer. Assume
that whenever max(x, )) : fr and x and y are positive
integers, then ¡ : y. Now let max(x, y) : fr + t,
where x and y aÍe positive integers. Then
max(x * 1, y - l) : ft, so by the inductive hypoth-
esis,x - I : ) - 1. Itfollows that"x : y,completing
the inductive step.

What is wrong with this "proof" by strong induction?

"Theorem" For every nonnegative integer n,5n :0.

BasisStep:5.0:0.
Inductiue Súep: Suppose that 5j : 0 for all nonneg-
ativeintegers j with0 < j < k.WriteÈ * 1 : ¡ ¡ ¡,
where i and 7 are natural numbers less than k * 1.

By the induction hypothesis,5(Ã + 1) : 5(l * j) :
5i+5j:0*0:0.
Find the flaw with the following "proof" that a';. :
I for all nonnegative integers n, whenever a is a
nonzero real number.

¡< IIse mathematical induction to show that if A¡,
"' Ár, . . ., A,, and B are sets' then

(huA2U.'.U 4,,)ìB

- (Ar n B)u (42 n B) u...u (A,, n B).

46. Prove that if A1' A2, . .. , A,' and, 81, 82'

sets such that A¡, c B¡ fork: 1,2'...,n,
nililn

53.

*54.

Basis Step: a0 : 1 is true by the definition of a0.

Ind,uctiue Slep.' Assume that ai : I for all nonneg-
ative integers j with j < fr. Then note that

ak'ak l.l
n^Ít _ _ I

aR I I
*55. Show that strong induction is a valid method of proof

by showing that it follows from the well-ordering
property.

{'56. Show that the following form of mathematical induc-
tion is a valid method to prove that P (n) is true for
all positive integers n.

Basis Step: P(l) and P(2) arctrte.

Inductiue Step: For each positive integer k,if P(k)
and P(ft * 1) are both true, then P(fr * 2) is true.

In Exercises 57 and 58, 11,, denotes the n th harmonic
number.

*57. Usemathematical induction to showthat Hzn < l In
whenever n is a nonnegative integer.

*58. Use mathematical induction to prove that

Ht * Hz + . . .+ H,: (n l1)H,, - n.

*59. Prove that
ttl'-l+ ¿l -+...+-->2("/n+l-l).'/2 '/3 '/n

*60. Show that z lines separate the plane into
(n2 + n |_2)12 rcgions if no two of these lines are
parallel and no three pass through a common point.
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**61.

*62.

63.

64.

65.

*66.

*67.

Lef ay, a2, . . . , a,,be positive real numbers. The arith'
metic mean of these numbers is def,ned by

A:(atlaz+...*a,,)fn,
and the geometric mean of these numbers is defined
by

6 : (ap2'.'on)t/".

Use mathematical induction to prove that A > G.

Use mathematical induction to show thaI2l divides
4n+t + 52n-t whenever n is a positive integer.
Use mathematical induction to prove Lemma 2

of Section 2.6, which states that if p is a prime
and p I apz. ' .tt,,, where a¡ ís an integer for
i : 1,2,3,..., n,then p I a¡ for some integer l.
Use infinite descent to show that the equation 8xa *
4ya + 2za : u4 has no solutions in positive integers
x, y,z,and w.

Use infinite descent to show that there are no solu-
tions in positive integers w,x,y,and z to wz + x2 +
y2 + z2 - 2wxyz. (Hint: Firsf show that if this equa-

tion holds, then all of w,x,y ,and e must be even. Then
show that all four of these integers must be divisible
by 4, by 8, and so on.)
The well-ordering property can be used to show that
there is a unique greatest common divisor of two pos-

itive integers. Let a and å be positive integers, and let
S be the set of positive integers of the form as ! bt,
where s and I are integers.

a) Show that S is nonempty.
b) Use the well-ordering property to show that S has

a smallest element c.

c) Showthatifd is acommon divisorofø andå,then
d is a divisor of c.

d) Show that c I a and c I b. (Hint: First, assume that
c / a.Thena: ec *r,where0 < r < c.Show
that r e ,S, contradicting the choice of c.)

e) Conclude from (c) and (d) that the greatest com-
mon divisor of a and b exists. Finish the proof by
showing that this greatest common divisor of two
positive integers is unique.

Show that if a t, az, . . . , a, afe n distinct real numbers,
exactly n - 1 multiplications are used to compute the
product of these n numbers no matter how parenthe-

ses are inserted into their product. (11lnl: Use stro¡p
induction and consider the last multiplication.) "

68. Construct a tiling using L-shaped pieces of the 4 x 4
chessboard with the square in the upper left corner
removed.

69. Construct a tiling using L-shaped pieces of the 8 ¡ g

chessboard with the square in the upper left corner
removed.

70. Prove or disprove that all chessboards of these shapes

can be completely covered using L-shaped pieces

whenever n is a positive integer.

*71.

a'¡3x2" b) 6x2"
c)3"x3" d)6"x6"
Show that a three-dimensional 2" x 2" x 2" chess-

board with one 1 x 1 x 1 cube missing can be com-
pletely covered by 2 x 2 x 2 cubes with one 1 x I x 1

cube removed.
Show that aî n x n chessboard with one square re-
moved can be completely covered using L-shaped
pieces if n > 5,n is odd,and3 [ n.
Show that a 5 x 5 chessboard with a corner square

removed can be tiled using L-shaped pieces.

Find a 5 x 5 chessboard with a square removed that
cannot be tiled using L-shaped pieces. Prove that such

a tiling does not exist for this board.
Lef abe an integer and d be a positive integer. Show
that the integers q and r with a : dq I r and
0 < r < d, which were shown to exist in Exam-
ple 16, are unique.
Use the principle of mathematical induction to show

that P(n) is true for n : b,b + l,b + 2,..., where

å is an integer, if P (b) is true and the implication
P(k) --> P(fr + 1) is true for all positive integers /t

with fr > å.

Can you use the well-ordering property to prove this

statement? "Every positive integer can be described

using no more than 15 English words"?
Use the well-ordering principle to show that if x and y

are real numbers with x < y, then there is a rational
number r with .r < r < y. [.É/lnf Show that there

exists a positive integer A with A > 1/(y - x). Then

show that there is a rational number r with denomi-
nator A between x and y by tooking at the numbers

Lx ) + j I A,where j is a positive integer.]

ES 76.

>R4a

73.

*74.

/5.

**77.

78.

ffia Reeursive Definitions and Structural Induction

INTRODUCTION

Sometimes it is diff,cutt to define an object explicitly. However,it maybe easy to define this

object in terms of itself, This process is called recursion. For instance, the picture shown

in Figure 1 is produced recuriively. First, an original picture is given. Then a process of


