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Show that the union of a countable number of count-
able sets is countable.

Show that the set Z* x Z is countable.

Show that the set of all bit strings is countable.
Show that the set of real numbers that are solutions
of quadratic equations ax?+bx +c =0,wherea,b,
and c are integers, is countable.

Show that the set of all computer programs in a par-
ticular programming language is countable. (Hint: A
computer program written in a programming lan-
guage can be thought of as a string of symbols from
a finite alphabet.)

Show that the set of functions from the positive in-
tegers to the set {0,1,2,3,4,5,6,7, 8,9} is uncount-
able. [Hint: First set up a one-to-one correspondence

3-26

*43, We say that a function is computable if there is a com-

*44,

*45,

puter program that finds the values of this function,
Use Exercises 41 and 42 to show that there are func-
tions that are not computable.

Prove that the set of positive rational numbers s
countable by setting up a function that assigns to a
rational number p/q with ged(p, g) = 1 the base 11
number formed from the decimal representation of
p followed by the base 11 digit A, which corresponds
to the decimal number 10, followed by the decimal
representation of g.

Prove that the set of positive rational numbers is
countable by showing that the function X is a one-
to-one correspondence between the set of positive
rational numbers and the set of positive integers

between the set of real numbers between 0 and 1 and it Km/n) = pXpa...pM g =g gt
a subset of these functions. Do this by associating to where ged(m,n) = 1 and the prime-power factor-

the real number 0.d\d; .. .d, ... the function f with

a) . ay

izations of m and n are m = p{'p3* - p® and n =

f(n) :du‘] q{”qu "'qlbl'

m Mathematical Induction

INTRODUCTION

What is a formula for the sum of the first # positive odd integers? The sums of the first n
positive odd integers forn = 1, 2, 3, 4, 5 are

1=1, 1+3=4,
1+34+5+7=16, 1+34+54+7+9=25.

Links

1+345=09,

|

|
From these values it is reasonable to guess that the sum of the first n positive odd integers
is n2. We need a method to prove that this guess is correct, if in fact it is.

Mathematical induction is an extremely important proof technique that can be used ‘
to prove assertions of this type. As we will see in this section and in subsequent chapters,
mathematical induction is used extensively to prove results about a large variety of dis- ‘
crete objects. For example, it is used to prove results about the complexity of algorithms, |
the correctness of certain types of computer programs, theorems about graphs and trees, |
as well as a wide range of identities and inequalities.

In this section we will describe how mathematical induction can be used and why it is
avalid proof technique. It is extremely important to note that mathematical induction can
be used only to prove results obtained in some other way. It is not a tool for discovering
formulae or theorems.

There are several useful illustrations of mathematical induction that can help you
remember how this principle works. One of these involves a line of people, person one,
person two, and so on. A secret is told to person one, and each person tells the secret to the
next person in line, if the former person hears it. Let P(n) be the proposition that person
n knows the secret. Then P(1) is true, since the secret is told to person one; P(2) is true,
since person one tells person two the secret; P(3) is true, since person two tells person

' three the secret; and so on. By the principle of mathematical induction, every person n
line learns the secret. This is illustrated in Figure 1. (Of course, it has been assumed that
each person relays the secret in an unchanged manner to the next person, which is usually
not true in real life.)
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Person §
Person 7

Pervon 6
Persen 5
Person4
Person 3
FIGURE 1 People Telling Secrets. FIGURE 2 llustrating How

Mathematical Induction Works
Using Dominos.

Another way to illustrate the principle of mathematical induction is to consider
an infinite row of dominos, labeled 1,2, 3, ..., n, where each domino is standing up.
Let P(n) be the proposition that domino » is knocked over. If the first domino is knocked
over—i.e.,if P(1) is true—and if, whenever the nth domino is knocked over, it also knocks
the (n + 1)th domino over—i.e., if P(n) — P(n + 1) is true—then all the dominos are
knocked over. This is illustrated in Figure 2.

MATHEMATICAL INDUCTION

Many theorems state that P (n) is true for all positive integers n, where P (n) is a proposi-
tional function, such as the statement that 1 +2 + .-+ +n = n(n + 1)/2 or the statement
that n < 2". Mathematical induction is a technique for proving theorems of this kind. In
other words, mathematical induction is used to prove propositions of the form Yrn P(n),
where the universe of discourse is the set of positive integers.

A proof by mathematical induction that P(n) is true for every positive integer n
consists of two steps:

BASIS STEP: The proposition P(1) is shown to be true.

INDUCTIVE STEP: The implication P (k) — P(k + 1) is shown to be true for every
positive integer k.

Here, the statement P (k) for a fixed positive integer k is called the inductive hypothesis.

When we complete both steps of a proof by mathematical induction, we have proved that

P(n) is true for all positive integers n; that is, we have shown that V n P (n) is true.
Expressed as a rule of inference, this proof technique can be stated as

[P()AVE(PKk) = P(k+1))] = VrP().

Since mathematical induction is such an important technique, it is worthwhile to explain
in detail the steps of a proof using this technique. The first thing we do to prove that P (n)
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is true for all positive integers n is to show that P (1) is true. This amounts to showing
that the particular statement obtained when # is replaced by 1 in P(n) is true. Then we
must show that P (k) — P(k + 1) is true for every positive integer k. To prove that thig
implication is true for every positive integer k, we need to show that P(k + 1) cannot
be false when P (k) is true. This can be accomplished by assuming that P (k) is true and
showing that under this hypothesis P (k + 1) must also be true.

Remark: In a proof by mathematical induction it is not assumed that P (k) is true for
all positive integers! It is only shown that if it is assumed that P (k) is true, then P (k + 1)
is also true. Thus, a proof by mathematical induction is not a case of begging the question,
or circular reasoning.

When we use mathematical induction to prove a theorem, we first show that P (1) is true.
Then we know that P (2) is true, since P (1) implies P(2). Further, we know that P (3) is
true, since P(2) implies P (3). Continuing along these lines, we see that P (n) is true, for
every positive integer n.

EXAMPLES OF PROOFS
BY MATHEMATICAL INDUCTION

We will use a variety of examples to illustrate how theorems are proved using mathe-
matical induction. We begin by proving a formula for the sum of the first n odd positive
integers. (Many theorems proved in this section via mathematical induction can be proved
using different methods. However, it is worthwhile to try to prove a theorem in more than
one way, since one method of attack may succeed whereas another approach may not.)

Use mathematical induction to prove that the sum of the first n odd positive integers

is n2.

Solution: Let P (n) denote the proposition that the sum of the first n odd positive integers
is n?. We must first complete the basis step; that is, we must show that P(1) is true. Then
we must carry out the inductive step; that is, we must show that P(k + 1) is true when
P (k) is assumed to be true.

BASIS STEP: P(1) states that the sum of the first one odd positive integer is 12. This is
true since the sum of the first odd positive integer is 1.

INDUCTIVE STEP: To complete the inductive step we must show that the proposition
Pk) — P(k + 1) is true for every positive integer k. To do this, suppose that P (k) is
true for a positive integer k; that is,

14345+ -+Q2k—1) =k

HISTORICAL NOTE The first known use of mathematical induction is in the work of the sixteenth-
century mathematician Francesco Maurolico (1494-1575). Maurolico wrote extensively on the works of
classical mathematics and made many contributions to geometry and optics. In his book Arithmeticorum
Libri Duo, Maurolico presented a variety of properties of the integers together with proofs of these
properties. To prove some of these properties he devised the method of mathematical induction. His first
use of mathematical induction in this book was to prove that the sum of the first » odd positive integers
equals n2,
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[Note that the kth odd positive integer is (2k — 1), since this integer is obtained by adding
2 atotal of k — 1 times to 1.] We must show that P(k + 1) is true, assuming that P (k) is
true. Note that P(k + 1) is the statement that

14345+ +Qk— D+ Qk+1)=(k+1)%
So, assuming that P (k) is true, it follows that

143454+ +Ck—-D4+Ck+1D)=[14+3+---+Q2k—=— D]+ 2k+1)
=k>+ Qk+1)
=k*+2k+1
= (k+ 1%
This shows that P (k + 1) follows from P (k). Note that we used the inductive hypothesis
P (k) in the second equality to replace the sum of the first k odd positive integers by k2.
Since P(1) is true and the implication P(k) — P(k + 1) is true for all positive

integers k, the principle of mathematical induction shows that P (n) is true for all positive
integers n. <

Example 2 uses the principle of mathematical induction to prove an inequality.

Use mathematical induction to prove the inequality
n<?2"

for all positive integers 7.

Solution: Let P(n) be the proposition “n < 2".”
BASIS STEP: P(1) is true,since 1 < 2! = 2.

INDUCTIVE STEP: Assume that P (k) is true for the positive integer k. That is, assume
that k < 2. We need to show that P(k + 1) is true. That is, we need to show that
k41 < 2ktL, Adding 1 to both sides of k < 2%, and then noting that 1 < 2k, gives

k41 <2k4+1 <2k 4ok = pk+1

We have shown that P (k4 1) is true,namely, thatk + 1 < 2k+1 pased on the assumption
that P (k) is true. The induction step is complete.

Therefore, by the principle of mathematical induction, it has been shown thatn < 2"
is true for all positive integers . |

We will now use mathematical induction to prove a theorem involving the divisibility
of integers.

Use mathematical induction to prove that n° — n is divisible by 3 whenever n is a positive
integer.
3

Solution: To construct the proof, let P (n) denote the proposition: “n” — n is divisible

by 3.”

BASIS STEP: P (1) is true,since 13 — 1 = 0 is divisible by 3.




IR T

2492 3/ Mathematical Reasoning, Induction, and Recursion 3-30

EXAMPLE 4

INDUCTIVE STEP: Assume that P (k) is true; that is, k3 — k is divisible by 3. We must
show that P (k + 1) is true. That is, we must show that (k+ 1)3 — (k+ 1) is divisible by 3,
Note that

Gk+13—(k+1D)=FE +3>+3k+1) -G+ 1D
= (K3 — k) + 3(k* + k).

Since both terms in this sum are divisible by 3 (the first by the assumption of the inductive
step, and the second because it is 3 times an integer), it follows that (k + 13— (k+1)is
also divisible by 3. This completes the induction step. Thus, by the principle of mathemat-
ical induction, n3 — n is divisible by 3 whenever 7 is a positive integer. <

Sometimes we need to show that P (n) is true for n = b, b+1,b+2,...,whereb
is an integer other than 1. We can use mathematical induction to accomplish this as long as
we change the basis step. For instance, consider Example 4, which proves that asummation

formula is valid for all nonnegative integers, so that we need to prove that P(n) is true
forn=0,1,2,....

Use mathematical induction to show that
1424+2% 4. 42" =211

for all nonnegative integers 7.

Solution: Let P(n) be the proposition that this formula is correct for the integer n.
BASIS STEP: P(0) is true since 20 —1=2"-1.

INDUCTIVE STEP: Assume that P (k) is true. To carry out the inductive step using this
assumption, it must be shown that P (k + 1) is true, namely,

1+2+22++2k+2k+1 :2(k+1)+1 -1 =2k+2_ 1.
Using the inductive hypothesis P (k), it follows that
1+2+22+'”+2k+2k+1 — (1+2+22+._‘+2k)+2/c+1
= (2k+1 _ 1) + 2k+1

=2.2k 1
- 2k+2 1.
This finishes the inductive step, which completes the proof. <

As Example 4 demonstrates, to use mathematical induction to show that P (n) is truc
forn = b,b+1,b-+2,..., where b is an integer other than 1, we show that P (b) is
true (the basis step) and then show that the implication P(k) — P(k + 1) is true for
k=b.b+1,b+2, ... (the inductive step). Note that b can be negative, zero, or posi-
tive. Following the domino analogy we used earlier, imagine that we begin by knocking
down the bth domino (the basis step), and as each domino falls. it knocks down the next
domino (the inductive step). We leave it to the reader to show that this form of induction
is valid (see Exercise 76).

The formula given in Example 4 is a special case of a general result for the sum of
terms of a geometric progression (Theorem 1 in Section 3.2). We will use mathematical
induction to provide an alternate proof of this formula.
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Sums of Geometric Progressions Use mathematical induction to prove this formula for
the sum of a finite number of terms of a geometric progression:

s arrH—l_a
J— 2 no_
E ar! =a+ar tar -+ ---+ar =——7 when r #£ 1.
i
Jj=0

Solution: To prove this formula using mathematical induction, let P(n) be the proposi-
tion that the sum of the first # 4+ 1 terms of a geometric progression in this formula is
correct.,

BASIS STEP: P(0) is true, since

ar —a

a= .
r—1

INDUCTIVE STEP: Assume that P (k) is true. That is, assume

Vk+1 —a

a+ar+ar2+--v+ark=71
r—

To show that this implies that P (k 4 1) is true, add ar**+1 1o both sides of this equation
to obtain

2 k k ar*! —a k
atar+ar +---+ar" +ar Jrl:—1——i—ar +,
r—

Rewriting the right-hand side of this equation shows that

ar¥tl — g kel arktl —q  arkt? — gpktl
— Y tar = +
r—1 r—1 r—1
arkt?2 — g
Tor—1
Combining these last two equations gives
k+2
ar®™ —a
a+ar+ar’+-- +ark +ar*t! = —T
}/‘ —_—

This shows that if P(k) is true, then P(k + 1) must also be true. This completes the
inductive argument and shows that the formula for the sum of the terms of a geometric
series is correct. <4

As previously mentioned, the formula in Example 4 is the case of the formula n
Example 5 with g = 1 and r = 2. The reader should verify that putting these values for a
and r in the general formula gives the same formula as in Example 4.

An important inequality for the sum of the reciprocals of a set of positive integers
will be proved in the next example.

An Inequality for Harmonic Numbers The harmonic numbers H;, j = 1,2,3,...,
are defined by

H—1+1+1+ +1
a 2 3 i
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For instance,
Hootsl L1l
2 3 4 12
Use mathematical induction to show that
n
Hy > 1+ 5

whenever n is a nonnegative integer.

Solution: To carry out the proof, let P (n) be the proposition that Hyn > 14+n/2.
BASIS STEP: P(0) is true, since Hyo = Hy = 1> 1+ 0/2.

INDUCTIVE STEP: Assume that P (k) istrue,sothat Hye > 1 + k/2.Itmust be shown

that P (k + 1), which states that Hyer1 > 1 + (k + 1)/2, must also be true under this
assumption. This can be done since

1 1 1 1
Hyn=l+-+=+-+o+7——+ "+ 557 definition of
2 3 2k 2641 2o harmonic number

1 1
= Hy + ﬂ_l + .-+ pYas) definition of harmonic number
> (14 k + . +-- 4+ by the inductive hypothesi
— 4+ e induc s
2 * 1 ST y nductive hypothesi

since there are 2¢ terms each not less than 1/2%*!

\Y
TN
—
+
N & |
e N
_|_
[\
=~
B
~

> 14+ k + !
- 2 2
k+1
|
2
This establishes the inductive step of the proof. Thus, the inequality for the harmonic
numbers is valid for all nonnegative integers n. L |

Remark: The inequality established here shows that the harmonic series

1+1+1+ +1+
23 n

is a divergent infinite series. This is an important example in the study of infinite series.

Example 7 shows how mathematical induction can be used to verify a formula for
the number of subsets of a finite set.

EXAMPLE 7 The Number of Subsets of a Finite Set Use mathematical induction to show that if S

is a finite set with 2 elements, then S has 2" subsets. (We will prove this result directly in
several ways in Chapter 4.)

Solution: Let P(n) be the proposition that a set with n elements has 2" subsets.
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g

T

FIGURE 3  Generating Subsets of a Set with & + 1 Elements.
Here T = S U (a).

BASIS STEP: P(0) is true, since a set with zero elements, the empty set, has exactly
20=1 subsets, since it has one subset, namely, itself.

INDUCTIVE STEP: Assume that P (k) is true, that is, that every set with k elements has
2% subsets. It must be shown that under this assumption P (k 4 1), which is the statement
that every set with k 4+ 1 elements has 2k+1 qubsets, must also be true. To show this, let T
be a set with k 4 1 elements. Then, it is possible to write T = § U {a} where « is one of
the elements of T and § = T — {a}. The subsets of T can be obtained in the following
way. For each subset X of S there are exactly two subsets of T, namely, X and X U {a}.
(This is illustrated in Figure 3.) These constitute all the subsets of T and are all distinct.
Since there are 2F subsets of S, there are 2 - 2% = 2k+1 gubsets of T'. This finishes the
induction argument. <

Show that if n is a positive integer,
1+24+---+n=nn+1)/2.

Solution: Let P(n) be the proposition that the sum of the first n positive integers is
n(n + 1)/2. We must do two things to prove that P(n) is true forn = 1,2,3,....
Namely, we must show that P (1) is true and that the implication P (k) implies P(k + 1)
istruefork=1,2,3,....

BASIS STEP: P(1)istrue,since 1 = 1(1 4 1)/2.
INDUCTIVE STEP: Assume that P (k) holds so that
14+24---+k=kk+1)/2.

Under this assumption, it must be shown that P(k 4 1) is true, namely, that

L4244 k+ G+ 1) =+ DI+ D +11/2 = e+ Dk +2)/2
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EXAMPLE 10

is also true. Add k + 1 to both sides of the equation in P (k) to obtain

142+ - 4+k+Gk+D)=k(k+1)/2+K+1)
=[(k/2) + 1]tk + 1)
= (k+ Dk +2)/2.

This last equation shows that P(k 4 1) is true. This completes the inductive step and
completes the proof. <

Use mathematical induction to prove that 2" < n!for every positive integer n withn > 4,

Solution: Let P(n) be the proposition that 2" < n!.

BASIS STEP: To prove the inequality for n > 4 requires that the basis step be P (4),
Note that P (4) is true, since 2* = 16 < 4! = 24.

INDUCTIVE STEP: Assume that P (k) is true. That is, assume that 2¢ < k!. We must
show that P (k + 1) is true. That is, we must show that 21 < (k 4 1)!. Multiplying both
sides of the inequality 2¢ < k! by 2, it follows that
2-28 <2 k!
<k+1)-k!
=(k+ D

This shows that P(k + 1) is true when P (k) is true. This completes the inductive step of
the proof. Hence, it follows that 2" < n!is true for all integers n with n > 4. «

Use mathematical induction to prove the following generalization of one of De Morgan’s
laws:

n n
ﬂAJ=UZ7’

i=1 j=1
whenever Ay, Aj, ..., A, are subsets of a universal set U and n > 2.

Solution: Let P (n) be the identity for n sets.

BASIS STEP: The statement P (2) asserts that A; N A, = A; U A,. This is one of De
Morgan’s laws; it was proved in Section 1.7,

INDUCTIVE STEP: Assume that P (k) is true, that is,

k k
N4 =4
j=1 j=1
whenever A1, Az, ..., Ay are subsets of the universal set U. To carry out the inductive

step it must be shown that if this equality holds for any k subsets of U, it must also be
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EXAMPLE 11

FIGURE4 An
L-Shaped Piece.
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valid for any k + 1 subsets of U. Suppose that A, Az, ..., Ak, Ag+| are subsets of U.
When the inductive hypothesis is assumed to hold, it follows that

k+1 k

mAj: ﬂA;’ N Ag41

il j=

k
= m A;j | Y Ag4+1 by De Morgan’s law
j=1

k
= U E U Ag41 by the inductive hypothesis
f=1

k+1

- U7

j=1

This completes the proof by induction. <

Example 11 illustrates how mathematical induction can be used to prove a result
about covering chessboards with pieces shaped like the letter “L.”

Let n be a positive integer. Show that any 2" x 2" chessboard with one square removed
can be tiled using L-shaped pieces, where these pieces cover three squares at a time, as
shown in Figure 4.

Solution: Let P(n) be the proposition that any 2" x 2" chessboard with one square
removed can be tiled using L-shaped pieces. We can use mathematical induction to prove
that P (n) is true for all positive integers 7.

BASIS STEP: P(1) is true, since any of the four 2 x 2 chessboards with one square
removed can be tiled using one L-shaped piece, as shown in Figure 5.

INDUCTIVE STEP: Assume that P (k) is true; that is, assume that any 2% x 2* chess-
board with one square removed can be tiled using L-shaped pieces. It must be shown that
under this assumption P (k + 1) must also be true; that is, any 2¢+! x 2¢*! chessboard
with one square removed can be tiled using L-shaped pieces.

To see this, consider a 2611 x 2%+1 chessboard with one square removed. Split this
chessboard into four chessboards of size 2¢ x 2%, by dividing it in half in both directions.
This is illustrated in Figure 6. No square has been removed from three of these four

FIGURE 5 Tiling 2 x 2 Chessboards with One Square Removed.
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FIGURE 6 Dividinga FIGURE 7 Tiling the
2k+1 x 2k+1 Chesshoard into 241 24+1 Chessboard with
Four 2* x 2* Chessboards. One Square Removed.

chessboards. The fourth 2% x 2* chessboard has one square removed, so by the inductive
hypothesis, it can be covered by L-shaped pieces. Now temporarily remove the square
from each of the other three 2% x 2¥ chessboards that has the center of the original, larger
chessboard as one of its corners, as shown in Figure 7. By the inductive hypothesis, each of
these three 2% x 2¥ chessboards with a square removed can be tiled by L-shaped pieces.
Furthermore, the three squares that were temporarily removed can be covered by one
L-shaped piece. Hence, the entire 25! x 2k+1 chessboard can be tiled with L-shaped
pieces. This completes the proof. |

Next, we provide an example that illustrates one of many ways mathematical induc-
tion is used in the study of algorithms. We will show how mathematical induction can be
used to prove that a greedy algorithm yields an optimal solution. (For an introduction to
greedy algorithms, see Section 2.1.)

We can use a greedy algorithm to schedule a subset of m proposed talks 1, £, ..., Im
in a single lecture hall. Suppose that talk 7 begins at time b; and ends at time ¢;. (No
two lectures can proceed at the same time and a lecture can begin at the same time
one ends.) We assume that the talks are listed in order of nondecreasing ending time, s0
that e; < ey < --- < ey The greedy algorithm proceeds by selecting at each stage a
talk with the earliest ending time among all those talks that begin after all talks already
scheduled end. (A lecture with an earliest end time is always added first by the algorithm.)
We will show that this greedy algorithm is optimal in the sense that it always schedules
the most talks possible. To prove the optimality of this algorithm we use mathematical
induction on the variable i, the number of talks scheduled by the algorithm. We let P(n)
be the proposition that if the greedy algorithm schedules n talks, then it is not possible to
schedule more than n talks.

BASIS STEP: Suppose that the greedy algorithm managed to schedule just one talk, #1.
This means that every other talk cannot start after e1, the ending time of #1. Otherwise, the
first such talk we come to as we go through the talks in order of nondecreasing end time
could be added. Hence, at time e; each of the remaining talks needs to use the lecture
hall since they all start at or before e; and end after e;. It follows that no two talks can
be scheduled since both need to use the lecture hall at time ej. This shows that P(l)is
true and completes the basis step.

INDUCTIVE STEP: Assume that P (k) is true, that is, that the greedy algorithm always
schedules the most possible talks when it selects k talks, given any set of talks (no matter
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how large). Now assume that the algorithm has selected k + 1 talks. We must show that the
greedy algorithm has selected the largest number of talks possible, given the assumption
that it always produces an optimal solution when it schedules & taiks. That is, we need to
show that P (k + 1) is true, assuming that P (k) is true.

To complete the inductive step, we first show there is a schedule including the most
talks possible that contains talk 71, a talk with the earliest end time. This is easy to see
since a schedule that begins with the talk #; in the list, where i > 1,can be changed so that
talk #) replaces talk f;. To see this, note that since e; < ¢;, all talks that were scheduled
to follow talk ¢; can still be scheduled.

Once we included talk £, scheduling the talks so that as many as possible are sched-
uled is reduced to scheduling as many talks as possible that begin at or after time e;.
So, if we have scheduled as many talks as possible, the schedule of talks other than talk
t is an optimal schedule of the original talks that begin once talk f; has ended. Since
the greedy algorithm schedules k talks when it creates this schedule, we can apply the
induction hypothesis to conclude that it has scheduled the most possible talks. It follows
that the greedy algorithm has scheduled the most possible talks, k + 1, when it produced
a schedule with k + 1 talks, so that P(k + 1) is true. This completes the induction step,
finishing the proof that P(n) is true for all positive integers n, and completes the proof
of optimality. <

STRONG INDUCTION

There is another form of mathematical induction that is often useful in proofs. With this
form we use the same basis step as before, but we use a different inductive step. We
assume that P(j) is true for j = 1,..., k and show that P(k + 1) must also be true
based on this assumption. This is called strong induction (and is sometimes also known
as the second principle of mathematical induction).

We summarize the two steps used to show that P (n) is true for all positive inte-
gers n:

BASIS STEP: The proposition P (1) is shown to be true.

INDUCTIVE STEP: 1tisshown that [P(1) A PQ) A+ A P(k)] = P(k+1)istrue
for every positive integer k.

The two forms of mathematical induction are equivalent; that is, each can be shown
to be a valid proof technique assuming the other. We leave it as an exercise for the reader
to show this. We now give three examples that show how the strong induction is used.

Consider a game in which two players take turns removing any number of matches they
want from one of two piles of matches. The player who removes the last match wins the
game. Show that if the two piles contain the same number of matches initially, the second
player can always guarantee a win.

Solution: Let n be the number of matches in each pile. We will use strong induction
to prove P (n), the statement that the second player can win when there are initially n
matches in each pile.

BASIS STEP: When n = 1, the first player has only one choice, removing one match
from one of the piles, leaving a single pile with a single match, which the second player
can remove to win the game.
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EXAMPLE 14

EXAMPLE 15

INDUCTIVE STEP: Suppose that P(j) is true for all j with 1 < j < k, thatis, that the
second player can always win whenever there are j matches where 1 < j < kineach of
the two piles at the start of the game. Now suppose that there are k 4+ 1 matches in each of
the two piles at the start of the game and suppose that the first player removes J matches
(1 < j < k) from one of the piles, leaving kK + 1 — j matches in this pile. By removing
the same number of matches from the other pile, player two creates the situation where
there are two piles each with k + 1 — j matches. Because | <k +1—j < k the second
player can always win by the induction hypothesis. We complete the proof by noting that
if the first player removes all k + 1 matches from one of the piles, the second player can
win by removing all the remaining matches. <

Show that if 7 is an integer greater than 1, then n can be written as the product of primes,

Solution: Let P(n) be the proposition that n can be written as the product of primes,

BASIS STEP: P(2) is true, since 2 can be written as the product of one prime, itself,
[Note that P(2) is the first case we need to establish.]

INDUCTIVE STEP: Assume that P () is true for all positive integers j with j < k. To
complete the inductive step, it must be shown that P (k + 1) is true under this assumption,

There are two cases to consider, namely, when k + 1 is prime and when k + 1 is
composite. If k + 1 is prime, we immediately see that P(k + 1) is true. Otherwise, k + 1
is composite and can be written as the product of two positive integers ¢ and b with
2 < a < b < k+ 1. By the induction hypothesis, both a and b can be written as the
product of primes. Thus, if k + 1 is composite, it can be written as the product of primes,
namely, those primes in the factorization of a and those in the factorization of b. «

Remark: Since 1 is a product of primes, namely, the empty product of no primes, we
could have started the proof in Example 14 with P (1) as the basis step. We chose not to
do this because many people find this confusing.

Note that Example 14 completes the proof of the Fundamental Theorem of Arith-
metic, which asserts that évery nonnegative integer can be written uniquely as the product
of primes in nondecreasing order. We showed in Section 2.6 (see page 183) that an integer
has at most one such factorization into primes. Example 14 shows there is at least one
such factorization.

Using the principle of mathematical induction, instead of strong induction, to prove
the result in Example 14 is difficult. However, as Example 15 shows, some results can be
readily proved using cither the principle of mathematical induction or strong induction.

Prove that every amount of postage of 12 cents or more can be formed using just 4-cent
and 5-cent stamps.

Solution: We will prove this result using the principle of mathematical induction. Then
we will present a proof using strong induction. Let P (n) be the statement that postage
of n cents can be formed using 4-cent and 5-cent stamps.

We begin by using the principle of mathematical induction.

BASIS STEP: Postage of 12 cents can be formed using three 4-cent stamps.

INDUCTIVE STEP: Assume that P (k) is true, so that postage of k cents can be formed
using 4-cent and 5-cent stamps. If at least one 4-cent stamp was used, replace it with
a 5-cent stamp to form postage of k + 1 cents. If no 4-cent stamps were used, postage
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of k cents was formed using just 5-cent stamps. Since k > 12, at least three 5-cent stamps
were used. So, replace three 5-cent stamps with four 4-cent stamps to form postage of
k + 1 cents. This completes the inductive step, as well as the proof by the principle of
mathematical induction.

Next, we will use strong induction. We will show that postage of 12, 13, 14, and 15
cents can be formed and then show how to get postage of k 4+ 1 cents for & > 15 from
postage of k — 3 cents.

BASIS STEP: We can form postage of 12,13,14,and 15 cents using three 4-cent stamps,
two 4-cent stamps and one 5-cent stamp, one 4-cent stamp and two 5-cent stamps, and
three 5-cent stamps, respectively.

INDUCTIVE STEP: Let k > 15. Assume that we can form postage of j cents, where
12 < j < k. To form postage of k + 1 cents, use the stamps that form postage of k — 3
cents together with a 4-cent stamp. This completes the inductive step, as well as the proof
by strong induction.

(There are other ways to approach this problem besides those described here. Can
you find a solution that does not use mathematical induction?) «

Remark: Example 15 shows how we can adapt strong induction to handle cases where
the inductive step is valid only for sufficiently large values of k. In particular, to prove that
P(n)is true forn = j,j 4+ 1,j + 2,..., where j is an integer, we first show that
P, P(j+ 1), P+ 2),..., P(I) are true (the basis step), and then we show
that [P()) AP+ 1D AP +2)A-- A P(k)] = P(k+ 1)istrue for every integer
k > [ (the inductive step). For example, the basis step of the second proof in the solution
of Example 15 shows that P(12), P(13), P(14),and P(15) are true. We need to prove
these cases separately since the inductive step, which shows that [P(12) A P(13) A - -+
AP(k)] - P(k + 1),holds only when k > 15.

THE WELL-ORDERING PROPERTY

The validity of mathematical induction follows from the following fundamental axiom
about the set of integers.

THE WELL-ORDERING PROPERTY Every nonempty set of nonnegative inte-
gers has a least element.

The well-ordering property can often be used directly in proofs.

Use the well-ordering property to prove the division algorithm. Recall that the division
algorithm states that if ¢ is an integer and d is a positive integer, then there are unique
integers g and » withO < r <danda =dqg +r.

Solution: Let § be the set of nonnegative integers of the form a — dg where ¢ is an
integer. This set is nonempty since —dg can be made as large as desired (taking g to be
anegative integer with large absolute value). By the well-ordering property § has a least
element r = a — dqy.

The integer r is nonnegative. It is also the case that » < d. If it were not, then there
would be a smaller nonnegative element in S, namely,a — d(go + 1). To see this, suppose
thatr > d.Sincea = dqg-+r,itfollowsthata —d(qo+1) = (a—dqgo)—d =r—d = 0.
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EXAMPLE 17

EXAMPLE 18

Consequently, there are integers g and r with O < r < d. The proof that ¢ and r are
unique is left as an exercise for the reader. <

In a round-robin tournament every player plays every other player exactly once ang
each match has a winner and loser. We say that the players py, pa, ..., pm forma cycle
if py beats py, py beats p3, ..., pu—1 beats py, and p,, beats p;. Use the well-ordering
principle to show that if there is a cycle of length m (m > 3) among the players in 5
round-robin tournament, there must be a cycle of three of these players.

Solution: We assume that there is no cycle of three players. Since there is at least one
cycle in the round-robin tournament, the set of all positive integers n for which there is 3
cycle of length n is nonempty. By the well-ordering property, this set of positive integers
has a least element k, which by assumption must be greater than three. Consequently,
there exists a cycle of players py, pa, P3, ..., Pk and no shorter cycle exists.

Now suppose that there is no cycle of three of these players,so that k > 3. Consider
the first three elements of this cycle, p1, p2, p3. There are two possible outcomes of the
match between pp and ps3. If p3 beats py, it follows that pi1, p2, p3 is a cycle of length
three, contradicting our assumption that there is no cycle of three players. Consequently,
it must be the case that p; beats p3. This means that we can omit p; from the cycle
D1, P2, P3s - - - » Pk to obtain the cycle py, p3, p4, ..., Pk of length k — 1, contradicting
the assumption that the smallest cycle has length k. We conclude that there must be a
cycle of length three. |

INFINITE DESCENT We will now describe a proof method, the method of infinite
descent, introduced by Pierre de Fermat in the 1600s. The method of infinite descent is
often used to show that for a propositional function P (n), P (k) is false for all positive
integers k. The method is based on the observation that if P (k) is true for at least one
integer k, then the well-ordering property implies that there is a least positive integer §
such that P(s) is true. The method proceeds by finding a positive integer s’ with s" < s
for which P(s’) is true. It follows that P (n) must be false for all positive integers. (This
technique is called the method of infinite descent since the procedure of finding smaller
integers for which the propositional function is true could be continued indefinitely, pro-
ducing an infinite sequence of decreasing positive integers, which is impossible by the
well-ordering property.) The method of infinite descent is often used to show that there
are no solutions in integers to certain equations. In particular, Fermat used it to prove the
n = 4 case of Fermat's Last Theorem, which states that the equation x4yt = z* has
no solutions in positive integers. We illustrate the use of infinite descent in Example 18.

In Example 21 in Section 1.5 we showed that /2 is irrational. Here we will provide a
different proof of this fact using infinite descent. First, suppose that /2 is rational. Then
there exist positive integers m and n such that V2 =m /n. By the well-ordering property,
there is a least positive integer N such that V2 = M/N for some positive integer M.
(This would make N the smallest possible denominator of ratios of two positive integers
that equal \/E.)

To carry out the proof by infinite descent, we will show that V2=02N-M)/(M—N)
and0 < M — N < N.This contradicts the choice of N as the least positive integer such
that +/2 = M/ N for some positive integer M. To show that V2=QQN-M)/(M—N)
we need only show that QN — M)/(M — N) = M/N. To show this, first note that
because (M/N)? = 2,it follows that M 2 = 2N?. Consequently,

2N—M_(2N—M)N_2N2—MN_ M2 — MN _(M—N)M__A{_
M—N (M—-NN (M~—-NN_ (M~—-N)N (M —NN N
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To finish the proof, we need only show that the denominator, M — N, is positive and
smaller than N. To see this, note that because 1 < \/—2_ <2and2 =M /N, it follows
that 1 < M/N < 2,and hence, that N < M < 2N. Subtracting N, we conclude that
O<M-N<N. |

WHY MATHEMATICAL INDUCTION IS VALID

Why is mathematical induction a valid proof technique? The reason comes from the
well-ordering property. Suppose we know that P (1) is true and that the proposition
P(k) — P(k + 1) is true for all positive integers k. To show that P (n) must be true for
all positive integers, assume that there is at least one positive integer for which P(n) is
false. Then the set S of positive integers for which P (n) is false is nonempty. Thus, by
the well-ordering property, S has a least element, which will be denoted by m. We know
that m cannot be 1, since P (1) is true. Since m is positive and greater than 1,m — 1 is
a positive integer. Furthermore, since m — 1 is less than m, it is not in §,s0 P(m — 1)
must be true. Since the implication P(m — 1) — P (m) is also true, it must be the case
that P () is true. This contradicts the choice of m. Hence, P (n) must be true for every

positive integer n.

Exercises

1.

2.

Find a formula for the sum of the first » even positive
integers.

Use mathematical induction to prove the formula
that you found in Exercise 1.

. Use mathematical induction to prove that 343 -5+

3.524 ... 435" =3(5"" -
nonnegative integer.

1)/4 whenever n is a

. Use mathematical induction to prove that2 —2.7 4

2.7 — . 4 2(=7)" = (1 — (=7)"*1)/4 whenever n is
a nonnegative integer.

. Find a formula for

1 1 1 1

PR BT
by examining the values of this expression for small
values of n. Use mathematical induction to prove

your result.

. Find a formula for

- Show that 13 +2% + ...

1 1 1

2 23 T ey
by examining the values of this expression for small
values of n. Use mathematical induction to prove
your result.
Show that 12 4+ 22 4+ ... + 0?2 = n(m + D2n + 1)/6
whenever n is a positive integer.
+n? = [n(n + 1)/2]* when-
ever n is a positive integer.
Prove that 12+ 32 +52+ -+ 2n+ 12 =+ 1)
_(211 + 1)(2n + 3)/3 whenever n is a nonnegative
Integer.

. Provethat1-114+2.2!14+..-4+n-nl=w+ D! -1

whenever n is a positive integer.

. Show by mathematical induction thatif # > —1,then

14+ nh < (1+ k)" for all nonnegative integers n. This
is called Bernoulli’s inequality.

. Prove that 3" < n! whenever n is a positive integer

greater than 6.

. Show that 2" > n? whenever n is an integer greater

than 4.

Use mathematical induction to prove that n! < n”
whenever # is a positive integer greater than 1.

. Prove using mathematical induction that

1:242.34.-4+n(n+1)=nr+1)rn+2)/3

whenever n is a positive integer.

. Use mathematical induction to prove that

1.2:342.3-44+---+r(n+1H(n+2)
=nn+1)n+2)n+3)/4.

. Showthat 12 — 22 +32 — ... 4 (=) 'n2 = (=) 'n

(n + 1)/2 whenever n is a positive integer.

. Prove that

PR UPR DN P
— - . aw —< S
49 n? n

whenever n is a positive integer greater than 1.

. Show that any postage that is a positive integer num-

ber of cents greater than 7 cents can be formed using
just 3-cent stamps and 5-cent stamps.
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20.

21.

22.

*23,

24.

25.

*26.

27.

28.

29.

30.

31.

32.

33.

34,

35.

Use mathematical induction to show that 3 divides
n® + 2n whenever n is a nonnegative integer.
Use mathematical induction to show that 5 divides
n® — n whenever n is a nonnegative integer.
Use mathematical induction to show that 6 divides
n3 — n whenever 7 is a nonnegative integer.
Use mathematical induction to show that n? — 1 is
divisible by 8 whenever » is an odd positive integer.
Use mathematical induction to show that n? —
7n 4 12 is nonnegative if n is an integer greater than
3.
Use mathematical induction to prove that a set with
n elements has n(n — 1)/2 subsets containing exactly
two elements whenever » is an integer greater than
or equal to 2.
Use mathematical induction to prove that a set with n
elements has n(n — 1)(n — 2)/6 subsets containing ex-
actly three elements whenever n is an integer greater
than or equal to 3.
Use mathematical induction to prove that 33} _ | jt=
n(n+1)Q2n+1)(3n% +3n—1)/30 whenever n is a pos-
itive integer.
For which nonnegative integers n is n? < n!? Prove
your answer using mathematical induction.
For which nonnegative integers n is 2n + 3 < 27
Prove your answer using mathematical induction.
Use mathematical induction to show that 1/(2n) <
[1-3.5..-.. 2n-1D1/2-4----- 2n) whenever n is a
positive integer.
a) Determine which amounts of postage can be
formed using just 5-cent and 6-cent stamps.
b) Prove your answer to (a) using the principle of
mathematical induction.
¢) Prove your answer to (a) using the second princi-
ple of mathematical induction.
Which amounts of money can be formed using just
dimes and quarters? Prove your answer using a form
of mathematical induction.
An automatic teller machine has only $20 bills and
$50 bills. Which amounts of money can the machine
dispense, assuming the machine has a limitless sup-
ply of these two denominations of bills? Prove your
answer using a form of mathematical induction.
Assume that a chocolate bar consists of # squares ar-
ranged in a rectangular pattern. The bar or a smaller
rectangular piece of the bar can be broken along a
vertical or a horizontal line separating the squares.
Assuming that only one piece can be broken at a time,
determine how many breaks you must successively
make to break the bar into n separate squares. Use
strong induction to prove your answer.
Consider this variation of the game of Nim. The game
begins with n matches. Two players take turns remov-
ing matches, one, two, or three at a time. The player
removing the last match loses. Use strong induction
toshow that if each player plays the best strategy pos-

36.

37.

38.

3-42

sible, the first player wins if n = 47,4 +2,0r4; 4 3
for some nonnegative integer j and the second playey
wins in the remaining case when n = 4 + 1 for some
nonnegative integer j.

Prove that 3, _, k2¥ = (n — 1)2"*+! 4 2 using mathe.
matical induction.

Show that if n is a positive integer, then

1

— =1
aydn - dy

(@ nag }S11,2,0000)

(Here the sum is over all nonempty subsets of the set
of the n smallest positive integers.)

Use mathematical induction to show that given a set
of n + 1 positive integers, none exceeding 2n, there
is at least one integer in this set that divides another
integer in the set.

*39. A knight on a chessboard can move one space hori-

40

by

41.

42.

43.

44.

zontally (in either direction) and two spaces vertically
(in either direction) or two spaces horizontally (in ej-
ther direction) and one space vertically (in either di-
rection). Use mathematical induction to show that for
every square a knight starting at (0, 0), the corner of
an infinite chessboard made up of all squares (m, n),
where m and n are nonnegative integers, can visit this
square using a finite sequence of moves. (Hint: Use
induction on the variable s = m + n.)

Suppose you begin with a pile of n stones and split
this pile into # piles of one stone each by successively
splitting a pile of stones into two smaller piles. Each
time you split a pile you multiply the number of stones
in each of the two smaller piles you form, so that if
these piles have r and s stones in them, respectively,
you compute rs. Show that no matter how you split
the piles, the sum of the products computed at each
step equals n(n — 1)/2.

(Calculus required) Use mathematical induction to
prove that the derivative of f(x) = x" equals nx"~!
whenever = is a positive integer. (For the inductive
step, use the product rule for derivatives.)

Suppose that

a 0
S
where a and b are real numbers. Show that

e at 0
=[5 )

for every positive integer n.

Suppose that A and B are square matrices with the
property AB = BA. Show that AB" = B"A for every
positive integer #.

Suppose that m is a positive integer. Use mathemati-
cal induction to prove that if @ and b are integers with
a = b (mod m), then a* = b* (mod m) whenever k i
a nonnegative integer.




46.

47.

*49,

50.

51

52

45. Use mathematical induction to show that if A,

A, ..., Ay and B are sets, then
(AlUAU---UA)NB
= (A/NBYU(A,NB)U.--U (A, NB).
prove that if A, As,..., A, and By, B,, ..., B, are
sets such that A, € Byfork =1,2,..., n,then

H

N U Acc | Be
k=1

k=1

n

b) ﬂAkg ﬂBk.
k=1 k

Use mathematical induction to prove that if A,
Ay, ..., A, are subsets of a universal set U, then

. Use mathematical induction to show that

~(pVp2V---Vp,) is  equivalent to —p A
—py A -+ A—p, whenever py, ps, ..., p, are propo-
sitions.

Show that

[(pi = P A (P2 — P A A(pumt = pa)l
= [(prAp2 A Apys) = pul

is a tautology whenever py, p,, ..
tions.
What is wrong with this “proof”?

., Pu are proposi-

“Theorem” For every positive integer n, >/ _ i =
(n+1)%/2.

Basis Step: The formula is true for n = 1.
Inductive Step: Suppose that >_/_ i = (n + 1)%/2.
Then 71 i = (2, i) + (n + 1). By the induc-
tive hypothesis, S"7%'i = (n + MR+n+1 =
M 4+n+D/2+n+1 =0 +3n+ D2 =
(n + %)312 =[n+1)+ %]2/2,compleling the induc-
tive step.

What is wrong with this “proof” that all horses are the
same color?

Let P(n) be the proposition that all the horses in a
set of n horses are the same color.

Basis Step: Clearly, P(1) is true.

Inductive Step: Assume that P (k) is true, so that all
the horses in any set of k horses are the same color.
Consider any k + [ horses; number these as horses
1,2,3,..., k, k4 1. Now the first k of these horses all
must have the same color, and the last k of these must
also have the same color. Since the set of the first k
horses and the set of the last k horses overlap, all k + 1
must be the same color. This shows that P(k + 1) is
true and finishes the proof by induction.

What is wrong with this “proof”?

“Theorem” For every positive integer n,if x and y are
positive integers with max(x, y) = n, then x = y.

53.

*54,

*58.

*56.
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Basis Step: Suppose that n = 1. If max(x, y) = 1
and x and y are positive integers, we have x = 1 and
y=1.

Inductive Step: Let k be a positive integer. Assume
that whenever max(x, y) = k and x and y are positive
integers, then x = y. Now let max(x,y) = k + 1,
where x and y are positive integers. Then
max(x — 1,y — 1) = k, so by the inductive hypoth-
esis,x — 1 = y — 1. It follows that x = y, completing
the inductive step.

What is wrong with this “proof” by strong induction?

“Theorem” For every nonnegative integer n, 5n = 0.

Basis Step: 5-0=0.

Inductive Step: Suppose that 5 = 0 for all nonneg-
ative integers j with 0 < j < k. Writek +1 =i + j,
where i and j are natural numbers less than k + 1.
By the induction hypothesis, 5(k + 1) = 5( + j) =
5i+5j=0+0=0.

Find the flaw with the following “proof” that a” =
1 for all nonnegative integers n, whenever a is a
nonzero real number.

Basis Step: a° = 1is true by the definition of a°.

Inductive Step: Assume that a/ = 1 for all nonneg-
ative integers j with j < k. Then note that

& I3
pea._11_

ak-! 1
Show that strong induction is a valid method of proof
by showing that it follows from the well-ordering
property.
Show that the following form of mathematical induc-
tion is a valid method to prove that P(n) is true for
all positive integers n.

ak+l e

Basis Step: P(1) and P(2) are true.

Inductive Step: For each positive integer k, if P (k)
and P(k + 1) are both true, then P (k + 2) is true.

In Exercises 57 and 58, H, denotes the nth harmonic
number.

&S

*58.

*59,

*60.

Use mathematical induction to show that Hyn < 14n
whenever » is a nonnegative integer.

Use mathematical induction to prove that
H+H+--+H =0n+1DH, —n

Prove that

1 1 1
I+ —t—dd——=>2n+1-1.
taAt ATt R EED

Show that n lines separate the plane into
(n* +n 4 2)/2 regions if no two of these lines are
parallel and no three pass through a common point.
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**61.

*62.

63.

64.

65.

*66.

*67.

Letay, as, ..., a, be positive real numbers. The arith-
metic mean of these numbers is defined by

A=(a1+a2+"'+an)/”a

and the geometric mean of these numbers is defined
by

G = (aia,---a,)'™.

Use mathematical induction to prove that A > G.
Use mathematical induction to show that 21 divides
4n+1 4 521 whenever n is a positive integer.

Use mathematical induction to prove Lemma 2
of Section 2.6, which states that if p is a prime
and p|aay---a,, where a; is an integer for
i=1,2,3,...,n,then p | ; for some integer i.

Use infinite descent to show that the equation 8x* +
4y* + 2z* = w* has no solutions in positive integers
x, 9,7, and w.

Use infinite descent to show that there are no solu-
tions in positive integers w, x, y, and z to w? + x* +
y? + 72 = 2wxyz. (Hint: First show that if this equa-
tion holds, then all of w, x, y,and z must be even. Then
show that all four of these integers must be divisible
by 4, by 8, and so on.)

The well-ordering property can be used to show that
there is a unique greatest common divisor of two pos-
itive integers. Let a and b be positive integers, and let
S be the set of positive integers of the form as + bz,
where s and ¢ are integers.

a) Show that S is nonempty.

b) Use the well-ordering property to show that § has
a smallest element c.

¢) Show thatifd is acommon divisor of ¢ and b, then
d is a divisor of c.

d) Showthatc | aandc | b. (Hint: First,assume that
¢ f a.Then a = gc + r,where 0 < r < c. Show
that r € §, contradicting the choice of c.)

e) Conclude from (c) and (d) that the greatest com-

mon divisor of a and b exists. Finish the proof by
showing that this greatest common divisor of two
positive integers is unique.

Show thatif ay, as, ..., a, are n distinct real numbers,
exactly n — 1 multiplications are used to compute the
product of these n numbers no matter how parenthe-

68.

69.

70.

*71.

*72.

73.

*74,

75.

£ 76.

**TT,

78.

34

ses are inserted into their product. (Hint: Use strop
induction and consider the last multiplication.)
Construct a tiling using L-shaped pieces of the 4 x 4
chessboard with the square in the upper left corpey
removed.

Construct a tiling using L.-shaped pieces of the 8 x g
chessboard with the square in the upper left corney
removed.

Prove or disprove that all chessboards of these shapeg
can be completely covered using L-shaped pieceg
whenever n is a positive integer.

a) 3 x 2" b) 6 x 2"
¢) 3" x 3" d) 6" x 6"
Show that a three-dimensional 2" x 2" x 2" chess-

board with one 1 x 1 x 1 cube missing can be com-
pletely covered by 2 x 2 x 2 cubes with one 1 x 1 x |
cube removed.

Show that an n x n chessboard with one square re-
moved can be completely covered using L-shaped
pieces if n > 5,n is odd, and 3 } n.

Show that a 5 x 5 chessboard with a corner square
removed can be tiled using L-shaped pieces.

Find a 5 x 5 chessboard with a square removed that
cannot be tiled using L-shaped pieces. Prove thatsuch
a tiling does not exist for this board.

Let a be an integer and d be a positive integer. Show
that the integers ¢ and r with a dg + r and
0 < r < d, which were shown to exist in Exam-
ple 16, are unique.

Use the principle of mathematical induction to show
that P(n) is true forn = b, b+ 1,b + 2, ..., where
b is an integer, if P(b) is true and the implication
P(k) — P(k+ 1) is true for all positive integers k
with k > b.

Can you use the well-ordering property to prove this
statement? “Every positive integer can be described
using no more than 15 English words”?

Use the well-ordering principle to show thatif x and y
are real numbers with x < y, then there is a rational
number r with x < r < y. [Hint: Show that there
exists a positive integer A with A > 1/(y — x). Then
show that there is a rational number r with denomi-
nator A between x and y by looking at the numbers
lx] + j/A, where j is a positive integer.]

EA Recursive Definitions and Structural Induction

INTRODUCTION

Sometimesitis difficult to define an object explicitly. However, it may be easy to define this
object in terms of itself. This process is called recursion. For instance, the picture shown
in Figure 1 is produced recursively. First, an original picture is given. Then a process of




