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Letay, ay, . .., a, be positive real numbers. The arith-
metic mean of these numbers is defined by

A=(@ +a+ - +a)/n,

and the geometric mean of these numbers is defined
by

G = (mar-a,).

Use mathematical induction to prove that A > G.
Use mathematical induction to show that 21 divides
4! 4 52=1 whenever n is a positive integer.

Use mathematical induction to prove Lemma 2
of Section 2.6, which states that if p is a prime
and p|aja---a,, where a; is an integer for
i=1,2,3,...,n,then p | a; for some integer i.

Use infinite descent to show that the equation 8x* +
4y* 4+ 27* = w* has no solutions in positive integers
x,y,2,and w.

Use infinite descent to show that there are no solu-
tions in positive integers w, x, y, and z to w? 4+ x> +
y? + 72 = 2wxyz. (Hint: First show that if this equa-
tion holds, then all of w, x, y, and z must be even. Then
show that all four of these integers must be divisible
by 4, by 8, and so on.)

The well-ordering property can be used to show that
there is a unique greatest common divisor of two pos-
itive integers. Let a and b be positive integers, and let
S be the set of positive integers of the form as + bt,
where s and ¢ are integers.

a) Show that § is nonempty.

b) Use the well-ordering property to show that S has
a smallest element c.

¢) Show thatifd is a common divisor of a and b, then
d is a divisor of c.

d) Showthatc | aandc | b. (Hint: First,assume that
¢ f a.Then a = gc + r, where 0 < r < c. Show
that r € S, contradicting the choice of c.)

e) Conclude from (c) and (d) that the greatest com-

mon divisor of a and b exists. Finish the proof by
showing that this greatest common divisor of two
positive integers is unique.

Show thatif a, as, ..., a, are n distinct real numbers,
exactly n — 1 multiplications are used to compute the
product of these # numbers no matter how parenthe-
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ses are inserted into their product. (Hint: Use strong
induction and consider the last multiplication.)
Construct a tiling using L-shaped pieces of the 4 x 4
chessboard with the square in the upper left corner
removed.

Construct a tiling using L-shaped pieces of the 8 x §
chessboard with the square in the upper left corner
removed.

Prove or disprove that all chessboards of these shapeg
can be completely covered using L-shaped pieceg
whenever n is a positive integer.

a) 3 x 2" b) 6 x 2"
C) 3 % 3 d) 6" x 6"

Show that a three-dimensional 2" x 2" x 2" chess-
board with one 1 x 1 x I cube missing can be com-
pletely covered by 2 x 2 x 2 cubes withone 1 x 1 x 1
cube removed.

Show that an n x n chessboard with one square re-
moved can be completely covered using L-shaped
piecesifn > 5,nis odd,and 3 } a.

Show that a 5 x 5 chessboard with a corner square
removed can be tiled using L-shaped pieces.

Find a 5 x 5 chessboard with a square removed that
cannot be tiled using L-shaped pieces. Prove that such
a tiling does not exist for this board.

Let a be an integer and d be a positive integer. Show
that the integers ¢ and r with a dg + r and
0 < r < d, which were shown to exist in Exam-
ple 16, are unique.

Use the principle of mathematical induction to show
that P(n) is true forn = b, b+ 1,b + 2, ..., where
b is an integer, if P(b) is true and the implication
P() — Pk + 1) is true for all positive integers k
with k > b.

Can you use the well-ordering property to prove this
statement? “Every positive integer can be described
using no more than 15 English words”?

Use the well-ordering principle to show thatif x and y
are real numbers with x < y, then there is a rational
number r with x < » < y. [Hint: Show that there
exists a positive integer A with A > 1/(y — x). Then
show that there is a rational number r with denomi-
nator A between x and y by looking at the numbers
lx] + j/A, where j is a positive integer. |

%4 Recursive Definitions and Structural Induction

INTRODUCTION

Sometimes it is difficult to define an object explicitly. However, it may be easy to define this
object in terms of itself. This process is called recursion. For instance, the picture shownt
in Figure 1 is produced recursively. First, an original picture is given. Then a process of
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FIGURE 1 A Recursively Defined Picture. ‘ f
|
successively superimposing centered smaller pictures on top of the previous pictures is
carried out.

We can use recursion to define sequences, functions, and sets. In previous discussions,
we specified the terms of a sequence using an explicit formula. For instance, the sequence ‘
of powers of 2 is given by a,, = 2" forn = 0, 1, 2, . ... However, this sequence can also 1
be defined by giving the first term of the sequence, namely, ag = 1, and a rule for finding
a term of the sequence from the previous one, namely, a,+; = 2a, forn =0,1,2,.... | |
When we define a sequence recursively by specifying how terms of the sequence are found
from previous terms, we can use induction to prove fesults about the sequence.

When we define sets recursively, we specify some initial elements in a basis step and
provide a rule for constructing new elements from those we already have in the recursive
step. To prove results about recursively defined sets we use a method called structural
induction.

RECURSIVELY DEFINED FUNCTIONS

We use two steps to define a function with the set of nonnegative integers as its domain:
BASIS STEP: Specify the value of the function at zero.

RECURSIVE STEP: Give a rule for finding its value at an integer from its values at
smaller integers.

Such a definition is called a recursive or inductive definition.

) 3.4 Recursive Definitions and Structural Induction 257 ‘
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EXAMPLE 1 Suppose that f is defined recursively by
Extra f(O) =3,
Examples
fn+1)=2f(n)+3.
Find f(1), f(2), f(3),and f(4).
Solution: From the recursive definition it follows that

) =2f0)+3=2-3+3=09,

fQ)=2f1)+3=2-94+3=21,

fB3=2f2)+3=2-214+3=45,

fA) =2f3)+3=2-45+3=93. <

Many functions can be studied using their recursive definitions. The factorial function
is one such example.

EXAMPLE 2 Give an inductive definition of the factorial function F'(n) = n!.
Solution: We can define the factorial function by specifying the initial value of this func-
tion, namely, F(0) = 1,and giving a rule for finding F'(n + 1) from F (n). This is obtained
by noting that (n 4 1)! is computed from n! by multiplying by n + 1. Hence, the desired
rule is

Fn+1)=®n+ DF(Hn). <
To determine a value of the factorial function, such as F(5) = 5!, from the recursive
definition found in Example 2, it is necessary to use the rule that shows how to express
F(n + 1) in terms of F(n) several times:

F(B)=5F4)=5-4F3)=5-4-3F2)=5-4-3-2F(1)

=5.4.3-2-1-F(0)=5-4-3-2-1-1=120.
Once F(0) is the only value of the function that occurs, no more reductions are necessary.
The only thing left to do is to insert the value of F'(0) into the formula.

Recursively defined functions are well defined. This is a consequence of the princi-
ple of mathematical induction. (See Exercise 56 at the end of this section.) Additional
examples of recursive definitions are given in the following examples.

EXAMPLE 3 Give a recursive definition of a", where a is a nonzero real number and # is a nonnegative
integer.
Solution: The recursive definition contains two parts. First a’ is specified, namely, o=
Then the rule for finding a"*! from a”, namely,a" ™' = a - a",forn =0,1,2,3, ..., 18
given. These two equations uniquely define a” for all nonnegative integers n. <
EXAMPLE 4 Give a recursive definition of
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EXAMPLE 5
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Solution: The first part of the recursive definition is

0
E ajy = ay.
k=0

The second part is

n+1 n

g ag = Zak + dny1-
k=0 k=0

In some recursive definitions of functions, the values of the function at the first &
positive integers are specified, and a rule is given for determining the value of the func-
tion at larger integers from its values at some or all of the preceding k integers. That
such definitions produce well-defined functions follows from strong induction (see Exer-
cise 57 at the end of this section).

The Fibonacci numbers, fo, fi, fa, ..., are defined by the equations fy =0, f; =
1,and

fn = fn—l +fn—2
forn =2,3,4,....

Find the Fibonacci numbers f, f3, f4, f5,and fs.

Solution: Since the first part of the definition states that fy = 0 and J1 = 1,it follows
from the second part of the definition that

fLo=fitfo=1+0=1,
Hh=h+fi=1+1=2,
Ja=fat+ fa=2+1=3,
fs=fat f3=342=5,
fe=fs+fa=5+3=238. <

We can use the recursive definition of the Fibonacci numbers to prove many proper-
ties of these numbers. We give one such property in Example 6.

FIBONACCI (1170-1250) Fibonacci (short for filius Bonacci, or “son of Bonacci”) was also known
as Leonardo of Pisa. He was born in the Italian commercial center of Pisa. Fibonacci was a merchant
who traveled extensively throughout the Mideast, where he came into contact with Arabian mathematics.
In his book Liber Abaci, Fibonacci introduced the European world to Arabic notation for numerals and
algorithms for arithmetic. It was in this book that his famous rabbit problem (described in Section 6.1)
appeared. Fibonacci also wrote books on geometry and trigonometry and on Diophantine equations,
which involve finding integer solutions to equations.
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EXAMPLE 6

Extra
Examples

THEOREM 1

Links

Show that whenever n > 3, f, > a2 where o = (1 + V5)/2.

Solution: We can use strong induction to prove this inequality. Let P (n) be the statement

BASIS STEP: First, note that

3-48

fn > a"~2. We want to show that P(n) is true whenever 7 is an integer greater than or

equal to 3.

w<2=f, @=0@+V5/2<3=fi
so that P(3) and P (4) are true.

INDUCTIVE STEP: Assume that P(j) is true, namely, that fi> a2, for all integers
jwith3 < j < k, where k > 4. We must show that P(k + 1) is true, that is, that
frg1 > o1, Since « is a solution of +2 — x — 1 = 0 (as the quadratic formula shows),
it follows that o? = a + 1. Therefore,

3

I S W B 9 Dot = a B TR P o o2 4 ok 3,
By the inductive hypothesis, if k > 4, it follows that

fior > a7, fio > o2
Therefore, we have

fir1 = fi + i1 > ot =
It follows that P (k + 1) is true. This completes the proof. «

k—1

Remark: The inductive step shows that whenever k > 4, P(k + 1) follows from the
assumption that P(j yistruefor3 < j < k. Hence, the inductive step does not show that
P(3) - P(#).Therefore, we had to show that P(4) is true separately.

We can now show that the Euclidean algorithm uses O (log b) divisions to find the
greatest common divisor of the positive integers a and b, where a > b.

LAME’S THEOREM Let a and b be positive integers with @ = b. Then the number
of divisions used by the Euclidean algorithm to find ged(a, b) is less than or eq ual 1o

five times the number of decimal digits in b.

GABRIEL LAME (1795-1870) Gabriel Lamé entered the Ecole Polytechnique in 1813, graduating

in 1817. He continued his education at the Leole des Mines, graduating in 1820.

In 1820 Lamé went to Russia, where he was appointed director of the Schools of Highways and
Transportation in St. Petersburg, Not only did he teach, but he also planned roads and bridges while in
Russia. He returned to Paris in 1832, where he helped found an engineering firm. However, he soon Jeft
the firm, accepting the chair of physics at the icole Polytechnique, which he held until 1844. While holding
this position, he was active outside academia as an engineering consultant, serving as chief engineer of
mines and participating in the building of railways.

Lamé contributed original work to number theory, applied mathematics, and thermodynamics. His
best-known work involves the introduction of curvilinear coordinates. His work on number theory includes
proving Fermat’s Last Theorem for n = 7,as well as providing the upper bound for the number of divisions
used by the Euclidean algorithm given in this text.

In the opinion of Gauss,one of the most important mathematicians of all time, Lamé was the foremost

French mathematician of his time. However, French mathematicians considered him too practica],whefeas
French scientists considered him too theoretical.
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Proof: Recall that when the Euclidean algorithm is applied to find ged(a, b) with a > b,
this sequence of equations (where a = rg and b = ry) is obtained.

ro =riq1 +r 0<r <r

r1 =712 + 13 0<r<n

n—2 =Tp—1gn—1 + 1y Ofrn<rn—1
Fn—1 = Fnqn.

Here n divisions have been used to find r, = ged(a, b). Note that the quotientsqi, g2, ..., gn—1
are all at Jeast 1. Moreover, g, > 2,since r, < r,_;. This implies that

rnZIZfZ,
ern22f2=f3,
Zr-1trm > f3+ fo= fa

> r3+rs > fn—1+fn—2=fn,
b=rizrn+r>fi+ fi-1 = fi.

It follows that if n divisions are used by the Euclidean algorithm to find ged(a, b) with
a = b,then b > f, 1. From Example 6 we know that f,,1 > " ! forn > 2, where ¢ =
(1++/5)/2. Therefore, it follows that » > "~ Furthermore, since log;q o ~ 0.208 > 1/5,
we see that

logigb > (n — 1)logpo > (n — 1)/5.

Hence,n — 1 < 5 loggb. Now suppose that b has k decimal digits. Then » < 10* and
logig b < k. It follows thatn — 1 < 5k, and since k is an integer, it follows that n < 5k. This
finishes the proof. <

Since the number of decimal digits in b, which equals [log;, b] + 1,is less than or equal
tolog g b + 1, Theorem 1 tells us that the number of divisions required to find ged(a, b)
with a > b is less than or equal to 5(log ) b + 1). Since 5(log;o b + 1) is O(log b), we see
that O(log b) divisions are used by the Euclidean algorithm to find ged(a, b) whenever
a>b.

RECURSIVELY DEFINED SETS AND STRUCTURES

We have explored how functions can be defined recursively. We now turn our attention
to how sets can be defined recursively. Just as in the recursive definition of functions,
recursive definitions of sets have two parts, a basis step and a recursive step. In the basis
step, an initial collection of elements is specified. In the recursive step, rules for forming
new clements in the set from those already known to be in the set are provided. Recursive
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definitions may also include an exclusion rule, which specifies that a recursively defineq
set contains nothing other than those elements specified in the basis step or generated by
applications of the recursive step. In our discussions, we will always tacitly assume thay
the exclusion rule holds and no element belongs (0 a recursively defined set unless it jg
in the initial collection specified in the basis step or can be generated using the recursive
step one or more times. Later we will see how we can use a technique known as structura|
induction to prove results about recursively defined sets.

Examples 7, 8,10, and 11 illustrate the recursive definition of sets. In each example,
we show those elements generated by the first few applications of the recursive step.

EXAMPLE 7 Consider the subset S of the set of integers defined by
BASIS STEP: 3¢ 8.
j O 4.
Lxtra | ' RECURSIVE STEP: lfx e Sandy € S,thenx +y € 5.

The new elements found to be in S are 3 by the basis step, 3 + 3 = 6 at the first
application of the recursive step, 3+ 6 = 6 + 3 = 9 and 6 + 6 = 12 at the second
application of the recursive step, and so on. <

Recursive definitions play an important role in the study of strings. (See Chapter
11 for an introduction to the theory of formal languages, for example.) Recall from Sec-
tion 3.2 that a string over an alphabet 2 is a finite sequence of symbols from 3. We can
define T*, the set of strings over 2, recursively, as Definition 2 shows.

DEFINITION 2 The set £* of strings over the alphabet % can be defined recursively by
BASIS STEP: A € T* (where X is the empty string containing no symbols).

RECURSIVE STEP: Ifw € £*and x € X, then wx € D,

The basis step of the recursive definition of strings says that the empty string belongs to
% The recursive step states that new strings are produced by adding a symbol from %
to the end of strings in L*. At each application of the recursive step, strings containing
one additional symbol are generated.

EXAMPLE 8 If = = {0, 1}, the strings found to be in T*, the set of all bit strings, are A, specified to
be in T* in the basis step, 0 and 1 formed during the first application of the recursive
step, 00, 01, 10, and 11 formed during the second application of the recursive step, and

-

SO on.

Recursive definitions can be used to define operations or functions on the elements
of recursively defined sets. This is illustrated in Definition 3 of the concatenation of two
strings and Example 9 concerning the length of a string,
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Ed pEFINITION 3 Two strings can be combined via the operation of concatenation. Let T be a set of
¥ symbols and X* the set of strings formed from symbols in ¥. We can define the
'E}t concatenation of two strings, denoted by -, recursively as follows. |
s
|
Vfi BASIS STEP: If w € ¥*,then w - A = w, where A is the empty string, |
ra
RECURSIVE STEP: Ifw) € £*and wy € T*and x € T, then w - (wx) = I
le, (wy - wy)x. | :
1]
|
The concatenation of the strings w; and w; is often written as w wy rather than wi - Wa. \ |
By repeated application of the recursive definition, it follows that the concatenation of ‘
two strings w and w; consists of the symbols in w followed by the symbols in w-. For in-
stance, the concatenation of wy = abra and wy = cadabra is ww, = abracadabra.
|
rst |
nd EXAMPLE 9 Length of a String Give a recursive definition of /(w), the length of the string w.
D |
Solution: The length of a string can be defined by ( ‘
el 1) =0
N I(wx) =Il(w) + lifw € Z* and x € I. <
an
Another important use of recursive definitions is to define well-formed formulae of ||
various types. This is illustrated in Examples 10 and 11. it
EXAMPLE 10 Well-Formed Formulae for Compound Propositions We can define the set of well- |
formed formulae for compound propositions involving T, F, propositional variables, and
operators from the set {—, A, V, —, <},
BASIS STEP: T, F, and p, where p is a propositional variable, are well-formed
formulae.
to RECURSIVE STEP: If E and F are well-formed formulae, then (—E), (EAF),(EVF),
3 (E — F),and (E <> F) are well-formed formulae.
ng For example, by the basis step we know that T, F, p, and ¢ are well-formed formulae,
where p and g are propositional variables. From an initial application of the recursive
step,we know that (p Vv gq),(p — F),(F — ¢),and (¢ AF) are well-formed formulae. A
to second application of the recursive step shows that ((p vV q¢) — (¢ AF)), (g vV (p Vv q)),
ive and ((p — F) — T) are well-formed formulae. « |
nd
< |
i EXAMPLE 11 Well-Formed Formulae of Operators and Operands We can define the set of well-
o formed formulae consisting of variables, numerals, and operators from the set {++, —, *,

/s 1} (where x denotes multiplication and 1 denotes exponentiation) recursively.
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BASIS STEP: x is a well-formed formula if x is a numeral or variable.

RECURSIVE STEP: If F and G are well-formed formulae, then (F + G), (F — G),
(F % G),(F/G),and (F 1 G) are well-formed formulae.

For example, by the basis step we see that x, y, 0,and 3 are well-formed formulae (ag
is any variable or numeral). Well-formed formulae generated by applying the recursive
step once include (x +3), (3 +Y), (x —y),3—=0),(x*3),3*y), (3/0), (x/y), 31 x),
and (04 3). Applying the recursive step twice shows that formulae such as ((x + 3) + 3)
and (x — (3 % y)) are well-formed formulae. [Note that (3/0) is a well-formed formula
since we are concerned only with syntax matlers here.] =1

We will study trees extensively in Chapter 9. A tree is a special type of a graph; a
graph is made up of vertices and edges connecting some pairs of vertices. We will study
graphs in Chapter 8. We will briefly introduce them here to illustrate how they can be
defined recursively.

DEFINITION 4 The set of rooted trees, where a rooted tree consists of a set of vertices containing
a distinguished vertex called the roof, and edges connecting these vertices, can be
defined recursively by these steps:

BASIS STEP: A single vertex r is a rooted tree.

RECURSIVE STEP: Suppose that T, T2, ..., T, are rooted trees with roots
1,72, . . - » I'n, TESpectively. Then the graph formed by starting with a root r, which
is not in any of the rooted trees Ty, T», ..., I,,and adding an edge from r to each
of the vertices ry, 12, ..., Fn, is also a rooted tree.

In Figure 2 we illustrate some of the rooted trees formed starting with the basis step and
applying the recursive step one time and two times. Note that infinitely many rooted trees
are formed at each application of the recursive definition.

Rooted trees are a special type of binary trees. We will provide recursive definitions of
two types of binary trees, full binary trees and extended binary trees. In the recursive step

Basis step °

B ANVANY/IN

TAAANOA

FIGURE 2 Building Up Rooted Trees.
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of the definition of each type of binary tree, two binary trees are combined to form a new
tree with one of these trees designated the left subtree and the other the right subtree. In
extended binary trees, the left subtree or the right subtree can be empty, but in full binary
trees this is not possible. Binary trees are one of the most important types of structures in
computer science. In Chapter 9 we will see how they can be used in searching and sorting
algorithms, in algorithms for compressing data, and in many other applications. We first
define extended binary trees.

DEFINITION 5 The set of extended binary trees can be defined recursively by these steps:

BASIS STEP: The empty set is an extended binary tree.

RECURSIVE STEP: I Ty and T; are extended binary trees, there is an extended
binary tree,denoted by T} - T3, consisting of a root r together with edges connecting
the root to each of the roots of the left subtree 7] and the right subtree 7; when
these trees are nonempty.

Figure 3 shows how extended binary trees are built up by applying the recursive step from
one to three times.

We now show how to define the set of full binary trees. Note that the difference
between this recursive definition and that of extended binary trees lies entirely in the
basis step.

Basis step ¢

Step 1

AN

/IODNINAY Y
/I NANANA AN
SVINPNONY,

Building Up Extended Binary Trees.
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Basis step ™

3~54

Step 1 /\

TN AN

FIGURE 4 Building Up Full Binary Trees.

DEFINITION 6

EXAMPLE 12

The set of full binary trees can be defined recursively by these steps:
BASIS STEP: There is a full binary tree consisting only of a single vertex r.
RECURSIVE STEP: 1f T, and T5 are full binary trees, there is a full binary tree,

denoted by T « 72, consisting of a root r together with edges connecting the root
to each of the roots of the left subtree 7 and the right subtree Ts.

Figure 4 shows how full binary trees are built up by applying the recursive step one and

two times.

STRUCTURAL INDUCTION

To prove results about recursively defined sets we generally use some form of mathemati-
cal induction. Example 12 illustrates the connection between recursively defined sets and

mathematical induction.

Show that the set S defined in Example 7 is the set of all positive integers that are mul-

tiples of 3.

Solution: Let A be the set of all positive integers divisible by 3. To prove that A = S,
we must show that A is a subset of S and that S is a subset of A. To prove that A is a
subset of S, we must show that every positive integer divisible by 3 is in S. We will use
mathematical induction to prove this.

Let P(n) be the statement that 3n belongs to S. The basis step holds since by the
first part of the recursive definition of §,3 -1 =3 is in S.To establish the inductive step
assume that P (k) is true, namely, that 3k is in S, Since 3k is in S and since 3 is in S, it
follows from the second part of the recursive definition of § that 3k +3 =3(k + 1) is

alsoin S.
To prove that Sis a subset of A, we use the recursive definition of S. First, the basis

step of the definition specifies that 3isin S. Since 3 = 3 - 1, all elements specified to be
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in § in this step are divisible by 3. To finish the proof, we must show that all integers in
S generated using the second part of the recursive definition are in A. This consists of
showing that x 4 y isin A whenever x and y are elements of S also assumed to be in A.
Now if x and y are both in A, it follows that 3 | x and 3 | y. By Theorem 1 of Section
2.4, it follows that 3 | x + y, completing the proof. <

In Example 12 we used mathematical induction over the set of positive integers and
a recursive definition to prove a result about a recursively defined set. However, instead
of using mathematical induction directly to prove results about recursively defined sets,
we can use a more convenient form of induction known as structural induction. A proof
by structural induction consists of two parts. These parts are

BASIS STEP: Show that the result holds for all elements specified in the basis step of
the recursive definition to be in the set.

RECURSIVE STEP: Show that if the statement is true for each of the elements used to
construct new elements in the recursive step of the definition, the result holds for these
new elements.

The validity of structural induction follows from the principle of mathematical in-
duction for the nonnegative integers. To see this, let P(n) state that the claim is true for
all elements of the set that are generated by n or fewer applications of the rules in the
recursive step of a recursive definition. We will have established that the principle of
mathematical induction implies the principle of structural induction if we can show that
P(n) is true whenever r is a positive integer. In the basis step of a proof by structural
induction we show that P(0) is true. That is, we show that the result is true of all ele-
ments specified to be in the set in the basis step of the definition. A consequence of the
inductive step is that if we assume P (k) is true, it follows that P (k + 1) is true. When we
have completed a proof using structural induction, we have shown that P(0) is true and
that P(k) implies P(k + 1). By mathematical induction it follows that P (n) is true for all
nonnegative integers n. This also shows that the result is true for all elements generated
by the recursive definition, and shows that structural induction is a valid proof technique.

EXAMPLES OF PROOFS USING STRUCTURAL INDUCTION To use struc-
tural induction to prove a result about the set of well-formed expressions defined in
Example 10, we need to complete this basis step and this recursive step.

BASIS STEP: Show that the result is true for T, F, and p whenever p is a propositional
variable.

RECURSIVE STEP: Show that if the result is true for the compound propositions p
and ¢, it is also true for (—p), (p V g), (p A q),(p — q),and (p < q).

Example 13 illustrates how we can prove results about well-formed formulae using
structural induction.

Show that every well-formed formula for compound propositions, as defined in Exam-
ple 10, contains an equal number of left and right parentheses. <4

Proof:

BASIS STEP: Each of the formulae T, F, and p contains no parentheses, so clearly they
contain an equal number of left and right parentheses.
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EXAMPLE 14

RECURSIVE STEP: Assume p and g are well-formed formulae each containing
equal number of left and right parentheses. That is, if [, and /, are the number of leg
parentheses in p and ¢, respectively, and r), and r, are the number of right parentheseg
in p and g, respectively, then I, = r, and [; = r,. To complete the inductive step, we
need to show that each of (=p), (p vV @), (p A q), (p — @), and (p < gq) also containg
an equal number of left and right parentheses. The number of left parentheses in the
first of these compound propositions equals /, + 1 and in each of the other compoung
propositions equals {, + {5 + 1. Similarly, the number of right parentheses in the first of
these compound propositions equals , + 1 and in each of the other compound propos;.
tions equals rp, +r, + 1. Since [, = rp, and [, = ry, it follows that each of these compoung
expressions contains the same number of left and right parentheses. This completes the
inductive proof. <

Suppose that P(w) is a propositional function over the set of strings w € X* To
use structural induction to prove that P(w) holds for all strings w € £*, we need to
complete both a basis step and a recursive step. These steps are:

BASIS STEP: Show that P () is true.

RECURSIVE STEP: Assume that P(w) is true, where w € £*. Show thatifx € 3,
then P (wx) must also be true.

Example 14 illustrates how structural induction can be used in proofs about strings,

Use structural induction to prove that [(xy) = [(x) 4+ 1(y), where x and y belong to X*,
the set of strings over the alphabet .

Solution: We will base our proof on the recursive definition of the set £* given in Defini-
tion 2 and the definition of the length of a string in Example 9. Let P (y) be the statement
that [(xy) = [(x) + [(y) whenever x belongs to X*.

BASIS STEP: To complete the basis step, we must show that P (1) is true. That is, we
must show that /(xA) = [(x) +[(X) forall x € *. Since [(xA) =I(x) =I(x) + 0=
[(x) + [(A) for every string x, it follows that P (1) is true.

RECURSIVE STEP: To complete the inductive step, we assume that P(y) is true and
show that this implies that P(ya) is true whenever a € X. What we need to show is
that [ (xya) = I(x) + I(ya) for every a € %. To show this, note that by the recursive
definition of /(w) (given in Example 9), we have [(xya) = [(xy) 4+ 1 and I(ya) =
I(y) + 1. And, by the inductive hypothesis, [{(xy) = I(x) + {(y). We conclude that
l(xya) =1(x)+ 1)+ 1=1Ux)+1(ya). |

We can prove results about trees or special classes of trees using structural induction.
For example, to prove a result about full binary trees using structural induction we need
to complete this basis step and this recursive step.

BASIS STEP: Show that the result is true for the tree consisting of a single vertex.

RECURSIVE STEP: Show that if the result is true for the trees T} and Ty, then it is true
for tree Ty - T» consisting of a root r, which has T} as its left subtree and T; as its right
subtree.

Before we provide an example showing how structural induction can be used to prove
a result about full binary trees, we need some definitions. We will recursively define the
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height 4 (7T") and the number of vertices n(T) of a full binary tree T. We begin by defining

18 an . .
f left the height of a full binary tree.
heses
» W 0 .
Eaines DEFINITION 7 We define the height £(T) of a full binary tree T recursively.
n the BASIS STEP: The height of the full binary tree T' consisting of only a root r is
ound h(T)=0.
Ist of
Posi- RECURSIVE STEP: 1f T; and T, are full binary trees, then the full binary tree
ound T =T - T; has height h(T) = 1 + max(h(T}), h(T3)).
'S the
< .
If we let n(T") denote the number of vertices in a full binary tree, we observe that n(T")
* To satisfies the following recursive formula:
ed to BASIS STEP: The number of vertices n(T') of the full binary tree T consisting of only
arootrisn(T) =1.
RECURSIVE STEP: 1f T and T, are full binary trees, then the number of vertices of
the full binary tree T =T - T isn(T) = 1 + n(Ty) + n(T).
€% We now show how structural induction can be used to prove a resuit about full binary
trees.
ings.
THEOREM 2 If T is a full binary tree T, then n(T) < NN )
o X¥,
Proof: We prove this inequality using structural induction.
efini- BASIS STEP: For the full binary tree consisting of just the root » the result is true since
meng n(T) =1land h(T) =0,sothatn(T) =1 <2 — 1 = 1.
| INDUCTIVE STEP: For the inductive hypothesis we assume that n(T7) < 270+ _1
S, We and n(T») < 272+ _ 1 whenever T} and T5 are full binary trees. By the recursive
0= formulae for n(T') and A(T) we have n(T) = 1 + n(T)) + n(T>) and h(T) = 1 +
max (h(T1), h(12)).
> and We find that
EZ;Z n(T)y =14 n(T}) +n(T,) by the recursive formula for n(T)
0 = < 14 MO+ _ 1y 4 2#T)+L _ 1) by the inductive hypothesis
| thit =2 . max(2"T)+1 2h(T)+1y _ 1 gince the sum of two terms is at most
2 times the larger
=2. 2max(/1(T1),h(T2))+1 -1
tion.
need =2.2MT) _ 1 by the recursive definition of £ (T)
— 2h(T)+l —1.
This completes the inductive step. <
; trué
ight
- GENERALIZED INDUCTION
Tove We can extend mathematical induction to prove results about other sets that have the

well-ordering property besides the set of integers. Although we will discuss this concept
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in detail in Section 7.6, we provide an example here to illustrate the usefulness of such g
approach.

As an example, note that we can define an ordering on N x N, the ordered pairs f
nonnegative integers, by specifying that (x1, y1) is less than or equal to (x2, y2) if eithey
x| < x3,0rx; = xpand y; < yp; thisis called the lexicographic ordering. The set N x
with this ordering has the property that every subset of N x N has a least element (see
Supplementary Exercise 47 in Chapter 7). This implies that we can recursively define the
terms dy ., with m € N and n € N, and prove results about them using a variant of
mathematical induction, as illustrated in Example 15.

EXAMPLE 15 Suppose that d,, is defined recursively for (m,n) € Nx Nbyago=0and

am-1n+1 ifn=0andm > 0
Am.n =

amn—1 +n ifn>0.

Show that a,, , = m + n(n + 1)/2 for all (m,n) € N x N, that is, for all pairs of
nonnegative integers.

Solution: We can prove that a,, , = m-+n(n+1)/2usinga generalized version of math-
ematical induction. The basis step requires that we show that this formula is valid when
(m, n) = (0, 0). The induction step requires that we show that if the formula holds for
all pairs smaller than (m, n) in the lexicographic ordering of N x N, then it also holds

for (m, n).

BASIS STEP: Let (m,n) = (0, 0). Then by the basis case of the recursive definition
of am, we have apo=10. Furthermore, when m=n=0, m+nrn+1)/2=
0+ (0 - 1)/2 = 0. This completes the basis step.

INDUCTIVE STEP: Suppose that a,y » = m' +n'(n’ + 1)/2 whenever (m',n) is
less than (m, n) in the lexicographic ordering of N x N. By the recursive definition, if
n = 0,then ay n = dm—1,, + 1. Because (m — 1, n) is smaller than (m, n), the induction
hypothesis tells us that a,,—1,, = m — 1 +nn+1)/2,s0that @y, =m—1+n(n+
1)/2+ 1 = m + n(n + 1)/2, giving us the desired equality. Now suppose that n > 0,
SO Gp.n = Am,n—1 + 1. Since (m, n — 1) is smaller than (m, n), the induction hypothesis
tells us that @p p—1 = m + (n — Dn/2,80 @ = m + (n—1n/2+n=m+ (n* =
n+2n)/2 = m +n(n + 1)/2. This finishes the inductive step. -«

As mentioned, we will justify this proof technique in Section 7.6.

Exercises

a) fin+1)=-2f®).

b) fn+1)=3f()+7.

¢ fln+1)=f(m)’—2f®m) -2
d) f(n+1) =308

1. Find f(1), f(2), f(3),and f(@)if f(n) is defined re-
cursively by f(0) = landforn =0,1,2,...
a) fn+1D) =/ ) +2
b) f(n+ 1) =3f(n).

¢ fn+1) =20, 3. Find £(2), f(3), f(4),and f(5) if f is defined recur-

d) fa+D)=fm)’+fm)+1

2. Find f(1), £(2), f(3), f(@),and f(5)if f(n)is defined
recursively by f(0) =3 andforn=0,1,2,...

sively by f(0) = —1, f(1) =2 andforn=1,2,...

a) fn+1)=fm+3f(n—1.
b) fn+1)=Ff0)’fn—1).
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¢ flnt D=3fm?*—4f(n— 12
a fo+h= fo—D/fm).

Find £, 3, f@),and f(5) if f is defined recur-

sively by fO =f1)=1andforn=1,2,...

a) f(n +1)= f(n) . f(” - D.

p) f(n+1D= f(n)fi,!! —1).

o fat+D)=Ffm*+ fln—17

d fa+D=r/fn=1.

Determine whether each of these proposed defini-
tions is a valid recursive definition of a function f
from the set of nonnegative integers to the set of in-
tegers. If f is well defined, find a formula for f(n)
when n is a nonnegative integer and prove that your
formula is valid.

a) f(O):O,f(n):Zf(n—Z)fornzl

b) f(0)=l,f(n)zf(n—l)—lfornzl

) f(O):2,f(1)=3,f(n)=f(n—l)—lf0rn22

d) f(O):l,f(l)=2,f(n)=2f(n—2)f0rn22

e) FO =1, f(n)=3f(n—1Difrnisodd andn > 1
and f(n) =9f(n—2)ifnisevenandn > 2

. Determine whether each of these proposed defini-

tions is a valid recursive definition of a function f
from the set of nonnegative integers to the set of in-
tegers. If f is well defined, find a formula for f(n)
when 7 is a nonnegative integer and prove that your
formula is valid.

a) fO=1Lf)=—fn—1)forn>1

b) fO)=1,/1)=0,f2)=2,f(n) =2f(n—3)
forn >3

¢ f(O)=0,f(D=1,f(m)=2fn+1forn=>2

d fO)=0,f1)=1,fn)=2fn—1)forn=>1

e) f(0)=2,fn)=f(n—Difnisoddandn > 1
and f(n) =2f(n—2)ifn >2

. Give a recursive definition of the sequence {a,},

n=1,2,3,...if
a) a, = 6n. b) a, =2n + 1.

¢) a, = 10", d) g, =5.

Give a recursive definition of the sequence {a,},
n=1,2,3,...if
a) a, =4n — 2.
€) a, =nkn+1).

b) a, =1+ (—1)".
d) a, =n’.

. Let F be the function such that F(n) is the sum of the

10,

11

first n positive integers. Give a recursive definition of
F(n).

Give a recursive definition of S, (1), the sum of the
integer m and the nonnegative integer .

Give a recursive definition of P,,(n), the product of
the integer m and the nonnegative integer n.

In Exercises 12-19 , is the nth Fibonacci number.

12,

Prove that f2 + f2 +---+ f2 = f, fur1 Whenever n
Is a positive integer.

. Show that fn+1fn~l

. Letay,a,...,a,,and by, b,, ..
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. Prove that fi + A+ -+ fo._) = fo, whenever n is

a positive integer.
— f2 = (—1)" whenever n is a
positive integer.

. Show that fo fi + fifo + -+ + o1 fon = f3, When-

ever n is a positive integer.

. Showthat fo — fi+ fo—- - = fas + Jou = fru1 — 1

whenever n is a positive integer.

. Determine the number of divisions used by the Eu-

clidean algorithm to find the greatest common divi-
sor of the Fibonacci numbers f, and f,,, wherenisa
nonnegative integer. Verify your answer using math-
ematical induction.

A=l o]

Show that

no__ fn+l fu
i |: fn fnfl:|

whenever n is a positive integer.

. By taking determinants of both sides of the equation

in Exercise 18, prove the identity given in Exercise
14, (This exercise depends on the notion of the deter-
minant of a 2 x 2 matrix.)

. Give a recursive definition of the functions max and

minso that max{a;, a;, ..., a,) andmin{a,, as, . .., d,)
are the maximum and minimum of the n numbers
ay, az, ..., a,, respectively.

., b, be real numbers.
Use the recursive definitions that you gave in Exer-

cise 20 to prove these.
a) max(—a,, —da, ..., —da,) = —min{ay, az, ..., ay)
b) max{(a; + by, a, + by, ..., a, + by)

< max(a,, dz, ..., a,) +max(by, by, ..., by)
C) min(al + bl, a + bg, e, an b,,)

> min(ay, dy, ..., ad,) + min(by, by, ..., b,)

. Show that the set S definedby 1 € Sands +1 € §

whenever s € S and t € § is the set of positive inte-
gers.

. Give a recursive definition of the set of positive inte-

gers that are multiples of 5.

. Give a recursive definition of

a) the set of odd positive integers.
b) the set of positive integer powers of 3.
¢) the set of polynomials with integer coefficients.

. Give a recursive definition of

a) the set of even integers.

b) the set of positive integers congruent to 2 mod-
ulo 3.

¢) the set of positive integers not divisible by 5.

. Let S be the subset of the set of ordered pairs of in-

tegers defined recursively by
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217.

28.

29,

30.

31.

32.

33.

Basis step: (0,0) € S.

Recursive step: 1f (a,b) € S,then (a+2,b+3)e S
and (@ +3,b+2) € S.

a) List the elements of S produced by the first five
applications of the recursive definition.

b) Use strong induction on the number of applica-
tions of the recursive step of the definition to show
that5|a + b when (a, b) € S.

¢) Use structural induction to show that 5|a +b
when (a, b) € S.

Let S be the subset of the set of ordered pairs of in-
tegers defined recursively by

Basis step: (0,0) € S.

Recursive step: 1If (a,b) € S, then (a,b+ 1) € S,
(a+1,b+1)e S,and(@+2,b+1) € S.

a) List the elements of S produced by the first four
applications of the recursive definition.

b) Use strong induction on the number of applica-
tions of the recursive step of the definition to show
that a < 2b whenever (a, b) € S.

¢) Use structural induction to show that a < 2b
whenever (a, b) € S.

Give a recursive definition of each of these sets of or-
dered pairs of positive integers. (Hint: Plot the points
in the set in the plane and look for lines containing
points in the set.)

a) S={(a,b)laeZ",beZ", anda + b is odd}
b) S={(a.b)laecZ",beZt anda|b}
o S={ab)lacZ*,beZ and3|a+ b}

Give a recursive definition of each of these sets of or-
dered pairs of positive integers. Use structural induc-
tion to prove that the recursive definition you found is
correct. (Hint: To find a recursive definition plot the
points in the set in the plane and look for patterns.)

a) S={(a,b)|lacZt,becZ ", anda+ biseven}

b) S={(a,b)|acZ" bcZ, anda or bis odd}

¢) S={(a,b)lacZ,beZ, anda + bisoddand
315}

Prove that in a bit string, the string 01 occurs at most

one more time than the string 10.

Define well-formed formulae of sets, variables repre-

senting sets, and operators from { , U, N, —}.

a) Give arecursive definition of the function ones(s),
which counts the number of ones in a bit string s.

b) Use structural induction to prove that ones(st) =
ones(s) + ones(t).

a) Give a recursive definition of the function m(s),
which equals the smallest digit in a nonempty
string of decimal digits.

b) Use structural induction to prove that m(st) =
min{m(s), m(t)).

3\60

The reversal of a string is the string consisting of the sy,
bols of the string in reverse order. The reversal of
string w is denoted by w¥.

34.

35.

*36.

37.

*38.

39.

*40.

41.

*42,

43.

Find the reversal of the following bit strings.

a) 0101 b) 11011 ¢) 1000 10010111
Give a recursive definition of the reversal of a String,
(Hint: First define the reversal of the empty string,
Then write a string w of length n 4+ 1 as xy, where x i
a string of length n, and express the reversal of v iy
terms of x® and y.)

Use structural induction to prove that (w,w,)? —
wiwf,

Give a recursive definition of w' where w is a string
and i is a nonnegative integer. (Here w' represents
the concatenation of i copies of the string w.)

Give arecursive definition of the set of bit strings that
are palindromes.

When does a string belong to the set A of bit strings
defined recursively by

re A
OxleAifx e A,

where A is the empty string?

Recursively define the set of bit strings that have
more zeros than ones.

Use Exercise 37 and mathematical induction to show
that I(w') = i - I(w), where w is a string and i is a
nonnegative integer.

Show that (w®)" = (w')* whenever w is a string and
i 13 a nonnegative integer; that is, show that the ith
power of the reversal of a string is the reversal of the
ith power of the string.

Use structural induction to show that n(7) >
2h(T) 4+ 1, where T is a full binary tree, n(7T) equals
the number of vertices of T, and A(T) is the height
of T.

The set of leaves and the set of internal vertices of a full
binary tree can be defined recursively.

Basis step: The root r is a leaf of the full binary tree with
exactly one vertex r. This tree has no internal vertices.

Recursive step: The set of leaves of the tree T =T, - T»
is the union of the set of leaves of T, and the set of leaves
of T,. The internal vertices of T are the root r of T and
the union of the set of internal vertices of 7, and the set
of internal vertices of T.

44.

45,

Use structural induction to show that [(T), the num-
ber of leaves of a full binary tree T, is 1 more than
i(T), the number of internal vertices of T.

Use generalized induction as was done in Example 15
to show that if a,, , is defined recursively by ago = 0
and

a e am—l,u -+ 1
- Ay on—1 + 1

ifn =0andm > 0
ifn > 0,

then a,,, = m +n forall (m,n) € N x N,
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46. Use generalized induction as was done in Example 15
] to show that if a,, is defined recursively by ay, =5
and

= Ap—1,n +2 ifn=1landm>1
Guign Aypn—1 +2 if n > 1,

then dy.n = 2(m +n) + 1for all (m, n) € Y AR A
47, A partition of a positive integer n is a way to write n
as a sum of positive integers. For instance, 7 = 3 +
9+ 14 1isapartition of 7. Let P,, equal the number
of different partitions of m, where the order of terms
in the sum does not matter,and let P, , be the number
of different ways to express m as the sum of positive
integers not exceeding n.
a) Show that P, = P,.

b) Show that the following recursive definition for
P, , 1s correct:

1 ifm=1
1 ifn=1
Py = Pm,m ifm<n
1 + Pm,mﬁl lf m=n>1
Puwr+ Pypn ifm>n>L

¢) Find the number of partitions of 5 and of 6 using
this recursive definition.

Consider an inductive definition of a version of Acker-
mann’s function. This function was named after Wilhelm
Ackermann,a German mathematician who was a student
of the great mathematician David Hilbert. Ackermann’s
function plays an important role in the theory of recur-
sive functions and in the study of the complexity of certain
algorithms involving set unions. (There are several differ-
ent variants of this function. All are called Ackermann’s
function and have similar properties even though their
values do not always agree.)

2n ifm=0
0 ifm=1landn =0
Alm,n) =< 2 ifm=1landn = |

Alm— 1, Alm,n— 1))
iftm=1landn =2

Exercises 48-55 involve this version of Ackermann’s
function.

48. Find these values of Ackermann’s function.

a) A(1,0) b) A0, 1)
©) AL, 1) d) AQ2,2)
49. Show that A(m, 2) = 4 whenever m > 1.

0. Show that A(1, n) = 2" whenever n > 1.
S1. Find these values of Ackermann’s function.
a) A(2,3) *b) A(3,3)

*:52. Find A(3, 4).

53. Prove that A(m, n + 1) > A(m, n) whenever m and n
are nonnegative integers.
Prove that A(m + 1, n) > A(n, n) whenever m and n
are nonnegative integers.

*54,
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55. Prove that A(i, j) > j whenever i and j are nonneg-
ative integers.

s 56. Use mathematical induction to prove that a func-

tion F defined by specifying F(0) and a rule for ob-
taining F(n + 1) from F(n) is well defined.

5 57. Use strong induction to prove that a function F de-

fined by specifying F(0) and a rule for obtaining
F(n+1) from the values F(k) fork =0,1,2,...,nis
well defined.

58. Show that each of these proposed recursive defini-
tions of a function on the set of positive integers does
not produce a well-defined function.

a) F(n)y=1+F(|n/2])forn>1and F(1) = 1.
b) F(n) =14+ F(n —3) forn > 2, F(1) = 2, and

F(2) =3.
) F(n) = L + F(n/2) forn > 2, F(1) = 1, and
F) =2

d) Fn) = 1 + F(n/2) if n is even and n > 2,
F(n)=1— F(n — 1)if nis odd,and F(1) = 1.
e) Fn)=1+F®n/2)ifnisevenandn > 2, F(n) =
F(@Bn—1ifnisoddandn > 3,and F(1) = 1.
59. Show that each of these proposed recursive defini-
tions of a function on the set of positive integers does
not produce a well-defined function.

a) Fn)=14+F(l(n+1/2]) for n=>1 and
F() = 1.

b) Fn)=1+F@#n —2)forn>2and F(1) =0.

¢) F(n)=1+Fm/3)forn>3,F(1)=1,F@2) =2,
and F(3) = 3.

d) Fn) = 1 + F(n/2) if n is even and n > 2,
F(n) =1+ F(n —2)ifnisodd,and F(1) = 1.

e) F(n)=1+ F(F(n—1))ifn >2and F(1) = 2.

Exercises 60-62 deal with iterations of the logarithm func-
tion. Let log n denote the logarithm of n to the base 2, as
usual. The function log® n is defined recursively by

n ifk=0

) logUog® " n) if log(k") n is defined

- and positive
undefined otherwise.

log(k) n

The iterated logarithm is the function log* n whose value
at n is the smallest nonnegative integer k such that
log®n < 1.
60. Find each of these values:
a) log? 16
b) log® 256
9) log(3) 265536
d) 10g(4) 2265536
61. Find the value of log* n for each of these values of n:
a)2 b) 4 ¢)8 d) 16
e) 256 f) 65536 g) 22048

62. Find the largest integer n such that log* n = 5. Deter-
mine the number of decimal digits in this number.
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Exercises 63-65 deal with values of iterated functions.
Suppose that f(n) is a function from the set of real
numbers, or positive real numbers, or some other set of
real numbers, to the set of real numbers such that f(n)
is monotonically increasing [that is, f(n) < f(m) when
n < m)and f(n) < n for all n in the domain of f.] The
function f® () is defined recursively by

YR R ifk=0
fom = {f(f(’“”(n)) itk > 0.

Furthermore, let ¢ be a positive real number. The iterated

—— -
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function £ is the number of iterations of f required to re.
duce its argument to ¢ or less,so that f(n) is the smalleg;
nonnegative integer k such that ffm) <ec.

63. Let f(n) = n—a,where a is a positive integer. Find 5
formula for f® (). What is the value of f3(n) whep
n is a positive integer?

64. Let f(n) = n/2. Find a formula for f® (n). What js
the value of fj(n) when n is a positive integer?

65. Let f(n) = «/n. Find a formula for f®(n). What is
the value of f;(n) when n is a positive integer?

E,-55 Recursive Algorithms

INTRODUCTION

Sometimes we can reduce the solution to a problem with a particular set of input to the
solution of the same problem with smaller input values. For instance, the problem of
finding the greatest common divisor of two positive integers a and b where b > a can
be reduced to finding the greatest common divisor of a pair of smaller integers, namely,
b mod a and a, since ged(b mod a, a) = ged(a, b). When such a reduction can be done,
the solution to the original problem can be found with a sequence of reductions, until
the problem has been reduced to some initial case for which the solution is known. For
instance, for finding the greatest common divisor, the reduction continues until the smaller
of the two numbers is zero, since ged(a, 0) = a whena > 0.

We will see that algorithms that successively reduce a problem to the same problem
with smaller input are used to solve a wide variety of problems.

DEFINITION 1 An algorithm is called recursive if it solves a problem by reducing it to an instance
of the same problem with smaller input.
: We will describe several different recursive algorithms in Examples 1,2, 4,5, and 6. The
S i first example shows how a recursive algorithm can be constructed to evaluate a function
from its recursive definition.
EXAMPLE 1 Give a recursive algorithm for computing a” where a is a nonzero real number and n is

a nonnegative integer.

Solution: We can base a recursive algorithm on the recursive definition of ". This defi-
nition states that @"*! = a - a" for n > 0 and the initial condition a® = 1. To find a",
successively use the recursive condition to reduce the exponent until it becomes zero. We
give this procedure in Algorithm 1. ' 4



