w = w

L L

L
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Chemists use multigraphs, known as molecular graphs, to model chemical compounds. In these
graphs, vertices represent atoms and edges represent chemical bonds between these atoms.
Two structural isomers, molecules with identical molecular formulas but with atoms bonded
differently, have nonisomorphic molecular graphs. When a potentially new chemical compound
is synthesized, a database of molecular graphs is checked to see whether the molecular graph
of the compound is the same as one already known.

Electronic circuits are modeled using graphs in which vertices represent components and
edges represent connections between them. Modern integrated circuits, known as chips, are
miniaturized electronic circuits, often with millions of transistors and connections between
them. Because of the complexity of modern chips, automation tools are used to design them.
Graph isomorphism is the basis for the verification that a particular layout of a circuit produced
by an automated tool corresponds to the original schematic of the design. Graph isomorphism
can also be used to determine whether a chip from one vendor includes intellectual property
from a different vendor. This can be done by looking for large isomorphic subgraphs in the
graphs modeling these chips.

Exercises
In Exercises 1-4 use an adjacency list to represent the given 12./0 1 1 o0
graph. 0 0 1 0
1 0 1 O
1. a b 2.4a b c 1 1 1 0
In Exercises 13~15 represent the given graph using an adja-
cency matrix.
c d d ¢ 13. « b 14. a b
3. d 4.
c d c d
3 d
15.
5. Represent the graph in Exercise 1 with an adjacency ma- “ b
trix.
6. Represent the graph in Exercise 2 with an adjacency ma-
trix. c d
7. Represent the graph in Exercise 3 with an adjacency ma-
trix.
8. Represent the graph in Exercise 4 with an adjacency ma- In Ex_ercises- 16-18 draw.an undirected graph represented by
trix. the given adjacency matrix.
9. Represent each of these graphs with an adjacency matrix. 16. ] 3 2 1.1 2 o 1
a) Ky b) K14 ¢) Ka3 30 4 2 0 3 0
d) C4 e) Wi f) 03 2 4 0 0 3 1 1
) . i . ) 1 0 1 0O
In Exercises 10-12 draw a graph with the given adjacency
matrix. T
10 1 3 0 4
10.
0 1 0O L. g 0 1 1 1 2 1 3 0
1 0 1 0O 0 1 O 31 1 0 1
0 1 0 1 1 0 1 0 3 0 0 2
1110 4 01 2 3
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In Exercises 19-21 find the adjacency matrix of the given 35. vy

directed multigraph with respect to the vertices listed in al-
phabetic order. U,
Vi Vv
19. ] 2
it iy

Us Uy Vs v,

36. u; Uy V|

21. a b
. vs@‘rz

Uy iy vy Vs

c d

37. v
In Exercises 22-24 draw the graph represented by the given n U ;

adjacency matrix.

22. 11 o 1 23. [
0 0 1 2

1 1 1 0

iy iy

24.

N O N
N O o=

Y6

— N — o
o~ N
S —= N W
NO - O

. . . Us v vy
285, Is every zero—one square matrix that is symmetric and >
has zeros on the diagonal the adjacency matrix of a sim-

9
ple graph? 38. u, 0 y

26. Use an incidence matrix to represent the graphs in Exer- i
cises 1 and 2.

27. Use an incidence matrix to represent the graphs in Exer-
cises 13-15.

*28. What is the sum of the entries in a row of the adjacency us Uy iy Vs
matrix for an undirected graph? For a directed graph?

*29. What s the sum of the entries in a column of the adjacency 39 y
matrix for an undirected graph? For a directed graph? ) l v vy

30. What is the sum of the entries in a row of the incidence Ug Uy
matrix for an undirected graph? Vs

31. What is the sum of the entries in a column of the incidence
matrix for an undirected graph? Ve

*32. Find an adjacency matrix for each of these graphs. Us us |

a) K, b) C, c) W, d) Ky €) O, K! "3

Uy

*33. Find incidence matrices for the graphs in parts (a)—(d) of
Exercise 32.

In Exercises 34-44 determine whether the given pair of graphs 40. y B Y 2

is isomorphic. Exhibit an isomorphism or provide a rigorous a :

argument that none exists.

34. v, vy

Ity Ve V3

iy ity Uiy Uy Us vy
—e—o—o ——=»




41. 1 Uy s I g g
Uy iy
v vy vy Vs Ve vg
V3 V7
42.

Y6 vy
7 12} 12 V4 Vs
v Vg V1o
43. iy

us ity
44, u; vy
lig U Vg vy
i us vy V3
g Hq Vg V4
s Vs

45. Show that isomorphism of simple graphs is an equiva-
lence relation.

46. Suppose that G and H are isomorphic simple graphs.
Show that their complementary graphs G and H are also
isomorphic.

47. Describe the row and column of an adjacency matrix of
a graph corresponding to an isolated vertex.

48. Describe the row of an incidence matrix of a graph cor-
responding to an isolated vertex.

49. Show that the vertices of a bipartite graph with two or
more vertices can be ordered so that its adjacency matrix
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has the form

5 o)

where the four entries shown are rectangular blocks.

A simple graph G is called self-complementary if G and G
are isomorphic.

50. Show that this graph is self-complementary.

a b
d c

51. Find a self-complementary simple graph with five ver-
tices. .

*52. Show that if G is a self-complementary simple graph

with v vertices, then v = 0 or 1 (mod 4).
53. For which integers n is C,, self-complementary?

54. How many nonisomorphic simple graphs are there with n
vertices, when 7 is
a) 27 b) 37 c) 47

55. How many nonisomorphic simple graphs are there with
five vertices and three edges?

56. How many nonisomorphic simple graphs are there with
six vertices and four edges?

57. Are the simple graphs with the following adjacency ma-
trices isomorphic?

a) [0 0 1 0 1 1
0 0 1|,]1 0 o0
11 0 1 0 0

o 1 o 1] o 1 1 1
1 0 0 1 1 0 0 |
0 0 0 1|'"[1t 0o 0 1
1 1 1 0] [1 1 1 0]

|0 1 1 0 01 0 1
1 0 0 1 1 0 0 0
1 0 0 1 0 0 0 1
0 1 1 0] [1 0 1 0

58. Determine whether the graphs without loops with these
incidence matrices are isomorphic.

a)[1 o 1] 1 1 0

0 1 1{.|1 0 1
11 o] o 1 1

b[1 1 00 0] o1 0 01
10 1 0 1{]0 1 1 10
000 1 1['f1 00 1 0
o1 1 1 o] {101 01

59. Exte;ld the definition of isomorphism of simple graphs to
undirected graphs containing loops and multiple edges.

60. Define isomorphism of directed graphs.




-
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In Exercises 61-64 determine whether the given pair of di-
rected graphs are isomorphic. (See Exercise 60.)

61. I uzo

" 14

N

62. iy L] Vi Va

Vi3 V4
V1

63. u,

L33 i3 V2 V3

64. « Uy u

w

Connectivity

65. Show that if G and H are isomorphic directed graphg
then the converses of G and H (defined in the Preampy,
of Exercise 67 of Section 10.2) are also isomorphic,

66. Show that the property that a graph is bipartite is ap iso.
morphic invariant.

67. Find a pair of nonisomorphic graphs with the same de.
gree sequence (defined in the preamble to Exercige 36
in Section 10.2) such that one graph is bipartite, by the
other graph is not bipartite.

*68. How many nonisomorphic directed simple graphs aro

there with »n vertices, when » is

a) 27 b) 37 c) 47

*69. What is the product of the incidence matrix and its trang.
pose for an undirected graph?

*70. How much storage is needed to represent a simple graph
with n vertices and m edges using

a) adjacency lists?
b) an adjacency matrix?

¢) an incidence matrix?

A devil’s pair for a purported isomorphism test is a pair of
nonisomorphic graphs that the test fails to show that they are
not isomorphic.

71. Find a devil’s pair for the test that checks the degree se-
quence (defined in the preamble to Exercise 36 in Sec-
tion 10.2) in two graphs to make sure they agree.

72. Suppose that the function f from V) to V; is an isomor-
phism of the graphs G| = (V1, E1) and G, = (Va, Ej).
Show that it is possible to verify this fact in time polyno-
mial in terms of the number of vertices of the graph, in
terms of the number of comparisons needed.

Introduction

Many problems can be modeled with paths formed by traveling along the edges of graphs. For
instance, the problem of determining whether a message can be sent between two computers
using intermediate links can be studied with a graph model. Problems of efficiently planning
routes for mail delivery, garbage pickup, diagnostics in computer networks, and so on can be
solved using models that involve paths in graphs.

-

Paths

Informally, a path is a sequence of edges that begins at a vertex of a graph and travels ff"m
vertex to vertex along edges of the graph. As the path travels along its edges, it visits the vertices
along this path, that is, the endpoints of these edges.




