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; Exercises

th bit
1 find
actly In Exercises 1-8 determine whether the given graph has an 3. a b 4, a
y one Euler circuit. Construct such a circuit when one exists. If
blem no Euler circuit exists, determine whether the graph has an

Euler path and construct such a path if one exists.
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15.

g 8 f *16. Show that a directed multigraph having no isolateq y,
T tices has an Euler circuit if and only if the graph is e l:lr
connected and the in-degree and out-degree of each Vertey,
are equal.

#17. Show that a directed multigraph having no isolateq ver-
tices has an Euler path but not an Euler circuit if g4

: only if the graph is weakly connected and the i“-degreg-,:
i p 2 p f and out-degree of each vertex are equal for all byt two.
vertices, one that has in-degree one larger than its gy

8 a b Ve d ¢ degree and the other that has out-degree one larger than

k its in-degree.

] ) In Exercises 18-23 determine whether the directed graph
f £ h ! J shown has an Euler circuit. Construct an Euler circuit if ope
exists. If no Euler circuit exists, determine whether the dj-
rected graph has an Euler path. Construct an Euler path if one
exIsts.

k ! m n 0

9. Suppose that in addition to the seven bridges of Konigs- 18. ¢ k 19. * &

berg (shown in Figure 1) there were two additional
bridges, connecting regions B and C and regions B and
D, respectively. Could someone cross all nine of these A
bridges exactly once and return to the starting point?

10. Can someone cross all the bridges shown in this map ex- L
actly once and return to the starting point?

20. «

p
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11. When can the centerlines of the streets in a city be painted
without traveling a street more than once? (Assume that
all the streets are two-way streets.)

L
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12. Devise a procedure, similar to Algorithm 1, for construct-
ing Euler paths in multigraphs.

In Exercises 13—15 determine whether the picture shown can

be drawn with a pencil in a continuous motion without lifting

the pencil or retracing part of the picture.
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. Devise an algorithm for constructing Euler circuits in di-
rected graphs.

, Devise an algorithm for constructing Euler paths in di-
rected graphs.

. For which values of # do these graphs have an Euler cir-
cuit?
a) K, b) C, c) W, d) 0,

. For which values of n do the graphs in Exercise 26 have
an Euler path but no Euler circuit?

. For which values of m and n does the complete bipartite
graph K, , have an

a) Euler circuit?
b) Euler path?

. Find the least number of times it is necessary to lift a
pencil from the paper when drawing each of the graphs
in Exercises 1-7 without retracing any part of the graph.

In Exercises 30-36 determine whether the given graph has a
Hamilton circuit. If it does, find such a circuit. If it does not,
give an argument to show why no such circuit exists.
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Does the graph in Exercise 30 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

Does the graph in Exercise 31 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

Does the graph in Exercise 32 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

Does the graph in Exercise 33 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

Does the graph in Exercise 34 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

Does the graph in Exercise 35 have a Hamilton path? If
s0, find such a path. If it does not, give an argument to
show why no such path exists.

Does the graph in Exercise 36 have a Hamilton path? If
so, find such a path. If it does not, give an argument to
show why no such path exists.

For which values of n do the graphs in Exercise 26 have
a Hamilton circuit?

For which values of m and n does the complete bipartite
graph K, , have a Hamilton circuit?
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*46.

47.

10 / Graphs
Show that the Petersen graph, shown here, does not have 48. Can you find a simple graph with n vertices wih ,, o
a Hamilton circuit, but that the subgraph obtained by that does not have a Hamilton circuit, yet the degree |
deleting a vertex v, and all edges incident with v, does every vertex in the graph is at least (n — 1)/27 of

have a Hamilton circuit. ‘
*49, Show that there is a Gray code of order n Wheneyey ni
i

u a positive integer, or equivalently, show that the N-cuby
Q. n > 1, always has a Hamilton circuit. [Hiy;. u
mathematical induction. Show how to produce G i

A code of order n from one of order n — 1.] 2y

e b

‘.' @ Fk_eury’s algorith;:n, publlsi}ed in 1883, constructs Euley o
cuits by first choosing an arbitrary vertex of a connected mulgj.

" graph, and then forming a circuit by choosing edges SUccese
sively. Once an edge is chosen, it is removed. Edges are cho-

sen successively so that each edge begins where the last edgq

d S ends, and so that this edge is not a cut edge unless there ig
alternative.
For each of these graphs, determine (i) whether Dirac’s
theorem can be used to show that the graph has a Hamilton 50. Use Fleury’s algorithm to find an Euler circuitin the grap
circuit, (i) whether Ore’s theorem can be used to show G in Figure 5.

that the graph has a Hamilton circuit, and (iii ) whether

(he graph has a Hamilton circuit. 51. Express Fleury’s algorithm in pseudocode.

a) b) #% 52 Prove that Fleury’s algorithm always produces an Euler
circuit.

%53, Give a variant of Fleury’s algorithm to produce Euler
paths.

54. A diagnostic message can be sent out over a computer

network to perform tests over all links and in all devices.
) d) What sort of paths should be used to test all links? To test
all devices?

55. Show thata bipartite graph with an odd number of vertices
does not have a Hamilton circuit.

Links @

JULIUS PETER CHRISTIAN PETERSEN (1839-1910) Julius Petersen was born in the Danish town of
Sorg. His father was a dyer. In 1854 his parents were no longer able to pay for his schooling, so he became ah
apprentice in an uncle’s grocery store. When this uncle died, he left Petersen enough money to return o schoal-
After graduating, he began studying engineering at the Polytechnical School in Copenhagen, later deciding 10
concentrate on mathematics. He published his first textbook, a book on logarithms, in 1858. When his inheritance:
ran out, he had to teach to make a living. From 1859 until 1871 Petersen taught at a prestigious private l'ﬂ:gh'
school in Copenhagen. While teaching high school he continued his studies, entering Copenhagen University,
in 1862. He married Laura Bertelsen in 1862; they had three children, two sons and a daughter. k.

Petersen obtained a mathematics degree from Copenhagen University in 1866 and finally obtained S
doctorate in 1871 from that school. After receiving his doctorate, he taught at a polytechnic and military academy. In 1887 he was
appointed to a professorship at the University of Copenhagen. Petersen was well known in Denmark as the author of a large Sef‘esj
of textbooks for high schools and universities. One of his books, Methods and Theories for the Solution of Problems q,f'GecmremF" :
Construction, was translated into eight languages, with the English language version last repri nted in 1960 and the French versiol
reprinted as recently as 1990, more than a century after the original publication date.

Petersen worked in a wide range of areas, including algebra, analysis, cryptography, geometry, mechanics, mathe
economics, and number theory. His contributions to graph theory, including results on regular graphs, are his best-known “'D;-r'-'-_f
He was noted for his clarity of exposition, problem-solving skills, originality, sense of humor, vigor, and teaching. One inlﬂfes‘“?é
fact about Petersen was that he preferred not to read the writings of other mathematicians. This led him often to rediscover rlesﬂ o
already proved by others, often with embarrassing consequences. However, he was often angry when other mathematicians 1
read his writings!

Petersen’s death was front-page news in Copenhagen. A newspaper of the time described him as the Hans Christian A
of science—a child of the people who made good in the academic world.
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A knight is a chess piece that can move either two spaces
porizontally and one space vertically or one space horizon-
tally and two spaces vertically. That is, a knight on square
(x,y) can move to any of the eight squares (x £2,y £ 1),

(v £ 1,y £2), if these squares are on the chessboard, as il-
Justrated here.

A knight’s tour is a sequence of legal moves by a knight start-
ing at some square and visiting each square exactly once. A
knight’s tour is called reentrant if there is a legal move that
takes the knight from the last square of the tour back to where
the tour began. We can model knight’s tours using the graph
that has a vertex for each square on the board, with an edge
connecting two verlices if a knight can legally move between
the squares represented by these vertices.

56. Draw the graph that represents the legal moves of a knight
on a3 x 3 chessboard.

57. Draw the graph that represents the legal moves of a knight
on a3 x 4 chessboard.

58. a) Show that finding a knight’s tour on an m x n chess-
board is equivalent to finding a Hamilton path on the
graph representing the legal moves of a knight on that
board.

b) Show (hat finding a reentrant knight’s tour on an
m x n chessboard is equivalent to finding a Hamil-
ton circuit on the corresponding graph.

*59, Show that there is a knight’s tour on a 3 x 4 chessboard.
*60. Show that there is no knight’s touron a 3 x 3 chessboard.

*61. Show that there is no knight’s tour on a4 x 4 chessboard.

Shortest-Path Problems
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62. Show that the graph representing the legal moves of a
knight on an m x n chessboard, whenever n and 1 are
positive integers, is bipartite.

63

Show that there is no reentrant knight’s tour on anm X n
chessboard when /m and i are both odd. [Hint: Use Exer-
cises 55, 58D, and 62.]

*64. Show that there is a knight’s tour on an 8 x 8§ chessboard.

[Hint: You can construct a knight’s tour using a method
invented by H. C. Warnsdorffin 1823: Start in any square,
and then always move to a square connected to the fewest
number of unused squares. Although this method may not
always produce a knight’s tour, it often does.]

65. The parts of this exercise outline a proof of Ore’s theo-
rem. Suppose that G is a simple graph with n vertices,
n >3, and deg(x) 4+ deg(y) = n whenever x and y are
nonadjacent vertices in G. Ore’s theorem states that under
these conditions, G has a Hamilton circuit.

a) Show that if G does not have a Hamilton circuit, then
there exists another graph A with the same vertices
as G, which can be constructed by adding edges to G
such (hat the addition of a single edge would produce
a Hamilton circuit in H. [Hint: Add as many edges
as possible at each successive vertex of G without
producing a Hamilton circuit.]

b) Show that there is a Hamilton path in H.

¢) Let vy, v2,...,v, be a Hamilton path in H. Show
that deg(v|) + deg(v,) = n and that there are at most
deg(v)) vertices not adjacent to v, (including v, it-
self). s

d) Let S be the set of vertices preceding each vertex adja-
cent to v| in the Hamilton path. Show that S contains
deg(vy) vertices and v, ¢ S.

e) Show that § contains a vertex v, which is adjacent
to v,,, implying that there are edges connecting vy and
vit1 and v and v,,.

f) Show that part (e) implies that vi, va,..., Vi1,

Vi Virs Vil « -+ V41, V1 18 @ Hamilton circuit in G.
Conclude from this contradiction that Ore’s theorem
holds.

*66. Show that the worst case computational complexity of Al-
gorithm 1 for finding Euler circuits in a connected graph
with all vertices of even degree is O (), where m is the
number of edges of G.

-

Introduction

Many problems can be modeled using graphs with weights assigned to their edges. As an
illustration, consider how an airline system can be modeled. We set up the basic graph model
by representing cities by vertices and flights by edges. Problems involving distances can be
modeled by assigning distances between cities to the edges. Problems involving flight time can
be modeled by assigning flight times to edges. Problems involving fares can be modeled by



