DEFINITION 10

Let **A** be a square zero—one matrix and let r be a positive integer. The rth Boolean power of **A** is the Boolean product of r factors of **A**. The rth Boolean product of **A** is denoted by $\mathbf{A}^{[r]}$. Hence

$$\mathbf{A}^{[r]} = \underbrace{\mathbf{A} \odot \mathbf{A} \odot \mathbf{A} \odot \cdots \odot \mathbf{A}}_{r \text{ times}}.$$

(This is well defined because the Boolean product of matrices is associative.) We also define $A^{[0]}$ to be I_n .

EXAMPLE 9

Let $\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$. Find $\mathbf{A}^{[n]}$ for all positive integers n.

Solution: We find that

$$\mathbf{A}^{[2]} = \mathbf{A} \odot \mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}.$$

We also find that

$$\mathbf{A}^{[3]} = \mathbf{A}^{[2]} \odot \mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}, \qquad \mathbf{A}^{[4]} = \mathbf{A}^{[3]} \odot \mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

Additional computation shows that

$$\mathbf{A}^{[5]} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

The reader can now see that $\mathbf{A}^{[n]} = \mathbf{A}^{[5]}$ for all positive integers n with $n \geq 5$.

Exercises

1. Let
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 3 \\ 2 & 0 & 4 & 6 \\ 1 & 1 & 3 & 7 \end{bmatrix}$$
.

- a) What size is A?
- b) What is the third column of A?
- c) What is the second row of A?
- d) What is the element of A in the (3, 2)th position?
- e) What is A^{t} ?
- 2. Find A + B, where

$$\mathbf{a)} \ \mathbf{A} = \begin{bmatrix} 1 & 0 & 4 \\ -1 & 2 & 2 \\ 0 & -2 & -3 \end{bmatrix},$$

$$\mathbf{B} = \begin{bmatrix} -1 & 3 & 5 \\ 2 & 2 & -3 \\ 2 & -3 & 0 \end{bmatrix}.$$

b)
$$\mathbf{A} = \begin{bmatrix} -1 & 0 & 5 & 6 \\ -4 & -3 & 5 & -2 \end{bmatrix}$$
,

$$\mathbf{B} = \begin{bmatrix} -3 & 9 & -3 & 4 \\ 0 & -2 & -1 & 2 \end{bmatrix}.$$

3. Find AB if

a)
$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 0 & 4 \\ 1 & 3 \end{bmatrix}$.

b)
$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 3 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 3 & -2 & -1 \\ 1 & 0 & 2 \end{bmatrix}.$$

c)
$$\mathbf{A} = \begin{bmatrix} 4 & -3 \\ 3 & -1 \\ 0 & -2 \\ -1 & 5 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} -1 & 3 & 2 & -2 \\ 0 & -1 & 4 & -3 \end{bmatrix}$.

4. Find the product AB, where

a)
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & -1 \\ -1 & 1 & 0 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 0 & 1 & -1 \\ 1 & -1 & 0 \\ -1 & 0 & 1 \end{bmatrix}.$$

b) $\mathbf{A} = \begin{bmatrix} 1 & -3 & 0 \\ 1 & 2 & 2 \\ 2 & 1 & -1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 1 & -1 & 2 & 3 \\ -1 & 0 & 3 & -1 \\ -3 & -2 & 0 & 2 \end{bmatrix}.$
c) $\mathbf{A} = \begin{bmatrix} 0 & -1 \\ 7 & 2 \\ -4 & -3 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 4 & -1 & 2 & 3 & 0 \\ -2 & 0 & 3 & 4 & 1 \end{bmatrix}.$

5. Find a matrix A such that

$$\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \mathbf{A} = \begin{bmatrix} 3 & 0 \\ 1 & 2 \end{bmatrix}.$$

[*Hint:* Finding **A** requires that you solve systems of linear equations.]

6. Find a matrix A such that

$$\begin{bmatrix} 1 & 3 & 2 \\ 2 & 1 & 1 \\ 4 & 0 & 3 \end{bmatrix} \mathbf{A} = \begin{bmatrix} 7 & 1 & 3 \\ 1 & 0 & 3 \\ -1 & -3 & 7 \end{bmatrix},$$

- 7. Let **A** be an $m \times n$ matrix and let **0** be the $m \times n$ matrix that has all entries equal to zero. Show that $\mathbf{A} = \mathbf{0} + \mathbf{A} = \mathbf{A} + \mathbf{0}$.
- 8. Show that matrix addition is commutative; that is, show that if **A** and **B** are both $m \times n$ matrices, then $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$.
- 9. Show that matrix addition is associative; that is, show that if A, B, and C are all $m \times n$ matrices, then A + (B + C) = (A + B) + C.
- 10. Let **A** be a 3×4 matrix, **B** be a 4×5 matrix, and **C** be a 4×4 matrix. Determine which of the following products are defined and find the size of those that are defined.
 - a) AB
- b) BA
- c) AC
- d) CA e) BC
- f) CB
- 11. What do we know about the sizes of the matrices **A** and **B** if both of the products **AB** and **BA** are defined?
- **12.** In this exercise we show that matrix multiplication is distributive over matrix addition.
 - a) Suppose that A and B are $m \times k$ matrices and that C is a $k \times n$ matrix. Show that (A + B)C = AC + BC.
 - b) Suppose that C is an $m \times k$ matrix and that A and B are $k \times n$ matrices. Show that C(A + B) = CA + CB.
- 13. In this exercise we show that matrix multiplication is associative. Suppose that **A** is an $m \times p$ matrix, **B** is a $p \times k$ matrix, and **C** is a $k \times n$ matrix. Show that $\mathbf{A}(\mathbf{BC}) = (\mathbf{AB})\mathbf{C}$.
- **14.** The $n \times n$ matrix $\mathbf{A} = [a_{ij}]$ is called a **diagonal matrix** if $a_{ij} = 0$ when $i \neq j$. Show that the product of two $n \times n$ diagonal matrices is again a diagonal matrix. Give a simple rule for determining this product.

15. Let

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

Find a formula for A^n , whenever n is a positive integer.

- 16. Show that $(\mathbf{A}^t)^t = \mathbf{A}$.
- 17. Let **A** and **B** be two $n \times n$ matrices. Show that
 - a) $(\mathbf{A} + \mathbf{B})^t = \mathbf{A}^t + \mathbf{B}^t$.
 - $\mathbf{b)} \ (\mathbf{A}\mathbf{B})^t = \mathbf{B}^t \mathbf{A}^t.$

If **A** and **B** are $n \times n$ matrices with $AB = BA = I_n$, then **B** is called the **inverse** of **A** (this terminology is appropriate because such a matrix **B** is unique) and **A** is said to be **invertible**. The notation $B = A^{-1}$ denotes that **B** is the inverse of **A**.

18. Show that

$$\begin{bmatrix} 2 & 3 & -1 \\ 1 & 2 & 1 \\ -1 & -1 & 3 \end{bmatrix}$$

is the inverse of

$$\begin{bmatrix} 7 & -8 & 5 \\ -4 & 5 & -3 \\ 1 & -1 & 1 \end{bmatrix}$$

19. Let A be the 2×2 matrix

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

Show that if $ad - bc \neq 0$, then

$$\mathbf{A}^{-1} = \begin{bmatrix} \frac{d}{ad - bc} & \frac{-b}{ad - bc} \\ \frac{-c}{ad - bc} & \frac{a}{ad - bc} \end{bmatrix}.$$

20. Let

$$\mathbf{A} = \begin{bmatrix} -1 & 2 \\ 1 & 3 \end{bmatrix}$$

- a) Find A^{-1} . [Hint: Use Exercise 19.]
- **b)** Find A^3 .
- c) Find $(A^{-1})^3$.
- d) Use your answers to (b) and (c) to show that $(A^{-1})^3$ is the inverse of A^3 .
- **21.** Let **A** be an invertible matrix. Show that $(\mathbf{A}^n)^{-1} = (\mathbf{A}^{-1})^n$ whenever *n* is a positive integer.
- **22.** Let **A** be a matrix. Show that the matrix $\mathbf{A}\mathbf{A}^t$ is symmetric. [*Hint:* Show that this matrix equals its transpose with the help of Exercise 17b.]
- 23. Suppose that A is an $n \times n$ matrix where n is a positive integer. Show that $A + A^{t}$ is symmetric.

24. a) Show that the system of simultaneous linear equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n.$$

in the variables x_1, x_2, \ldots, x_n can be expressed as $\mathbf{AX} = \mathbf{B}$, where $\mathbf{A} = [a_{ij}]$, \mathbf{X} is an $n \times 1$ matrix with x_i the entry in its *i*th row, and **B** is an $n \times 1$ matrix with b_i the entry in its *i*th row.

- b) Show that if the matrix $A = [a_{ij}]$ is invertible (as defined in the preamble to Exercise 18), then the solution of the system in part (a) can be found using the equation $\mathbf{X} = \mathbf{A}^{-1}\mathbf{B}$.
- 25. Use Exercises 18 and 24 to solve the system

$$7x_1 - 8x_2 + 5x_3 = 5$$
$$-4x_1 + 5x_2 - 3x_3 = -3$$
$$x_1 - x_2 + x_3 = 0$$

26. Let

ЭГ.

le.

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \qquad \text{and} \qquad \mathbf{B} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Find

- a) A V B.
- b) $\mathbf{A} \wedge \mathbf{B}$.
- c) A O B.

27. Let

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \text{and} \qquad \mathbf{B} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}.$$

Find

- a) $A \vee B$.
- b) $A \wedge B$.
- c) A ⊙ B.

28. Find the Boolean product of A and B, where

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}.$$

29. Let

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

Find

- a) $A^{[2]}$.
- **b**) $A^{[3]}$.
- c) $A \vee A^{[2]} \vee A^{[3]}$
- 30. Let A be a zero-one matrix. Show that
 - a) $A \vee A = A$.
- b) $A \wedge A = A$.
- 31. In this exercise we show that the meet and join operations are commutative. Let **A** and **B** be $m \times n$ zero-one matrices. Show that
 - a) $A \vee B = B \vee A$.
- b) $\mathbf{B} \wedge \mathbf{A} = \mathbf{A} \wedge \mathbf{B}$.
- 32. In this exercise we show that the meet and join operations are associative. Let A, B, and C be $m \times n$ zero–one matrices. Show that
 - a) $(A \vee B) \vee C = A \vee (B \vee C)$.
 - b) $(A \wedge B) \wedge C = A \wedge (B \wedge C)$.
- 33. We will establish distributive laws of the meet over the join operation in this exercise. Let **A**, **B**, and **C** be $m \times n$ zero-one matrices. Show that
 - a) $\mathbf{A} \vee (\mathbf{B} \wedge \mathbf{C}) = (\mathbf{A} \vee \mathbf{B}) \wedge (\mathbf{A} \vee \mathbf{C})$,
 - b) $\mathbf{A} \wedge (\mathbf{B} \vee \mathbf{C}) = (\mathbf{A} \wedge \mathbf{B}) \vee (\mathbf{A} \wedge \mathbf{C}).$
- **34.** Let **A** be an $n \times n$ zero—one matrix. Let **I** be the $n \times n$ identity matrix. Show that $\mathbf{A} \odot \mathbf{I} = \mathbf{I} \odot \mathbf{A} = \mathbf{A}$.
- 35. In this exercise we will show that the Boolean product of zero-one matrices is associative. Assume that A is an $m \times p$ zero-one matrix, **B** is a $p \times k$ zero-one matrix, and C is a $k \times n$ zero-one matrix. Show that $\mathbf{A} \odot (\mathbf{B} \odot \mathbf{C}) = (\mathbf{A} \odot \mathbf{B}) \odot \mathbf{C}.$

Key Terms and Results

TERMS

set: a collection of distinct objects

axiom: a basic assumption of a theory

paradox: a logical inconsistency

element, member of a set: an object in a set

roster method: a method that describes a set by listing its elements

set builder notation: the notation that describes a set by stating a property an element must have to be a member

Ø (empty set, null set): the set with no members

universal set: the set containing all objects under considera-

Venn diagram: a graphical representation of a set or sets S = T (set equality): S and T have the same elements

- $S \subseteq T$ (S is a subset of T): every element of S is also an element of T
- $S \subset T$ (S is a proper subset of T): S is a subset of T and $S \neq T$

finite set: a set with n elements, where n is a nonnegative integer

infinite set: a set that is not finite

|S| (the cardinality of S): the number of elements in S

P(S) (the power set of S): the set of all subsets of S

- $A \cup B$ (the union of A and B): the set containing those elements that are in at least one of A and B
- $A \cap B$ (the intersection of A and B): the set containing those elements that are in both A and B.