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Exercises
{ -
1. Convert the decimal expansion of each of these integers essary, and translating each block of three binary digits
to a binary expansion. into a single octal digit.
a) 231 b) 4532 ¢) 97644 16. Show that the binary expansion of a positive integer can
2, Convert the decimal expansion of each of these integers be obtained from its octal expansion by translating each
to a binary expansion_ octal dlglt into a block of three binﬂl‘y dlglts
a) 321 b) 1023 ¢) 100632 17. Convert (7345321)gs to its binary expansion and
3. Convert the binary expansion of each of these integers to (10 1011 T011); to its octal expansion.
a decimal expansion. 18. Give aprocedure for converting from the hexadecimal ex-
a) (1 1111y b) (10 0000 0001), pansion of an integer to its octal expansion using binary
¢ (1 0101 0101), d) (110 1001 0001 0000), notation as an intermediate step.
4. Convert the binary expansion of each of these integers to 19. Give a procedure for converting from the octal expansion
a decimal expansion. of an integer to its hexadecimal expansion using binary
a) (11011); b) (10 1011 0101), notation as an intermediate step.
¢) (1110111110), d) (11111000001 1111)2 20. Explain how to convert from binary to base 64 expan-
5, Convert the octal expansion of each of these integers to a sions and from base 64 expansions to binary expansions
binary expansion. and from octal to base 64 expansions and from base 64
a) (572 b) (1604)g expansions to octal expansions.
¢) (423)g d) 24173 21. Find the sum and the product of each of these pairs of
6. Convert the binary expansion of each of these integers to numbers. Express your answers as a binary expansion.
an octal expansion. a) (1000111),, (1110111),
a) (11110111) b) (1110 1111)y, (1011 1101),
b) (1010 1010 1010), c¢) (101010 1010)z, (1 1111 0000)2
¢) (111011101110111), d) (100000 0001)2, (11 1111 1111)2
d) (101 0101 0101 0101); 22. Find the sum and product of each of these pairs of num-
7. Convert the hexadecimal expansion of each of these in- bers. Express your answers as a base 3 expansion.
tegers to a binary expansion. a) (112)3, (210)3
a) (80E)i¢ b) (135AB)i6 b) (2112)3, (12021)3
¢) (ABBA)j¢ d) (DEFACED);¢ ¢} (20001)s, (1111)3
8. Convert (BADFACED) ¢ from its hexadecimal expan- d) (120021)3, (2002)3
sion to its binary expansion. 23. Find the sum and product of each of these pairs of num-
9. Convert (ABCDEF);¢ from its hexadecimal expansion to bers. Express your answers as an octal expansion.
its binary expansion. a) (763)g, (147)g
10. Convert each of the integers in Exercise 6 from a binary b) (6001)s, (272)g
expansion to a hexadecimal expansion. ¢) (111D)g, (7778
11. Convert (1011 0111 1011), from its binary expansion to d) (54321)g, (3456)8
its hexadecimal expansion. 24. Find the sum and product of each of these pairs of num-
12. Convert (1 1000 0110 0011), from its binary expansion bers. Express your answers as a hexadecimal expan-
to its hexadecimal expansion. SIOIE
13. Show that the hexadecimal expansion of a positive integer a) (1AE)s, (BBCis
can be obtained from its binary expansion by grouping to- b) (20CBA)6, (ADL)16
gether blocks of four binary digits, adding initial zeros if ¢) (ABCDE)g, (1111)j6
necessary, and translating each block of four binary digits d) (EOO00OE)4, (BAAA)I6
Into a single hexadecimal digit. 25. Use Algorithm 5 to find 754 mod 645.
14. Show tl.mt the bin.:ary expansign of a posit.ive integer can 26. Use Algorithm 5 to find 1164 mod 645.
!)e obtained from its hexadecimal expansion by translat- ) 2003
ing each hexadecimal digit into a block of four binary 27. Use Algorithm 5 o find 3 mod 93.
digits. 28. Use Algorithm 5 to find 123'%! med 101.
g
15,

Show that the octal expansion of a positive integer can be
obtained from its binary expansion by grouping together
blocks of three binary digits, adding initial zeros if nec-

29.

Show that every positive integer can be represented
uniquely as the sum of distinct powers of 2. [Hint: Con-
sider binary expansions of integers.]
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30. It can be shown that cvery integer can be uniquely repre-
sented in the form

el +e—138 + +e13 4 e,

where ¢; = —1,0, or 1 for j =0,1,2,...,k. Expan-
sions of this type are called balanced ternary expan-
sions. Find the balanced ternary expansions of

a) 5. b) 13. ¢) 37. d) 79.

31. Show that a positive integer is divisible by 3 if and only
if the sum of its decimal digits is divisible by 3.

32. Show that a positive integer is divisible by 11 if and only
if the difference of the sum of its decimal digits in even-
numbered positions and the sum of its decimal digits in
odd-numbered positions is divisible by 11.

33. Show that a positive integer is divisible by 3 if and only
if the difference of the sum of its binary digits in even-
numbered positions and the sum of its binary digits in
odd-numbered positions is divisible by 3.

One’s complement representations of integers are used to
simplify computer arithmetic. To represent positive and nega-
tive integers with absolute value less than 2" !, a total of 1 bits
is used. The leftmost bit is used to represent the sign. A 0 bit
in this position is used for positive integers, and a 1 bit in this
position is used for negative integers. For positive integers,
the remaining bits are identical to the binary expansion of the
integer. For negative integers, the remaining bits are obtained
by first finding the binary expansion of the absolute value of
the integer, and then taking the complement of each of these
bits, where the complement of a 1 is a O and the complement
ofaQisal.

34. Find the one’s complement representations, using bit
strings of length six, of the following integers.

a) 22 b) 31 c) —7 d) —19

35. What integer does each of the following one’s comple-
ment representations of length five represent?

a) 11001 b) 01101

¢) 10001 d) 11111

36. If m is a positive integer less than 2", how is the
one’s complement representation of —m obtained from
the one’s complement of i, when bit strings of length n
are used?

37. How is the one’s complement representation of the sum
of two integers obtained from the one’s complement rep-
resentations of these integers?

38. How is the one’s complement representation of the differ-
ence of two integers obtained from the one’s complement
representations of these integers?

39. Show that the integer m with one’s complement
representation (a,_jay—7...arjag) can be found us-
ing the equation m = —a,_(2"~' - 1) + ay_2" 2 4
ot ay -2+ ag.

Two’s complement representations of integers are also used

to simplify computer arithmetic and are used more commonly

than one’s complement representations. To represent an inge.
ger x with —2"~1 <x <2"=! — 1 for a specified positive
integer n, a total of # bits is used. The leftmost bit is used tq
represent the sign. A 0 bit in this position is used for positive
integers, and a 1 bit in this position is used for negative inte.
gers, just as in one’s complement expansions. For a positive
integer, the remaining bits are identical to the binary expan.
sion of the integer. For a negative integer, the remaining bits
are the bits of the binary expansion of 27~! — |x|. Two’s com.
plement expansions of integers are often used by computers
because addition and subtraction of integers can be performeq
easily using these expansions, where these integers can be ej.
ther positive or negative.

40. Answer Exercise 34, but this time find the two’s comple-
ment expansion using bit strings of length six.

41. Answer Exercise 35 if each expansion is a two’s comple-
ment expansion of length five.

42. Answer Exercise 36 for two’s complement expansions.

43. Answer Exercise 37 for two’s complement expansions.

44. Answer Exercise 38 for two’s complement expansions.

45. Show that the integer m with two’s complement
representation (a,—(dy—2...ajag) can be found us-
ing the equationm = —a,_ - 2"~V + aq,_»2""2 + ... +
ay -2+ ag.

46. Give a simple algorithm for forming the two’s comple-
ment representation of an integer from its one’s comple-
ment representation.

47. Sometimes integers are encoded by using four-digit bi-
nary expansions to represent each decimal digit. This pro-
duces the binary coded decimal form of the integer. For
instance, 791 is encoded in this way by 011110010001.
How many bits are required to represent a number with
n decimal digits using this type of encoding?

A Cantor expansion is a sum of the form

apn! +a,_1(n — DU+ -+ a2 +aq 1Y,

where a; 1s an integer with 0 <a; <ifori=1,2,...,n.
48. Find the Cantor expansions of
a) 2. b) 7.
c) 19. d) 87.
e) 1000. f) 1,000,000.
*49. Describe an algorithm that finds the Cantor expansion of
an integer.

*50. Describe an algorithm to add two integers from their Can-
tor expansions.

51. Add (10111)7 and (11010), by working through each
step of the algorithm for addition given in the text.

52. Multiply (1110) and (1010), by working through each
step of the algorithm for multiplication given in the text.

53. Describe an algorithm for finding the difference of two
binary expansions.

54. Estimate the number of bit operations used to subtract
two binary expansions.
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55. Devise an algorithm that, given the binary expansions of 57. Estimate the complexity of Algorithm 1 for finding the
the integers @ and b, determines whether a > b, a = b, base b expansion of an integer n in terms of the number
ora < b. of divisions used.

*58. Show that Algorithm 5 uses O ((log m)? log i) bit opera-

56. How many bit operations does the comparison algo- tions to find 5" mod m.
rithm from Exercise 55 use when the larger of a and b 59. Show that Algorithm 4 uses O (g loga) bit operations,
has # bits in its binary expansion? assuming that a > d.

EE Primes and Greatest Common Divisors

DEFINITION 1

EXAMPLE 1

Introduction

In Section 4.1 we studied the concept of divisibility of integers. One important concept based
on divisibility is that of a prime number. A prime is an integer greater than 1 that is divisible by
no positive integers other than 1 and itself. The study of prime numbers goes back to ancient
times. Thousands of years ago it was known that there are infinitely many primes; the proof of
this fact, found in the works of Euclid, is famous for its elegance and beauty.

We will discuss the distribution of primes among the integers. We will describe some
of the results about primes found by mathematicians in the last 400 years. In particular, we
will introduce an important theorem, the fundamental theorem of arithmetic. This theorem,
which asserts that every positive integer can be written uniquely as the product of primes in
nondecreasing order, has many interesting consequences. We will also discuss some of the many
old conjectures about primes that remain unsettled today.

Primes have become essential in modern cryptographic systems, and we will develop some
of their properties important in cryptography. For example, finding large primes is essential in
modern cryptography. The length of time required to factor large integers into their prime factors
is the basis for the strength of some important modern cryptographic systems.

In this section we will also study the greatest common divisor of two integers, as well as the
least common multiple of two integers. We will develop an important algorithm for computing
greatest common divisors, called the Euclidean algorithm.

Primes

Every integer greater than 1 is divisible by at least two integers, because a positive integer is
divisible by 1 and by itself. Positive integers that have exactly two different positive integer
factors are calied primes.

An integer p greater than 1 is called prime if the only positive factors of p are 1 and p.
A positive integer that is greater than 1 and is not prime is called composite.

Remark: The integer n is composite if and only if there exists an integer a such that ¢ | # and
| <a<n.

The integer 7 is prime because its only positive factors are 1 and 7, whereas the integer 9 is
composite because it is divisible by 3. <

The primes are the building blocks of positive integers, as the fundamental theorem of
arithmetic shows. The proof will be given in Section 5.2.




