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EXAMPLE 12

Determine whether 2 and 3 are primitive roots modulo 11.

Solution: When we compute the powers of 2 in Z;, we obtain 2! = 2.22 = 4,23 =8 2% = 5
2°=10,2=9,27=7,28 = 3,29 = 6,2'0 = 1. Because every element of Z; is a power of '
2,2 is a primitive root of 11.

When we compute the powers of 3 modulo 11, we obtain 3! = 3, 32 = 9,33 =5,3% = 4
3% = 1. We note that this pattern repeats when we compute higher powers of 3. Because not al |
elements of Z; are powers of 3, we conclude that 3 is not a primitive root of 11. |

An important fact in number theory is that there is a primitive root modulo p for every )
prime p. We refer the reader to [Ro10] for a proof of this fact. Suppose that p is prime and r ig
a primitive root modulo p. If a is an integer between 1 and p — 1, thatis, an element of Z ,, we
know that there is an unique exponent e such that r¢ = g in Z,,thatis, r*mod p = q.

DEFINITION 4  Suppose that p is a prime, r is a primitive root modulo p, and a is an integer between 1 and
p — linclusive. If r’mod p =agand0 <e < p — 1, we say that e is the discrete logarithm

of a modulo p to the base r and we write log, a = e (where the prime p is understood).

EXAMPLE 13

Solution: When we computed the powers of 2 modulo 11 in Example 12, we found that 2% = 3
and 24 =5 in Z,|. Hence, the discrete logarithms of 3 and 5 modulo 11 to the base 2 are 8 |
and 4, respectively. (These are the powers of 2 that equal 3 and 5, respectively, in Z|.) We write
log, 3 = 8 and log, 5 = 4 (where the modulus 11 is understood and not explicitly noted in the ‘
notation). |

The discrete logarithm
problem is hard!

Find the discrete logarithms of 3 and 5 modulo 11 to the base 2. "

The discrete logarithm problem takes as input a prime p, a primitive root » modulo p,
and a positive integer a € Z,; its output is the discrete logarithm of a modulo p to the base
r. Although this problem might seem not to be that difficult, it turns out that no polynomial
time algorithm is known for solving it. The difficulty of this problem plays an important role in
cryptography, as we will see in Section 4.6

Exercises

(=)

. Show that 15 is an inverse of 7 modulo 26.
. Show that 937 is an inverse of 13 modulo 2436.
- By inspection (as discussed prior to Example 1), find an

inverse of 4 modulo 9.

- By inspection (as discussed prior to Example 1), find an

inverse of 2 moduio 17.

. Find an inverse of @ modulo m for each of these pairs

of relatively prime integers using the method followed in
Example 2.

a)a=4m=9

b) a=19,m = 141

¢) a=>55m=289

d) a =89, m =232

. Find an inverse of @ modulo m for each of these pairs

of relatively prime integers using the method followed in
Example 2.

a)a=2,m=17

. b)) a=34,m =89

.

10.

11.

c) a =144, m =233

d) a =200, m = 1001

Show that if @ and m are relatively prime positive inte-
gers, then the inverse of ¢ modulo m is unique modulo
m. [Hint: Assume that there are two solutions b and ¢
of the congruence ax = 1 (mod m). Use Theorem 7 of
Section 4.3 to show that b = ¢ (mod m).]

. Show that an inverse of @ modulo »2, where ¢ is an in-

teger and m > 2 is a positive integer, does not exist if
ged(a, m) > 1.

. Solve the congruence 4x =5 (mod 9) using the inverse

of 4 modulo 9 found in part (a) of Exercise 5.

Solve the congruence 2x = 7 (mod 17) using the inverse
of 2 modulo 7 found in part (a) of Exercise 6.

Solve each of these congruences using the modular in-
verses found in parts (b), (c), and (d) of Exercise 5.

a) 19x =4 (mod 141)

b) 55x = 34 (mod 89)

¢) 89x =2 (mod 232)




_ Solve cach of these congruences using the modular in-
verses found in parts (b), (c), and (d) of Exercise 6.

a) 34x = 77 (mod 89)
p) 144x =4 (mod 233)
¢) 200x = 13 (mod 1001)

. Find the solutions of the congruence 15524+ 19x =5
(mod 11). [Hint: Show the congruence is equivalent lo
the congruence 15x2 + 19x + 6 = 0(mod 11). Factor the
Jeft-hand side of the congruence; show that a solution of
the quadratic congruence is a solution of one of the two
different linear congruences.]

. Find the solutions of the congruence 12x% 4 25x =
10 (mod 11). [Hint: Show the congruence is equivalence
to the congruence 12x2 4+ 25x 4+ 12 =0 (mod 11). Fac-
tor the left-hand side of the congruence; show that a so-
lution of the quadratic congruence is a solution of one of
two different linear congruences.]

. Show that if /m is an integer greater than 1 and ac =
bc (mod m), then a = b (mod m/ged(c, m)).

. a) Show that the positive integers less than 11, except
I and 10, can be split into pairs of integers such that
each pair consists of integers that are inverses of each
other modulo 1.

b) Use part (a) to show that 10! = —1 (mod [1).

. Show that if p is prime, the only solutions of x? =
1 (mod p) are integers x such that x = | (mod p) or
x=—1(mod p).

. a) Generalize the result in part (a) of Exercise 16; that
is, show that if p is a prime, the positive integers less
than p, except 1 and p — 1, can be splitinto (p — 3)/2
pairs of integers such that each pair consists of inte-
gers that are inverses of each other. [Hint: Use the
result of Exercise 17.]

b) From part (a) conclude that (p — 1)! = —1 (mod p)
whenever p is prime. This result is known as Wilson’s
theorem.

¢) What can we conclude if # is a positive integer such
that (n — 1)! £ —1 (mod n)?

. This exercise outlines a proof of Fermat’s little theorem.
a) Suppose that a is not divisible by the prime p. Show
that no two of the integers 1 -a, 2-a,..., (p — Da
are congruent modulo p.

b) Conclude from part (a) that the product of
1,2,..., p— 1 is congruent modulo p to the prod-
uct of a, 2a, ..., (p — Da. Use this to show that

(p=DI=a”!(p— 1! (mod p).

Use Theorem 7 of Section 4.3 to show from part (b)
thata?~! = 1 (mod p) if p } a.[Hint: Use Lemma 3
of Section 4.3 to show that p does not divide (p — 1)!
and then use Theorem 7 of Section 4.3. Alternatively,
use Wilson’s theorem from Exercise 18(b).]

d) Use part (c) to show that a” = a (mod p) for all in-
tegers a.

20.

21.

22.

23.

24,

25.

*26.

#27.

28.

*29,

*3(0.

31.

32.

33.
34.
35.

36.
37.

4.4 Solving Congruences 285

Use the construction in the proof of the Chinese remainder
theorem to find all solutions to the system of congruences
x =2 (mod 3), x = 1 (mod 4), and x = 3 (mod 5).

Use the construction in the proof of the Chinese remain-
der theorem to find all solutions to the system of congru-
encesx = | (mod2),x = 2 (mod 3),x = 3 (mod>5), and
x =4 (mod 11).

Solve the system of congruence x =3 (mod 6) and
x = 4 (mod 7) using the method of back substitution.

Solve the system of congruences in Exercise 20 using the
method of back substitution.

Solve the system of congruences in Exercise 21 using the
method of back substitution.

Write out in pseudocode an algorithm for solving a si-
multaneous system of linear congruences based on the
construction in the proof of the Chinese remainder theo-
rem.

Find all solutions, if any, to the system of congruences
x =5 (mod 6), x = 3 (mod 10), and x = & (mod 15).

Find all solutions, if any, to the system of congruences
x =7 (mod9), x =4 (mod 12), and x = 16 (mod 21).
Use the Chinese remainder theorem to show that an
integer a, with 0 <a < m =mymy---m,, where the
positive integers m |, ma, ..., m, are pairwise relatively
prime, can be represented uniquely by the n-tuple
(a mod m |, a mod nip, ..., a mod m,).

Letmy, mo, ..., m, be pairwise relatively prime integers
greater than or equal to 2. Show that if « = b (mod m;)
for i =1,2,...,n, then ¢ = b (mod m), where m =
myma - --m,. (This result will be used in Exercise 30
to prove the Chinese remainder theorem. Consequently,
do not use the Chinese remainder theorem to prove it.)

Complete the proof of the Chinese remainder theorem
by showing that the simultaneous solution of a system
of linear congruences modulo pairwise relatively prime
moduli is unique modulo the product of these moduli.
[Hint: Assume that x and y are two simultaneous solu-
tions. Show that m; | x — y for all i. Using Exercise 29,
conclude that m = mymo ---my, | x — y.]

Which integers leave a remainder of 1 when divided by 2

and also leave a remainder of 1 when divided by 37

Which integers are divisible by 5 but leave a remainder

of 1 when divided by 3?

Use Fermat’s little theorem to find 72! med 13.

Use Fermat’s little theorem to find 231992 mod 41.

Use Fermat’s little theorem to show that if p is prime and

p [ a, then a”~2 is an inverse of « modulo p.

Use Exercise 35 to find an inverse of 5 modulo 41.

a) Show that 2340 = 1 (mod 11) by Fermat’s little theo-
rem and noting that 2340 = (210)34,

b) Show that 23%© =1 (mod 31) using the fact that
2340 - (25)68 — 3268'

¢) Conclude from parts (a) and (b) that 2340 =
1 (mod 341).
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38. a) Use Fermat’s little theorem to compute 3302 med 5,
3%02 mod 7, and 3°°2 mod 11.

b) Use your resuits from part (a) and the Chinese re-
mainder theorem to find 33°2 mod 385. (Note that
385=5-7-11.)

39. a) Use Fermat’s little theorem to compute 52903 mod 7,
52093 mod 11, and 523 mod 13.

b) Use your results from part (a) and the Chinese re-
mainder theorem to find 52%% mod 1001. (Note that
1001 =7-11-13))

40. Show with the help of Fermat’s little theorem that if # is

a positive integer, then 42 divides n’ — n.

41. Show that if p is an odd prime, then every divisor of the
Mersenne number 2P — 1 is of the form 2kp + 1, where
k is a nonnegative integer. [Hint: Use Fermat’s little the-
orem and Exercise 37 of Section 4.3.)

42. Use Exercise 41 to determine whether M3 =213 — 1 =
8191 and Mp3 = 223 — 1 = 8,388,607 are prime.

43. Use Exercise 41 to determine whether M;; = 21! — 1 =
2047 and M7 = 217 — 1 = 131,071 are prime.

L3 Let n be a positive integer and let n — 1 = 25¢, where s is a

nonnegative integer and 7 is an odd positive integer. We say

that n passes Miller’s test for the base b if either b = 1 (mod

n) or b*'' = —1 (mod n) for some Jwith0<j<s—1.1t

can be shown (see [Ro10]) that a composite integer n passes

Miller’s test for fewer than n/4 bases b with 1 < b < n. A

composite positive integer n that passes Miller’s test to the

base b is called a strong pseudoprime to the base b.

*44. Show that if » is prime and b is a positive integer with
n f b, then n passes Miller’s test to the base b.

45. Show that 2047 is a strong pseudoprime to the base 2 by
showing that it passes Miller’s test to the base 2, but is
composite.

46. Show that 1729 is a Carmichael number.

47. Show that 2821 is a Carmichael number.

*48. Show that if n = p;py--- p;, where D1, P2y oy P
are distinct primes that satisfy p; —1|n — 1 for j =
1,2, ..., k, then n is a Carmichael number.

49. a) Use Exercise 48 to show that every integer of the form
6m 4+ 1)(12m + 1)(18m + 1), where m is a positive
integer and 6m + 1, 12m + 1, and 18m + 1 are all
primes, is a Carmichael number.

b) Use part (a) to show that 172,947,529 is a Car-
michael number.

50. Find the nonnegative integer a less than 28 represented by
each of these pairs, where each pair represents (¢ mod 4,

a mod 7).

a) (0,0 b) (1, 0) o (1,1
d) 2. 1) e (2,2) £) (0,3)
g) (2,0) h) 3,5) 3.6

51. Express each nonnegative integer « less than 15 as a pair
(a mod 3, a mod 5).

52. Explain how to use the pairs found in Exercise 51 to
add 4 and 7.

53. Solve the system of congruences that arises in Example 8.

54. Show that 2 is a primitive root of 19.

55. Find the discrete logarithms of 5 and 6 to the base 2 mod.
ulo 19.

56. Let p be an odd prime and r a primitive root of p.
Show that if ¢ and b are positive integers in Z - thep
log,(ab) = log, a + log, b (mod p — [).

57. Write out a table of discrete logarithms modulo 17 with
respect to the primitive root 3.

If i1 is a positive integer, the integer ¢ is a quadratic residug

of m if ged(a, m) = 1 and the congruence x> = a (mod )

has a solution. In other words, a quadratic residue of is
an integer relatively prime to mz that is a perfect square mog.

ulo m. If a is not a quadratic residue of m and ged(a, m) = 1,

we say that it is a quadratic nonresidue of m. For exarm.

ple, 2 is a quadratic residue of 7 because ged(2, 7) = 1 ang
% =2(mod 7) and 3 is a quadratic nonresidue of 7 because
ged(3,7) = 1 and x2 = 3 (mod 7) has no solution.

58. Which integers are quadratic residues of 11?7

59. Show that if p is an odd prime and a is an integer not
divisible by p, then the congruence x* = a (mod p) has
either no solutions or exactly two incongruent solutions
modulo p.

60. Show that if p is an odd prime, then there are exactly
(p — 1)/2 quadratic residues of p among the integers
LL2,...,p—1.

If p is an odd prime and a is an integer not divisible by p, the

Legendre symbol (i) is defined to be 1 if @ is a quadratic

P

residue of p and —1 otherwise,

61. Show that if p is an odd prime and a and b are integers
with a = b (mod p), then

()-()

p p)

62. Prove Euler’s criterion, which states that if p is an odd
prime and a is a positive integer not divisible by p, then

<i> = a2 (mod p).
p

[Hint: If a is a quadratic residue modulo p, apply Fer-
mat’s little theorem; otherwise, apply Wilson’s theorem,
given in Exercise 18(b).]

63. Use Exercise 62 to show that if p is an odd prime and a
and b are integers not divisible by p, then

(5)-G)G)

p p/\p)

64. Show that if p is an odd prime, then —1 is a quadrat@c
residue of p if p = I (nod4), and —1 is not a quadratic
residue of p if p = 3 (mod 4). [Hint: Use Exercise 62.]

65. Find all solutions of the congruence x2 = 29 (mod 35)-

[Hint: Find the solutions of this congruence modulo 5 and
modulo 7, and then use the Chinese remainder theorem.]




