Now suppose that two unequal digits have been transposed. It follows that there are distinct integers j and k such that $y_j = x_k$ and $y_k = x_j$, and $y_i = x_i$ for $i \neq j$ and $i \neq k$. Hence,

$$\sum_{i=1}^{10} iy_i = \left(\sum_{i=1}^{10} ix_i\right) + (jx_k - jx_j) + (kx_j - kx_k) \equiv (j-k)(x_k - x_j) \not\equiv 0 \pmod{11},$$

because $\sum_{i=1}^{10} x_i \equiv 0 \pmod{10}$ and 11 \not (j-k) and 11 \not (x_k-x_j) . We see that $y_1y_2 \dots y_{10}$ is not a valid ISBN. Thus, we can detect the interchange of two unequal digits.

Exercises

- 1. Which memory locations are assigned by the hashing function $h(k) = k \mod 97$ to the records of insurance company customers with these Social Security numbers?
 - a) 034567981
- **b**) 183211232
- c) 220195744
- **d**) 987255335
- **2.** Which memory locations are assigned by the hashing function $h(k) = k \mod 101$ to the records of insurance company customers with these Social Security numbers?
 - a) 104578690
- **b)** 432222187
- c) 372201919
- **d**) 501338753
- **3.** A parking lot has 31 visitor spaces, numbered from 0 to 30. Visitors are assigned parking spaces using the hashing function $h(k) = k \mod 31$, where k is the number formed from the first three digits on a visitor's license plate.
 - a) Which spaces are assigned by the hashing function to cars that have these first three digits on their license plates: 317, 918, 007, 100, 111, 310?
 - b) Describe a procedure visitors should follow to find a free parking space, when the space they are assigned is occupied.

Another way to resolve collisions in hashing is to use *double* hashing. We use an initial hashing function $h(k) = k \mod p$ where p is prime. We also use a second hashing function $g(k) = (k+1) \mod (p-2)$. When a collision occurs, we use a probing sequence $h(k,i) = (h(k) + i \cdot g(k)) \mod p$.

- **4.** Use the double hashing procedure we have described with p=4969 to assign memory locations to files for employees with social security numbers $k_1=132489971$, $k_2=509496993$, $k_3=546332190$, $k_4=034367980$, $k_5=047900151$, $k_6=329938157$, $k_7=212228844$, $k_8=325510778$, $k_9=353354519$, $k_{10}=053708912$.
- **5.** What sequence of pseudorandom numbers is generated using the linear congruential generator $x_{n+1} = (3x_n + 2) \text{ mod } 13$ with seed $x_0 = 1$?
- **6.** What sequence of pseudorandom numbers is generated using the linear congruential generator $x_{n+1} = (4x_n + 1) \mod 7$ with seed $x_0 = 3$?

- 7. What sequence of pseudorandom numbers is generated using the pure multiplicative generator $x_{n+1} = 3x_n \mod 11$ with seed $x_0 = 2$?
- **8.** Write an algorithm in pseudocode for generating a sequence of pseudorandom numbers using a linear congruential generator.

The **middle-square method** for generating pseudorandom numbers begins with an n-digit integer. This number is squared, initial zeros are appended to ensure that the result has 2n digits, and its middle n digits are used to form the next number in the sequence. This process is repeated to generate additional terms.

- **9.** Find the first eight terms of the sequence of four-digit pseudorandom numbers generated by the middle square method starting with 2357.
- **10.** Explain why both 3792 and 2916 would be bad choices for the initial term of a sequence of four-digit pseudorandom numbers generated by the middle square method.

The **power generator** is a method for generating pseudorandom numbers. To use the power generator, parameters p and d are specified, where p is a prime, d is a positive integer such that $p \not\mid d$, and a seed x_0 is specified. The pseudorandom numbers x_1, x_2, \ldots are generated using the recursive definition $x_{n+1} = x_n^d \mod p$.

- 11. Find the sequence of pseudorandom numbers generated by the power generator with p = 7, d = 3, and seed $x_0 = 2$.
- 12. Find the sequence of pseudorandom numbers generated by the power generator with p = 11, d = 2, and seed $x_0 = 3$.
- 13. Suppose you received these bit strings over a communications link, where the last bit is a parity check bit. In which string are you sure there is an error?
 - a) 00000111111
 - **b**) 10101010101
 - c) 111111100000
 - d) 10111101111
- **14.** Prove that a parity check bit can detect an error in a string if and only if the string contains an odd number of errors.

- 15. The first nine digits of the ISBN-10 of the European version of the fifth edition of this book are 0-07-119881. What is the check digit for that book?
- 16. The ISBN-10 of the sixth edition of Elementary Number Theory and Its Applications is 0-321-500Q1-8, where Q is a digit. Find the value of Q.
- 17. Determine whether the check digit of the ISBN-10 for this textbook (the seventh edition of Discrete Mathematics and its Applications) was computed correctly by the publisher.

The United States Postal Service (USPS) sells money orders identified by an 11-digit number $x_1x_2...x_{11}$. The first ten digits identify the money order; x_{11} is a check digit that satisfies $x_{11} = x_1 + x_2 + \dots + x_{10} \operatorname{mod} 9.$

- 18. Find the check digit for the USPS money orders that have identification number that start with these ten digits.
 - a) 7555618873
 - **b)** 6966133421
 - c) 8018927435
 - d) 3289744134
- 19. Determine whether each of these numbers is a valid USPS money order identification number.
 - a) 74051489623
 - b) 88382013445
 - c) 56152240784
 - **d)** 66606631178
- 20. One digit in each of these identification numbers of a postal money order is smudged. Can you recover the smudged digit, indicated by a Q, in each of these numbers?
 - a) Q1223139784
 - **b**) 6702120*Q*988
 - c) 27Q41007734
 - d) 213279032Q1
- 21. One digit in each of these identification numbers of a postal money order is smudged. Can you recover the smudged digit, indicated by a Q, in each of these numbers?
 - a) 493212*Q*0688
 - **b**) 850*Q*9103858
 - c) 2Q941007734
 - **d**) 66687 Q 03201
- 22. Determine which single digit errors are detected by the USPS money order code.
- 23. Determine which transposition errors are detected by the USPS money order code.
- 24. Determine the check digit for the UPCs that have these initial 11 digits.
 - a) 73232184434
 - **b**) 63623991346
 - c) 04587320720
 - d) 93764323341
- 25. Determine whether each of the strings of 12 digits is a valid UPC code.

- a) 036000291452
- **b**) 012345678903
- c) 782421843014
- d) 726412175425
- 26. Does the check digit of a UPC code detect all single errors? Prove your answer or find a counterexample.
- 27. Determine which transposition errors the check digit of a UPC code finds.

Some airline tickets have a 15-digit identification number $a_1 a_2 \dots a_{15}$ where a_{15} is a check digit that equals $a_1 a_2 \dots a_{14}$ **mod** 7.

- **28.** Find the check digit a_{15} that follows each of these initial 14 digits of an airline ticket identification number.
 - a) 10237424413392
 - **b**) 00032781811234
 - c) 00611232134231
 - **d**) 00193222543435
- 29. Determine whether each of these 15-digit numbers is a valid airline ticket identification number.
 - a) 101333341789013
 - **b**) 007862342770445
 - c) 113273438882531
 - d) 000122347322871
- 30. Which errors in a single digit of a 15-digit airline ticket identification number can be detected?
- *31. Can the accidental transposition of two consecutive digits in an airline ticket identification number be detected using the check digit?

Periodicals are identified using an International Standard Serial Number (ISSN). An ISSN consists of two blocks of four digits. The last digit in the second block is a check digit. This check digit is determined by the congruence $d_8 \equiv$ $3d_1 + 4d_2 + 5d_3 + 6d_4 + 7d_5 + 8d_6 + 9d_7 \pmod{11}$. When $d_8 \equiv 10 \pmod{11}$, we use the letter X to represent d_8 in the code.

- 32. For each of these initial seven digits of an ISSN, determine the check digit (which may be the letter X).
 - a) 1570-868
 - **b**) 1553-734
 - c) 1089-708
 - d) 1383-811
- 33. Are each of these eight-digit codes possible ISSNs? That is, do they end with a correct check digit?
 - a) 1059-1027
 - **b**) 0002-9890
 - c) 1530-8669
 - d) 1007-120X
- 34. Does the check digit of an ISSN detect every single error in an ISSN? Justify your answer with either a proof or a counterexample.
- 35. Does the check digit of an ISSN detect every error where two consecutive digits are accidentally interchanged? Justify your answer with either a proof or a counterexample.