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6.4 Binomial Coefficients and Identities 421

We can prove combinatorial identities by counting bit strings with different properties, as
the proof of Theorem 4 will demonstrate.

THEOREM 4  Letn and r be nonnegative integers with r < n. Then

L=l

r

Proof: We use a combinatorial proof. By Example 14 in Section 6.3, the left-hand side, (
counts the bit strings of length n + 1 containing r + 1 ones.

We show that the right-hand side counts the same objects by considering the cases corre-
sponding to the possible locations of the final 1 in a string with 4 1 ones. This final one must
occur at position» + 1,7 4 2, ..., orn + 1. Furthermore, if the last one is the kth bit there must
be r ones among the first £ — 1 positions. Consequently, by Example 14 in Section 6.3, there

are (k,_ ]) such bit strings. Summing over k with r + 1 < k < n + 1, we find that there are

= ()-20)

k=r+1 Jj=r

)

bit strings of length » containing exactly » + 1 ones. (Note that the last step follows from the
change of variables j = k — 1.) Because the left-hand side and the right-hand side count the

same objects, they are equal. This completes the proof. <
Exercises
1. Find the expansion of (x 4 y)* 13. What is the row of Pascal’s triangle containing the bino-
a) using combinatorial reasoning, as in Example 1. mial coefficients (}), 0 < k < 9?
b? using the binomial theorem. 14. Show that if n is a positive integer, then 1 = (§) < (]) <
2. Find the expansion of (x + y)? noy_(n n m
< () = Gag) > > (L) > () =1
. N N . . /2] [n/2] n—1 n
a) using combinatorial reasoning, as in Example 1.
b) using the binomial theorem. 15. Show that (}) < 2" for all positive integers n and all in-
3. Find the expansion of (x + y)°. tegers k with 0 < k < n.
4. Find the coefficient of x>y in (x + y)!3. 16. a) Use Exercise 14 and Corollary 1 to show that if n is
5. How many terms are there in the expansion of (x + y)'%0 an integer greater than 1, then (L”’/’;2 J) >2"/n.
after like terms are collected? b) Conclude from part (a) that if # is a positive integer,
6. What is the coefficient of x” in (1 +x)'!? then (%") > 4" /2n.
7' . . 9. _ 19 n/s —
8 What 5 he coefﬁc1er.1t i 1n8(29 ] x) 71 ; £5717. Show that if n and k are integers with 1 < k < n, then
« What is the coefficient of x8y° in the expansion of (n) < nk2k=1
~ Bx+2y)l7? a '
9 18. Suppose that b is an integer with » > 7. Use the bino-

- What is the coefficient of x'°'y® in the expansion of

- Give a formula for the coefficient of x* in the expansion

(2x — 3y)2009 mial theorem and the appropriate row of Pascal’s triangle
’ to find the base-b expansion of (1 l)é [that is, the fourth

of (x + 1/x)!%0_ where k is an integer. power of the number (11); in base-b notation].

 Give a formula for the coefficient of x* in the expansion 19. Prove Pascal’s identity, using the formula for (7).
of (x? — 1 /x)!1%0, where k is an integer. 20. Suppose that k and n are integers with 1 < k < n. Prove
» The row of Pascal’s triangle containing the binomial co- the hexagon identity
ffici 10 A
eﬁCICnts(k),OSkSIO,ls_ n—1 n n+1\  (n—1 n <n+1>
1 10 45 120 210 252 210 120 45 10 1 k=1/\k+1/\ &k )7\ k J\k—=1/\k+1)
Use Pascal’s identity to produce the row immediately fol- which relates terms in Pascal’s triangle that form a

lowing this row in Pascal’s triangle. hexagon.
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£s721.

22.

23.

24,

25.

#26.

*27.

28.

*29,

*30.

31.

*32,

Prove that if n and k are integers with 1 < k < n, then

€)= (2.

a) using a combinatorial proof. [Hint: Show that the two
sides of the identity count the number of ways to select
a subset with k elements from a set with n elements
and then an element of this subset.]

b) using an algebraic proof based on the formula for (1)
given in Theorem 2 in Section 6.3.

Prove the identity (%) (;) = (}) (’r’:;:), whenever n, r, and

k are nonnegative integers withr <nandk <r,

a) using a combinatorial argument.

b) using an argument based on the formula for the num-
ber of r-combinations of a set with n elements.

Show that if n and k are positive integers, then

(n:1>=(n+1)<kil) / k.

Use this identity to construct an inductive definition of

the binomial coefficients.

Show that if p is a prime and k is an integer such that
py »

| <k < p — 1, then p divides (k)

Let n be a positive integer. Show that

2n 2n 2n+2
<n+1>+<n>=(n+1)/2.

Let n and k be integers with 1 < k < n. Show that

£0)-Ci- )

Prove the hockeystick identity

i (n—i—k) _ <n+r+1>
b k r
whenever r and r are positive integers,
a) using a combinatorial argument.
b) using Pascal’s identity.

Show that if # is a positive integer, then (22”) =2(3) +n?
a) using a combinatorial argument.

b) by algebraic manipulation.

Give a combinatorial proof that 3§ _, k() = n2"~".
[Hint: Count in two ways the number of ways to select a
committee and to then select a leader of the committee. ]

Give a combinatorial proof that Y ) _ k(2)2 =n(>7)).
[Hint: Count in two ways the number of ways to select a
committee, with » members from a group of » mathemat-
ics professors and n computer science professors, such
that the chairperson of the committee is a mathematics

professor.]

Show that a nonempty set has the same number of subsets
with an odd number of elements as it does subsets with
an even number of elements.

Prove the binomial theorem using mathematical induc-
tion.

33.

In this exercise we will count the number of paths {, h
xy plane between the origin (0, 0) and point (m, p), Whegs

m and n are nonnegative integers, such that each Path ¥
made up of a series of steps, where each step is a moy, Dnls
3

unit to the right or a move one unit upward. (No Moveg
the left or downward are allowed.) Two such pathg f,

(0, 0) to (5, 3) are illustrated here. o
(5,3
0,0
(5,3)
(0,0

W

36.

37.

38.

*39,

4.

a) Show that each path of the type described can be rep-
resented by a bit string consisting of m Os and n 15,
where a 0 represents a move one unit to the right and
a | represents a move one unit upward.

b) Conclude from part (a) that there are ('” il

) paths of
the desired type.

Use Exercise 33 to give an alternative proof of Corollary2
in Section 6.3, which states that (}) = (,," ) whenever k
is an integer with 0 < k < n. [Hint: Consider the number
of paths of the type described in Exercise 33 from (0,0)
to (n — k, k) and from (0, 0) to (k,n — k).]

. Use Exercise 33 to prove Theorem 4. [Hint: Count the

number of paths with n steps of the type described in Ex-
ercise 33. Every such path must end at one of the points
(n—k,k)yfork=0,1,2,...,n]

Use Exercise 33 to prove Pascal’s identity. [Hint: Show
that a path of the type described in Exercise 33
from (0,0) to (n+ 1 —k, k) passes through either
(n+1—k.k — 1) or (n — k, k), but not through both]
Use Exercise 33 to prove the hockeystick identity from
Exercise 27. [Hins: First, note that the number of
paths from (0,0) to (n+ 1,7) equals ("I, Secs
ond, count the number of paths by summing the num-
ber of these paths that start by going k units upward for
k=0,1,2,...,rl]

Give a combinatorial proof that if » is a positive inte”
gerthen )y _g k2 (',i) = n(n + 1)2"2, [Hint: Show that
both sides count the ways to select a subset of aset of 7 ele-
ments together with two not necessarily distinct elemﬁ_ﬂts
from this subset. Furthermore, express the right-hand sI
asn(n — 1)2" 2 4 n2"=1]

Determine a formula involving binomial coefficients for
the nth term of a sequence if its initial terms are thosé
listed. [Hint: Looking at Pascal’s triangle will be helpfut:
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Although infinitely many sequences start with a specified ¢) 1,2,6,20,70,252,924, 3432, 12870, 48620, . . .

set of terms, each of the following lists is the start of a d) 1,1,2,3,6, 10, 20, 35, 70, 126, ...

sequence of the type desired.] e) 1,1,1,3,1,5,15,35,1,9,...

a) 1,3,6,10,15,21,28,36,45, 55,66, . .. £) 1, 3, 15, 84, 495, 3003, 18564, 116280, 735471,
p) 1,4, 10,20, 35, 56, 84, 120, 165, 220, ... 4686825

m Generalized Permutations and Combinations

pum———

Links

EXAMPLE 1

THEOREM 1

Introduction

In many counting problems, elements may be used repeatedly. For instance, a letter or digit may
be used more than once on a license plate. When a dozen donuts are selected, each variety can
be chosen repeatedly. This contrasts with the counting problems discussed earlier in the chapter
where we considered only permutations and combinations in which each item could be used at
most once. In this section we will show how to solve counting problems where elements may
be used more than once.

Also, some counting problems involve indistinguishable elements. For instance, to count the
number of ways the letters of the word SUCCESS can be rearranged, the placement of identical
letters must be considered. This contrasts with the counting problems discussed earlier where all
elements were considered distinguishable. In this section we will describe how to solve counting
problems in which some elements are indistinguishable.

Moreover, in this section we will explain how to solve another important class of counting
problems, problems involving counting the ways distinguishable elements can be placed in
boxes. An example of this type of problem is the number of different ways poker hands can be
dealt to four players.

Taken together, the methods described earlier in this chapter and the methods introduced
in this section form a useful toolbox for solving a wide range of counting problems. When the
additional methods discussed in Chapter 8 are added to this arsenal, you will be able to solve a
large percentage of the counting problems that arise in a wide range of areas of study.

Permutations with Repetition

Counting permutations when repetition of elements is allowed can easily be done using the
product rule, as Example 1 shows.

How many strings of length r can be formed from the uppercase letters of the English alphabet?

Solution: By the product rule, because there are 26 uppercase English letters, and because each
letter can be used repeatedly, we see that there are 26" strings of uppercase English letters of
length r. <

The number of r-permutations of a set with n elements when repetition is allowed is given
in Theorem 1.

‘The number of r-permutations of a set of n objects with repetition allowed is n”.

Proof: There are n ways to select an element of the set for each of the r positions in the
r-permutation when repetition is allowed, because for each choice all n objects are available.
Hence, by the product rule there are n” r-permutations when repetition is allowed. d




