Math 145 Fall 2003

Calculus and Absolute values

Problems

- 1. Sketch the graphs of $f(x) = e^{|x|}$ and $g(x) = e^{|x-1|}$.
- 2. Let $f(x) = |x^2 x 4| + |x + 2|$. Find f'(3).
- 3. Find the slope of the tangent line to the curve $|x| + |y^3| = 9$ at the point (1, -2).
- 4. Evaluate the integral $\int_0^4 |||x-1|-1|-2|dx$
- 5. Find local maxima and minima of $f(x) = e^{|x^3+3x^2-27x+10|+18x}$.
- 6. Find the area bounded by the curve $|x^3| + |y| = 8$.
- 7. Find a number c such that the area enclosed by $y = |x^2 1|$ and y = c is 8.
- 8. Find local maxima and minima of $f(t) = \int_0^t (||x-1|-1|-2) dx$.
- 9. Find the area bounded by the curve $|x+2| + |3y^3| = 3$.
- 10. Find the slope of the tangent line to the curve $x^2 + |y^3 2| = |xy 5|$ at the point (1, 2).