Math 145 Fall 2003

Calculus

Theory (some useful definitions and facts)

Def. $\log_a x = y$ \Leftrightarrow $a^y = x$

Properties of logarithms.

- $1. \log_a(xy) = \log_a x + \log_a y$
- $2. \log_a \left(\frac{x}{y}\right) = \log_a x \log_a y$
- $3. \log_a(x^r) = r \log_a x$
- $4. \log_a(x) = \frac{\ln x}{\ln a}$

Def. A function f(x) is called <u>even</u> if f(-x) = f(x) for all x. f(x) is called <u>odd</u> if f(-x) = -f(x) for all x.

Def. f^{-1} is the <u>inverse</u> of f if

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y.$$

Intermediate value theorem. Suppose f(x) is continuous on [a, b]. Let N be any number between f(a) and f(b). Then there exists $c \in [a, b]$ such that f(c) = N.

Def. The derivative of f(x) at a point a is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

f'(a) is the slope of the tangent line to y = f(x) at (a, f(a)). Also, f'(a) is the rate of change of f(x) with respect to x at x = a.

Important derivatives:

$$(x^{n})' = nx^{n-1}, \qquad (e^{x})' = e^{x}, \qquad (a^{x})' = (\ln a)a^{x},$$

$$(c)' = 0, \qquad (\ln x)' = \frac{1}{x}, \qquad (\log_{a} x)' = \frac{1}{(\ln a)x},$$

$$(\sin x)' = \cos x, \qquad (\cos x)' = -\sin x, \qquad (\tan x)' = (\sec x)^{2},$$

$$(\csc x)' = -\csc x \cot x, \qquad (\sec x)' = \sec x \tan x, \qquad (\cot x)' = -(\csc x)^{2},$$

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^{2}}} \qquad (\arccos x)' = -\frac{1}{\sqrt{1 - x^{2}}}, \qquad (\arctan x)' = \frac{1}{x^{2} + 1}$$

Chain rule. $(f \circ g)'(x) = (f(g(x)))' = f'(g(x))g'(x)$

Def. The integral of f(x) from a to b is

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$

where $\Delta x = \frac{b-a}{n}$ and $x_i = a + i\Delta x$ is the right endpoint of the *i*-th subinterval of [a, b] of length Δx (i.e. the interval [a, b] is divided into n subintervals of equal length).

If $f(x) \ge 0$, then $\int_a^b f(x)dx$ is the area of the region under the curve y = f(x) and above the x-axis from a to b.

If f(x) takes on both positive and negative values, then $\int_a^b f(x)dx$ is the sum of the areas under the curve and above the x-axis minus the sum of the areas under the x-axis and above the curve.

Fundamental Theorem of Calculus.

I.
$$\frac{d}{dx} \left(\int_{a}^{x} f(t) dt \right) = f(x)$$

II. If
$$F'(x) = f(x)$$
, then $\int_{a}^{b} f(x) = F(b) - F(a)$.

Substitution Rule. $\int f(g(x))g'(x)dx = \int f(u)du$ where u = g(x), du = g'(x)dx.

Some important series:

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots \text{ is divergent.}$$

$$\sum_{n=0}^{\infty} q^n = 1 + q + q^2 + q^3 + \ldots = \frac{1}{1-q} \text{ if } |q| < 1, \text{ and divergent if } |q| \ge 1.$$

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = e^x \text{ for all } x.$$

(in particular, if
$$x = 1$$
, then $\sum_{n=0}^{\infty} \frac{1}{n!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots = e$.)

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots = \arctan x \text{ for all } x.$$

(in particular, if
$$x = 1$$
, then $\sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \arctan 1 = \frac{\pi}{4}$.)