Math 145 Fall 2003

Homework 1

Dirichlet's box principle

Do these by 5 September 2003, 5 points each:

- 1. Prove that of 12 distinct two-digit numbers, we can select two with a two-digit difference of the form aa.
- 2. Three hundred points are selected inside a cube with edge 7. Prove that we can place a small cube with edge 1 inside the big cube such that the interior of the small cube does not contain any of the selected points.
- 3. Let a_1 , a_2 , a_3 , and a_4 be integers. Show that the product $\prod_{1 \le i < j \le 4} (a_i a_j)$ is divisible by 12.
- 4. Prove that in any convex 2n-gon, there is a diagonal not parallel to any side.
- 5. Using 4 colors, we color a 5×41 block checkerboard. Prove that, whichever way we color the blocks, there exist at least one same-color-corner rectangle.

For extra credit, you may work in groups and submit it any time during the semester: The number theory fact given below was needed in my Ph.D. thesis (which is in the area of homological algebra and algebraic topology). My proofs used Dirichlet's principle.

- 1. (hard) If p is and odd prime, then any element of $\mathbb{Z}_{p^{k+1}}$ of the form $1+p^2a$ is the p-th power of some element of the form 1+pb.
 - Hint 1: If p is odd, $\mathbb{Z}_{p^{k+1}}^*$ is cyclic. What is its order?
 - Hint 2: You might want to use the following lemma. Given natural numbers c, d, and f, the equation $cx = d \pmod{f}$ has at most c solutions mod f. In fact, if c divides f, then this equation has either c or 0 solutions. What if c does not divide f? When does the equation has solutions (find a necessary and sufficient condition on c, d, and f).
- 2. (even harder) There are analogous statements for p = 2. In fact, there are closely related facts that are well-known, but I do not know their proofs. Let me know if you are interested in doing a project on this.