Math 145 Fall 2003

Number Theory

Theory

All variables below stand for integers.

Def. If b = aq, then we say that a divides b, and write a|b, or that b is divisible by a, and we write b:a.

Fundamental properties.

- $a|b, b|c \Rightarrow a|c$.
- $a|b, a|c \Rightarrow a|b \pm c$. More generally, a|bx + cy for all x and y.

Def. For every pair a, b there exist unique q and r such that

$$a = bq + r, \qquad 0 \le r < b.$$

q and r are called **quotient** and **remainder** upon division of a by b.

- If two numbers have the same remainder upon division by b, then they can be written as $bq_1 + r$ and $bq_2 + r$. Their difference is $b(q_1 q_2)$, and thus it is divisible by b.
- Note that when we divide by b, there are b possible remainders. Thus given b+1 numbers, there are at least 2 numbers with the same remainder. Their difference is divisible by b.

Def. The largest number that divides both a and b is called **the greatest common divisor** of a and b, and is denoted by (a, b).

•
$$(a, a) = a, (a, 1) = 1, (a, 0) = a, (a, b) = (b, a).$$

Def. A number is called **prime** if it has exactly two divisors, 1 and itself. An integer that is not prime is called composite.

• There are infinitely many primes.

Euclid's lemma. If p is prime, p|ab, then either p|a or p|b.

Fundamental theorem of arithmetic. Every positive integer can be uniquely represented as a product of primes (uniquely up to order of the multiples).

Def.a and b are called **relatively prime** or coprime if (a, b) = 1.

Theorem. For any pair a, b, there exist integers x and y such that ax + by = (a, b).

Special case: If a and b are relatively prime, then there exist x and y such that ax + by = 1.

Def. We say that a and b are **congruent** mod m, and write $a \equiv b \pmod{m}$ if $m \mid (a - b)$. Equivalently, a - b = mq for some q, or a = b + mq, or a and b have the same remainder upon division by m.

Example: $12 \equiv 7 \pmod{5}$ because they have the same remainder upon division by 5.

- Congruences can be added, subtracted, and multiplied: if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a \pm c \equiv b \pm d \pmod{m}$ and $ac \equiv bd \pmod{m}$
- Cancellation rule: if (c, m) = 1, $ca = cb \pmod{m}$, then $a \equiv b \pmod{m}$.

Fermat's theorem. If p is prime, then $a^p \equiv a \pmod{p}$. Corollary: if p is prime and $p \not a$, then $a^{p-1} \equiv 1 \pmod{p}$.

Examples: p = 5. $1^4 = 1 \equiv 1 \pmod{5}$, $2^4 = 16 = 1 \equiv 1 \pmod{5}$, $3^4 = 81 = 1 \equiv 1 \pmod{5}$, $4^4 = 256 = 1 \equiv 1 \pmod{5}$.

Useful formulas.

- $a^n b^n = (a b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$
- if n is odd, $a^n + b^n = (a+b)(a^{n-1} a^{n-2}b + \dots + (-1)^{n-2}ab^{n-2} + (-1)^{n-1}b^{n-1})$