Math 145 Fall 2003

Practice Test 1 - Solutions

Answer the question (5 points):

• What does "a and b are relatively prime" mean?

Answer: It means that the greatest common divisor of a and b is 1.

or: It means that no number bigger than 1 divides both a and b.

and do any 3 of the following problems (15 points each):

1. Prove that if n is an integer then $n^2 + 2$ is not divisible by 5.

Solution: Consider all possible remainders of $n \mod 5$, and in each case, compute the remainder of $n^2 + 2$:

If $n \equiv 0 \pmod{5}$, then $n^2 + 2 \equiv 2 \pmod{5}$;

if $n \equiv 1 \pmod{5}$, then $n^2 + 2 \equiv 3 \pmod{5}$;

if $n \equiv 2 \pmod{5}$, then $n^2 + 2 \equiv 6 \equiv 1 \pmod{5}$;

if $n \equiv 3 \pmod{5}$, then $n^2 + 2 \equiv 11 \equiv 1 \pmod{5}$;

if $n \equiv 4 \pmod{5}$, then $n^2 + 2 \equiv 18 \equiv 3 \pmod{5}$;

We see that $n^2 + 2$ is never congruent to 0 mod 5, so it is never divisible by 5.

Another solution: We know from a homework problem that n^2 can end with 0, 1, 4, 5, 6, or 9. Then $n^2 + 2$ can end with 2, 3, 6, 7, 8, or 1. So it never ends with 5 or 0, therefore it is never divisible by 5.

2. Prove that for any natural n,

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (n+1)! - 1.$$

Solution: We will prove this identity by Mathematical Induction.

Basis step: for n = 1 we have $1 \cdot 1! = 2! - 1$, or 1 = 2 - 1 which is true.

Inductive step: suppose the identity holds for n = k, i.e.

$$1 \cdot 1! + 2 \cdot 2! + \ldots + k \cdot k! = (k+1)! - 1.$$

Add $(k+1) \cdot (k+1)!$ to both sides:

$$1 \cdot 1! + 2 \cdot 2! + \dots + k \cdot k! + (k+1) \cdot (k+1)! = (k+1)! - 1 + (k+1) \cdot (k+1)! = (k+1)!(1+k+1) - 1 = (k+2)! - 1.$$

Thus the identity holds for n = k + 1.

3. Let P(x, y) denote the proposition "x < y" where x and y are real numbers. Determine the truth values of

- (a) $\exists x \exists y P(x, y)$,
- (b) $\forall x \exists y P(x, y)$,
- (c) $\exists x \forall y P(x, y)$,
- (d) $\forall x \forall y P(x, y)$.

Solution:

- (a) True. Example: x = 1, y = 2, 1 < 2.
- (b) True. For any x, if we take y = x + 1 then x < y.
- (c) False. There is no such x that for any y, y > x, because for any x we can take y = x, then $x \not< y$.
- (d) False. Counterexample: x = 2, y = 1, $2 \nleq 1$.
- 4. Let $f_1(x) = 2x + 1$ and $f_n = f_1 \circ f_{n-1}$. Compute f_n for some small values of n. Notice the pattern. Write a formula for f_n and prove it using Mathematical Induction.

Solution:

$$f_2(x) = 2(2x+1) + 1 = 4x + 3$$

$$f_3(x) = 2(4x+3) + 1 = 8x + 7$$

$$f_4(x) = 2(8x+7) + 1 = 16x + 15$$

It appears that $f_n = 2^n x + 2^n - 1$, so we will try to prove this by Mathematical Induction.

Basis step: if n = 1, then our formula gives $f_1 = 2x + 1$ which is true.

Inductive step: suppose the formula holds for n = k, i.e. $f_k = 2^k x + 2^k - 1$.

Then $f_{k+1} = f_1 \circ f_k = 2(2^k x + 2^k - 1) + 1 = 2^{k+1} x + 2^{k+1} - 2 + 1 = 2^{k+1} x + 2^{k+1} - 1$.

Thus the formula holds for n = k + 1.

Extra credit (15 points):

• Six points are selected inside a 3×4 rectangle. Prove that there two of them such that the distance between them is at most $\sqrt{5}$.

Solution: Divide the rectangle into 5 regions as shown on the picture. Since there are 6 points, by Dirichlet's principle at least two of them are in the same region. The distance between them is at most $\sqrt{5}$.

