MATH 145

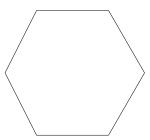
Test 1

26 September 2003

	Name:
$\mathbf{A}\mathbf{n}\mathbf{s}$	wer the question (5 points):
•	Let $P(x, y)$ be a propositional function. Are $\forall x \exists y P(x, y)$ and $\exists y \forall x P(x, y)$ logically equivalent?
	Answer ("yes" or "no"):
and	do any 3 of the following problems (15 points each):

and do any 3 of the following problems (15 points each):

- 1. Prove that among 120 integers, there are two whose difference ends with 00.
- 2. Compute $A_n = 1 + 3 + 5 + \ldots + (2n 1)$ for some small values of n. Notice the pattern. Write a formula for A_n and prove it using Mathematical Induction.
- 3. Prove that for every integer n, $n^3 + 2n$ is divisible by 3.
- 4. 7 points are selected inside a regular hexagon whose sides have length 1. Prove that there are two points such that the distance between them is at most 1.



Extra credit (15 points):

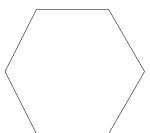
• Prove that among n+1 positive integers all less than or equal to 2n, there are two which are relatively prime.

1.	Prove	that	among	120	integers,	there	are tw	o whose	difference e	nds with	00.

2. Compute $A_n = 1 + 3 + 5 + \ldots + (2n - 1)$ for some small values of n. Notice the pattern. Write a formula for A_n and prove it using Mathematical Induction.

3. Prove that for every integer n, $n^3 + 2n$ is divisible by 3.

4. 7 points are selected inside a regular hexagon whose sides have length 1. Prove that there are two points such that the distance between them is at most 1.



Extra credit: Prove that among n+1 positive integers all less than or equal to 2n, there are two which are relatively prime.