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Chapter 1

Introduction

Solving mathematical problems is an art. It is impossible to learn how to solve every single
problem... there are infinitely many of them...

Below are some problems.

1. Eleven children contributed money to buy a present for their classmate. The total
amount of money collected was $30.00. Prove that at least one child gave at least
$2.73.

2. (a) Prove that any two-digit number is divisible by 3 if and only if the sum of its
digits is divisible by 3.

(b) Prove that any natural number is divisible by 3 if and only if the sum of its digits
is divisible by 3.

3. Is it true or false that for any natural number n, the number n2 + n + 41 is prime?

4. In a 4× 4 table six cells are marked by a star and all others are blank. Show that it is
possible to cross out 2 columns and 2 rows so that the remaining cells are blank.

5. Is it true or false that for any natural number n, the number n3 + 2n is divisible by 3?

6. Sketch the graph of f(x) = |x + 2|+ |2x− 5|.

7. Konigsberg is a city which was the capital of East Prussia but now is known as Kalin-
ingrad in Russia. The city is built around the River Pregel where it joins another river.
An island named Kniephof is in the middle of where the two rivers join. There are
seven bridges that join the different parts of the city on both sides of the rivers and the
island.
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4 CHAPTER 1. INTRODUCTION

People tried to find a way to walk all seven bridges without crossing a bridge twice,
but no one could find a way to do it. The problem came to the attention of a Swiss
mathematician named Leonhard Euler. In 1735, Euler presented the solution to the
problem before the Russian Academy.
Now, you too try to solve this problem. If such a tour exists, find it. If not, explain
why not.

8. (a) Is it possible for a chess knight to start at the upper left corner and go through
every square on the 8× 8 chessboard exactly once? (A knight’s move is 2 squares
up, down, or to the right or left, and 1 square in a perpendicular direction. All
allowed moves from a certain square are shown below.)

(b) Is it possible for a knight to start at the upper left corner, go through every square
on the 8× 8 chessboard exactly once, and come back to the starting point?

As said above, learning to solve problems is in part difficult because problems can be very
different. However, there are a few basic principles that are good to know. There are a few
approaches and methods that can be useful. In this book, we’ll study some of them. After
you study the material of this book you should be able to solve many problems pretty easily.

While using intuition and working out a few examples may help us find an idea, it is
also important to write rigorous proofs. Since our intuition is not always correct, we need to
justify each step in a solution. We will therefore try to avoid words such as ‘obviously’.

In each chapter, we provide basic definitions and facts to get you started. We do not prove
most of the facts given in this book, since our main goal is to learn how to solve problems,
i.e. use these facts. You will probably prove all the facts given in this book in courses such
as Calculus, Discrete Mathematics, Abstract Algebra, and Number Theory. Sometimes the
idea of a proof of a theorem can be used for solving many problems. In such cases we provide
the proof.



Chapter 2

Introduction to Logic

In this chapter we will introduce basic logic terminology and notations. It will be useful when
we discuss types of proofs (see chapter 3).

Definition 2.1. A proposition is a declarative sentence that is either true of false.

For example, “3 plus 2 is 5” is a true proposition, “3 times 2 is 7” is a false proposition,
while “x minus 4 is 8” is not a proposition because the value of x has not been defined, and
“is 3 plus 3 equal 6?” is not a proposition because it is an interrogative, not declarative,
sentence.

Definition 2.2. Let p and q be propositions. Then:

• The negation of p, denoted by ¬p, is the proposition “not p”. It is true if and only if
p is false.

• The conjunction of p and q, denoted by p∧ q, is the proposition “p and q”. It is true
if and only if both p and q are true.

• The disjunction of p and q, denoted by p ∨ q, is the proposition “p or q”. It is true
if and only if at least one of p and q is true. Note that if both p and q are true, then
p ∨ q is true, so “or” is not exclusive.

• The exclusive or of p and q, denoted by p ⊕ q, is the proposition “either p or q but
not both”. It is true if and only if exactly one of p and q is true.

• The implication of p and q, denoted by p → q, is the proposition “if p then q”. It is
false when p is true and q is false, and true otherwise.

• The biconditional of p and q, denoted by p ↔ q, is the proposition “p if and only if
q”. It is true when p and q have the same truth values and is false otherwise.

Below is the so-called truth table that shows the truth values of the compound proposi-
tions defined above depending on the truth values of p and q.

p q ¬p p ∧ q p ∨ q p⊕ q p→ q p↔ q
T T F T T F T T
T F F F T T F F
F T T F T T T F
F F T F F F T T

Notice that p → q is false if and only if p is true and q is false. We will need this
observation in chapter ??.
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6 CHAPTER 2. INTRODUCTION TO LOGIC

• Symbols ¬, ∧, ∨, ⊕, →, and ↔ are called logical connectives.

• A compound proposition that is always true, no matter what the truth values of the
propositions that occur in it are, is called a tautology.

For example, p ∨ ¬p is a tautology.

• A compound proposition that is always false is called a contradiction.

For example, p ∧ ¬p is a contradiction.

• Propositions p and q are called logically equivalent if p ↔ q is a tautology. The
notation p ⇔ q denotes that p and q are logically equivalent. Note that p and q are
logically equivalent if and only if they always have the same truth values.

Example 2.3. Show that ¬(p ∨ q) and (¬p) ∧ (¬q) are logically equivalent.

Solution. We construct the truth table:

p q p ∨ q ¬(p ∨ q) ¬p ¬q (¬p) ∧ (¬q)
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

We see that the truth values of ¬(p ∨ q) and (¬p) ∧ (¬q) are always the same, therefore
these propositions are logically equivalent.

Definition 2.4. A statement P (x) that depends on the value of a variable (x in this case)
is called a propositional function. Once a value has been assigned to the variable x, the
statement P (x) becomes a proposition and has a truth value.

For example, if P (x) is the statement “x > 3”, then P (4) is true and P (2) is false.

Definition 2.5. Let P (x) be a propositional function. Then

• ∀xP (x) means “for every x, P (x) is true”.

• ∃xP (x) means “there exists a value of x for which P (x) is true”.

• ∃!xP (x) means “there exists a unique value of x for which P (x) is true”.

Symbols ∀ and ∃ are called quantifiers. Namely, ∀ is called a universal quantifier,
and ∃ is called an existential quantifier.

When interpreting expressions ∀xP (x), ∃xP (x), ∃!xP (x), we need to specify a set S of
all possible choices of x. Such a set is called the domain of discourse. Unless the domain
of discourse has already been specified or is clear from context, we can write ∀x ∈ S P (x),
etc. to make it explicit. For example, “the square of every integer x is nonnegative” can be
written as ∀x ∈ Z x2 ≥ 0.

Propositional functions can be functions of two or more variables, and then we can use
two or more quantifiers with them. It is important to realize that the order of quantifiers
makes a difference. For example, below we will use the propositional function F (x, y) which
means that x and y are friends (the domain of this function can be a set of people). Then
e.g. ∀x∃yF (x, y) means that everybody has at least one friend, while ∃y∀xF (x, y) means
that there is a person who is friends with everybody.

Propositions with negations can always be written so that no negation is outside a quan-
tifier or an expression involving logical connectives, for example:
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• ¬(p ∧ q)⇔ ¬p ∨ ¬q

• ¬(p ∨ q)⇔ ¬p ∧ ¬q

• ¬∀xP (x)⇔ ∃x¬P (x)

• ¬∃xP (x)⇔ ∀x¬P (x)

Problems

1. Show that the following propositions are logically equivalent.

(a) p→ q and ¬q → ¬p

(b) p→ q and ¬p ∨ q

(c) .

(d) p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r)

2. Which of the following sentences are statements? For those that are, indicate the truth
value.

(a) Five plus eight is thirteen.

(b) Five minus eight is three.

(c) Two times x is 6.

(d) The number 2n+6 is an even integer.

(e) There are 200 elephants in the San Diego Wild Animal Park.

(f) I have solved all problems in chapter 1.

(g) Did you do your homework today?

3. Translate the statement

∀x(C(x) ∨ ∃y(C(y) ∧ F (x, y)))

into English, where C(x) is “x has a computer”, F (x, y) is “x and y are friends”, and
the domain of discourse is the set of all students at your university.

4. Let F (x, y) be statement “x can fool y”. Use quantifiers to express each of the following
statements:

(a) Everybody can fool Amy.

(b) Mike can fool everybody.

(c) Everybody can fool somebody.

(d) There is no one who can fool everybody.

(e) Everyone can be fooled by somebody.

(f) No one can fool both Kate and Jerry.

(g) Tim can fool exactly two people.

(h) There is exactly one person whom everybody can fool.

(i) No one can fool himself or herself.
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5. Let P (x) denote the propositional function “x = −5” and let Q(x) denote the propo-
sitional function “x2 = 25′′ and let the domain of discourse be the set of real numbers.
Determine the truth values of the following propositions:

(a) P (4)

(b) P (4)→ Q(4)

(c) ∃x¬P (x)

(d) ∀x(P (x) ∨Q(x))

(e) ∃x(P (x) ∧Q(x))

(f) ∀x(P (x)→ Q(x))

(g) ∃x(P (x)→ Q(x))

(h) ∀x(P (x)↔ Q(x))

6. Let P (x) denote the propositional function “(x < 3) ∨ (x > 5)” and let the domain
of discourse be the set of real numbers. Determine the truth values of the following
propositions.

(a) P (2)

(b) P (4)

(c) P (2) ∧ P (4)

(d) ∀xP (x)

(e) ∃xP (x)

(f) ∃!xP (x)

(g) ∀xP (x) ∨ P (−x)

7. Let Q(x, y) denote “x + y = 0” and let the domain of discourse be the set of real
numbers. What are the truth values of the statements ∀x∃yQ(x, y) and ∃y∀xQ(x, y)?

8. Rewrite each of the following statements so that negations appear only immediately
before propositional functions.

(a) ¬∀x∀yP (x, y)

(b) ¬∀y∃xP (x, y)

(c) ¬∀y∀x(P (x, y) ∨Q(x, y))

(d) ¬(∃x∃y¬P (x, y) ∧ ∀x∀yQ(x, y))

(e) ¬∀x(∃y∀zP (x, y, z) ∧ ∃z∀yP (x, y, z))

(f) ¬∃!xP (x)

9. Let P (x, y) denote the proposition “x < y” and let the domain of discourse be the set
of real numbers. Determine the truth values of the following propositions.

(a) ∃x∃yP (x, y),

(b) ∀x∃yP (x, y),

(c) ∃x∀yP (x, y),

(d) ∀x∀yP (x, y),

(e) ∀xP (−x, x).



9

10. Let R(x, y) be the statement “x + y = x − y” and let the domain of discourse be the
set of integers. Find the truth values of the following statements. Explain.

(a) R(2, 0)

(b) ∀yR(1, y)

(c) ∀x∃yR(x, y)

(d) ∀y∃xR(x, y)

(e) ∃y∀xR(x, y)

11. Which of the following compound propositions are logically equivalent, i.e. have the
same truth values of any propositional functions P (x) and Q(x)? If propositions are
logically equivalent, explain why. If not, give an example of propositional functions
P (x) and Q(x) for which one of the propositions is true and the other one is false.

(a) ∀x(¬P (x)) and ¬(∀xP (x))

(b) ∀x(P (x) ∨Q(x)) and (∀xP (x)) ∨ (∀xQ(x))

(c) ∀x(P (x) ∧Q(x)) and (∀xP (x)) ∧ (∀xQ(x))

(d) ∀x(P (x)→ Q(x)) and (∀xP (x))→ (∀xQ(x))

(e) ∀x(P (x)↔ Q(x)) and (∀xP (x))↔ (∀xQ(x))

(f) ∃x(¬P (x)) and ¬(∃xP (x))

(g) ∃x(P (x) ∨Q(x)) and (∃xP (x)) ∨ (∃xQ(x))

(h) ∃x(P (x) ∧Q(x)) and (∃xP (x)) ∧ (∃xQ(x))

(i) ∃x(P (x)→ Q(x)) and (∃xP (x))→ (∃xQ(x))

(j) ∃x(P (x)↔ Q(x)) and (∃xP (x))↔ (∃xQ(x))

12. Express the definition of the limit lim
x→a

f(x) = L using quantifiers.

13. Express the definition of a convergent sequence a1, a2, . . . using quantifiers.

14. In one coutry there are two cities, A and B, that are only a few miles apart, and whose
residents often visit each other. All residents of city A always say the truth, while all
residents of city B always lie. A stranger is passing through one of these cities, but
he doesn’t know which one. How could he, by asking the first man he sees only one
question, determine which city he is passing though?
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Chapter 3

Types of proofs

In this chapter we summarize basic types of proofs, and then give a few examples to illustrate
them.

Suppose we want to prove a proposition p.

• a direct proof just shows that p holds;

• a proof by contradiction assumes that p is false and derives a contradiction. The
contradiction is usually of the form r ∧ ¬r for some proposition r.

If we want to prove an implication “if p, then q”, then any of the following types of proofs
may be used:

• a direct proof just shows how q follows from p;

• a proof by contradiction assumes that p→ q is false, i.e. p is true and q is false, and
derives a contradiction;

• a proof by contrapositive shows that ¬q implies ¬p.

A proof of a statement of the form “∃xP (x)” can be

• constructive - when we provide (construct) such an x explicitly;

• existential, or nonconstructive - when we show the existence of such an x without
actually constructing it.

To prove a statement of the form “∀xP (x)” where the domain of discourse is a subset
of integer numbers, it is often (but not always!) a good idea to use Mathematical Induction
(see chapter 4).

To prove a statement of the form “p↔ q”, we can either

• prove p→ q and q → p separately, or

• have each step of our proof of the form “if and only if”.

To disprove a statement means to show that it is false. To disprove a statement of the
form ∀xP (x) it is sufficient to show that there exists at least one counterexample, that is,
there exists at least one case when the statement does not hold.

Below are some examples of various types of proofs listed above.

Example 3.1. Prove that every odd integer is the difference of two perfect squares.

11



12 CHAPTER 3. TYPES OF PROOFS

Direct proof: Every odd integer has the form 2n + 1 for some integer n. Observe that
2n + 1 = (n + 1)2 − n2.

Example 3.2. Prove that
√

2 is irrational.

Proof by contradiction: Suppose
√

2 is rational. Then there exists an irreducible
fraction

p

q
=
√

2. (Irreducible means that the greatest common divisor of p and q is 1.) Then

p2

q2
= 2, thus p2 = 2q2. If follows that p2 is even, so p is even. Let p = 2m, where m is

an integer, then p2 = 4m2. We have 4m2 = 2q2, or 2m2 = q2. Now we see that q2 is even,
therefore q is even. We get a contradiction because we have that on one hand, p and q have
the greatest common divisor 1, but on the other hand p and q are both even.

Example 3.3. Prove that if a and b are integers and ab is even, then either a or b is even
(or both).

Proof by contrapositive: Suppose that neither a nor b is even, and we will prove that
ab is not even. That is, we suppose that both a and b are odd, and we will prove that ab
is odd. Any odd numbers a and b can be written in the form a = 2n + 1 and b = 2m + 1
for some integers n and m. Then we have ab = (2n + 1)(2m + 1) = 4nm + 2n + 2m + 1 =
2(2nm + n + m) + 1 is an odd number.

Example 3.4. Prove that for every positive integer n, there exist n consecutive composite
numbers.

Constructive proof: We claim that (n + 1)! + 2, (n + 1)! + 3, ... , (n + 1)! + (n + 1) are
all composite. Indeed, (n+1)! is divisible by 2, by 3, ... , and by n+1. Therefore (n+1)!+2
is divisible by 2, (n + 1)! + 3 is divisible by 3, ... , (n + 1)! + (n + 1) is divisible by n + 1.

Example 3.5. Prove that x3 + x− 1 = 0 has a real root.

Nonconstructive proof: Let f(x) = x3+x−1. Then f(−1) = −3 < 0 and f(1) = 1 > 0.
Since f(x) is a polynomial, it is continuous. By the Intermediate Value Theorem, there exists
c between −1 and 1 such that f(c) = 0.

Example 3.6. Prove or disprove that every odd integer is prime.

Counterexample: 9 is odd but not prime. Thus the statement is false.

Problems

1. Prove that if n is an integer and 3n + 5 is odd, then n is even. Is your proof direct, by
contradiction, or by contrapositive?

2. Prove that an integer a is even if and only if a2 is even. Did you prove the two
implications separately or simultaneously?

3. Prove or disprove that 2n + 1 is prime for all nonnegative integers n.

4. Prove that for any integer n there is a prime number greater than n. Is your proof
constructive?

5. Every odd number is either of the form 4n + 1 (if it has remainder 1 when divided by
4) or of the form 4n + 3 (if it has remainder 3) where n is an integer. Prove that if an
odd number is a perfect square, then it has the form 4n + 1. What type of proof did
you use? State the converse. Prove or disprove the converse.
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6. Prove or disprove that if a and b are rational numbers, then ab is also rational.

7. Prove that the equation x101 + x51 + x + 1 = 0 has exactly one real solution. Split this
into two statements:

(a) the equation has at least one solution. Is your proof constructive or nonconstruc-
tive?

(b) the equation can not have two distinct roots. Is your proof direct, by contradiction,
or by contrapositive?

8. Prove that if the sum of two numbers is irrational then at least one of the numbers
is irrational. Is your proof direct, by contradiction, or by contrapositive? State the
converse. Prove or disprove the converse.

9. Prove that the equation 4 sin2 x = 1 has a real solution. Is your proof constructive?

10. Prove that the equation x + sin x = 1 has a real solution. Is your proof constructive?

11. Prove that the equation x2 + x + 1 = 0 has no rational solutions. Is your proof direct,
by contradiction, or by contrapositive?

12. Prove that 0 is a root of the equation anxn + . . . a1x + a0 = 0 if and only if the free
term a0 = 0. Did you prove the two implications separately or simultaneously?

13. Prove that if a positive integer is divisible by 8 then it is the difference of two perfect
squares. Is your proof direct, by contradiction, or by contrapositive? Is it constructive
or nonconstructive?

14. Prove or disprove that if a and b are irrational numbers, then ab is also irrational.

15. Prove that for any integers n and m, if nm + 2n + 2m is odd then both n and m are
odd. Is your proof direct, by contradiction, or by contrapositive?
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Chapter 4

Principle of Mathematical
Induction

Theorem 4.1. (Principle of Mathematical Induction) Let Sn be a statement about a positive
integer n. Suppose that

1. S1 is true,

2. If k ≥ 1 and Sk is true, then Sk+1 is true.

Then Sn is true for all positive integers n.

Note. Conditions 1 and 2 in the above theorem are called the basis step and inductive step
respectively.

This principle is easy to understand using the following example: suppose we know how
to get to the first floor of a building (e.g. we know where an entrance is), and we also know
how to get from any floor to the next one (e.g. we know where an elevator or a staircase is).
Then we’ll be able to get to any floor in this building. Namely, we’ll be able get to the first
floor, and then from the first to the second, and then from the second to the third, and so
on. The same is true for any statement. If we can check that S1 is true, then the second
condition in theorem 4.1 ensures that S2 follows from S1, S3 follows from S2, and so on.
Thus Sn is true for any natural number n.

Mathematical Induction is used in all areas of mathematics. It can be used to prove
summation formulas such as in the next example, various number theory, algebraic, and
geometric statements.

Example 4.2. Prove that for any natural number n,

1 + 2 + 3 + . . . + n =
n(n + 1)

2
.

Proof. We will prove this identity using Mathematical Induction.

Basis step: if n = 1, the formula says that 1 =
1 · (1 + 1)

2
which is true.

Inductive step: suppose the formula holds for n = k, i.e. that

1 + 2 + 3 + . . . + k =
k(k + 1)

2
(4.1)

15
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is true. We have to show that the formula holds for n = k + 1, i.e. that

1 + 2 + 3 + . . . + (k + 1) =
(k + 1)((k + 1) + 1)

2

is true. Adding k + 1 to both sides of (4.1) gives:

1 + 2 + 3 + . . . + k + (k + 1) =
k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2

=
(k + 2)(k + 1)

2

=
((k + 1) + 1)(k + 1)

2
.

Note. For any specific value of n, it is easy to check that the identity holds. For example,
for the first four natural numbers we have:

1 =
1 · (1 + 1)

2
, 1 + 2 =

2 · (2 + 1)
2

, 1 + 2 + 3 =
3 · (3 + 1)

2
, 1 + 2 + 3 + 4 =

4 · (4 + 1)
2

.

However, remember that it is not sufficient to check some values of n. We had to prove the
statement for all natural numbers n.
Remark. We might want to prove a statement Sn for all n ≥ 0, or for all n ≥ 2, etc., rather
than for all n ≥ 1. In this case, the basis step should check that the statement is valid for
the smallest value of n, say, n = 0, or n = 2 in the above cases, and the inequality k ≥ 1 in
the inductive step should be modified accordingly (k ≥ 0, or k ≥ 2, etc.).

Sometimes to prove Sk+1, it is insufficient to assume Sk alone, but Sn for n ≤ k is needed.
Then we use the so-called Strong Induction formulated below.

Theorem 4.3. (Strong Mathematical Induction) Let Sn be a statement about a positive
integer n. Suppose that

1. S1 is true,

2. If k ≥ 1 and Sn is true for all 1 ≤ n ≤ k, then Sk+1 is true.

Then Sn is true for all positive integers n.

Remark. As above, we might want to start with 0 or 2 or something else rather than with 1.

Example 4.4. Prove that any integer n ≥ 2 can be written in the form n = 2a + 3b for
some nonnegative integers a and b (we will say that n is a nonnegative linear combination of
2 and 3).

Proof. Basis step. If n = 2, we have n = 2 · 1 + 3 · 0.
Inductive step. Suppose that k ≥ 2 and the statement holds for all 2 ≤ n ≤ k. We want to
prove it for n = k + 1.
Case I. k = 2, so k + 1 = 3. Then k + 1 = 3 = 2 · 0 + 3 · 1.
Case II. k ≥ 3, then 2 ≤ k − 1 ≤ k, thus the statement holds for n = k − 1. We have
k−1 = 2a+3b for some nonnegative integers a and b. Then k+1 = k−1+2 = 2a+3b+2 =
2(a + 1) + 3b, so k + 1 is a nonnegative linear combination of 2 and 3.
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Remark. Notice that case I above simply checks that the statement holds for n = 3. In
literature, this calculation is often moved to the basis step.

Problems

1. Prove that the following formulas hold for any natural n.

(a) 12 + 22 + 32 + . . . + n2 =
n(n + 1)(2n + 1)

6

(b) 13 + 23 + 33 + . . . + n3 =
(

n(n + 1)
2

)2

(c) 1 · 1! + 2 · 2! + . . . + n · n! = (n + 1)!− 1

(d) 1 · 2 + 2 · 3 + 3 · 4 + . . . + n(n + 1) =
n(n + 1)(n + 2)

3
(e) 1 + 3 + 5 + . . . + (2n− 1) = n2

2. Prove that for any positive integer n, n < 2n.

3. Prove that if q is a positive integer, then 32q − 1 is divisible by 2q+2.

4. Suppose that 2n points are given in space, where n ≥ 2. Altogether n2+1 line segments
are drawn between these points. Prove that there is at least one triangle (a set of three
points which are joined pairwise by line segments).

5. Let {F0, F1, F2, . . .} be the Fibonacci sequence defined by F0 = 0, F1 = 1, and
Fn+1 = Fn + Fn−1, n ≥ 1. Prove the following identities.

(a) F1F2 + F2F3 + . . . + F2n−1F2n = F 2
2n

(b) F 2
1 + F 2

2 + . . . + F 2
n = FnFn+1

(c) Fn−1Fn+1 = F 2
n + (−1)n

(d)
[

1 1
1 0

]n

=
[

Fn+1 Fn

Fn Fn−1

]

(e) F 2
n−1 + F 2

n = F2n−1

6. There are n identical cars on a circular track. Among all of them, they have just enough
gas for one car to complete a lap. Show that there is a car which can complete a lap
by collecting gas from other cars on its way around.

7. Every road in Sikinia is one-way. Every pair of cities is connected by exactly one direct
road. Show that there exists a city which can be reached from every other city either
directly or via at most one other city.

8. Suppose that n lines are given in the plane. They divide the plane into regions. Show
that it is possible to color the plane with two colors so that no regions with a common
boundary line are colored the same way. Such a coloring is called a proper coloring.

9. Consider a few points in the plane and a few line segments connecting some of them
so that (1) no two line segments intersect, and (2) each point is connected with at
least two other points (so there are no isolated points and there are no “hanging” line
segments). Such line segments divide the plane into several regions. Such a picture is
called a map. Prove that a map can be properly colored with two colors if and only
if each point is connected with an even number of other points. (See problem 8 for
definition of a proper coloring)
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10. Let α be any real number such that α+
1
α
∈ Z. Prove that αn +

1
αn
∈ Z for any n ∈ N.

11. Prove that 1 <
1

n + 1
+

1
n + 2

+ . . . +
1

3n + 1
< 2.

12. Let n be any natural number. Consider all nonempty subsets of the set {1, 2, . . . , n},
which do not contain any neighboring elements. Prove that the sum of the squares of the
products of all numbers in these subsets is (n+1)!−1. (For example, if n = 3, then such
subsets of {1, 2, 3} are {1}, {2}, {3}, and {1, 3}, and 12+22+32+(1 ·3)2 = 23 = 4!−1.)

13. Prove that the determinant of the n× n matrix Mn with entries

mij =





5 if i = j
1 if |i− j| = 1
0 otherwise

is equal to
1
3
(4n+1 − 1).

14. Find the determinant of the n× n matrix An with entries

aij =





2 if i = j
1 if |i− j| = 1
0 otherwise

.

Hint: calculate the determinants of A1, A2, A3, and A4. Notice the pattern. Guess a
formula for det An, and then prove it by Mathematical Induction.

15. Prove that if any one square of a 2n × 2n chessboard is removed, then the remaining
board can be covered by L-trominoes, i.e. the figures consisting of 3 squares as shown
below.



Chapter 5

Dirichlet’s Box Principle

Theorem 5.1. (Dirichlet’s Box Principle) If n + 1 or more objects are put into n boxes,
then at least one box contains more than one object.

Dirichlet’s Box Principle is often called the Pigeonhole Principle and is formulated as
follows.

Suppose there are n pigeonholes in the tree, and there are at least n + 1 pigeons flying into
these n holes. Then there is at least one hole containing more than one pigeon.

More formally and more generally, this principle can be formulated in the following way.

If the cardinality of a set S is bigger than the cardinality of a set T , and f is a function from
S to T , then f is not one-to-one.

In the above theorem the function

S
f−→ T

is
{n + 1 objects} −→ {n boxes}

or

{n + 1 pigeons} −→ {n pigeonholes}

Dirichlet’s Box Principle is often used to prove statements involving remainders or divis-
ibility. Recall that for any natural number n, there are n possible remainders upon division
by n, namely, 0, 1, 2, . . ., n − 2, and n − 1. If we are given more than n numbers, then
by Dirichlet’s Box Principle at least two of them have the same remainder. Note that this
implies that the difference of these two numbers is divisible by n. Read more on remainders
and divisibility in chapter 6.

Here is another, also very useful, principle.

Theorem 5.2. If n− 1 or fewer objects are put into n boxes, then at least one box is empty.

More formally,

If the cardinality of a set S is smaller than the cardinality of a set T , and f is a function
from S to T , then f is not onto.

Below are generalizations of the above principles.

19
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Theorem 5.3. (Generalized Dirichlet’s Box Principle) If qn+1 or more objects are put into
n boxes, then at least one box contains more than q objects.

Theorem 5.4. If n−k or fewer objects are put into n boxes, then at least k boxes are empty.

Problems

1. Prove that among 13 persons, at least two were born in the same month.

2. Prove that among 50 persons, at least 5 were born in the same month.

3. Prove that among 120 distinct integers, there are two whose difference ends in 00.

4. The capital of Sikinia has 300,001 inhabitants, and it is known that none of them has
more than 300,000 hairs on his or her head. Can you assert with certainty that there
are two persons with the same number of hairs on their heads?

5. Seven points are given inside a regular hexagon whose sides have length 1. Prove that
there are two among these seven points such that the distance between them is at most
1.

6. Suppose that five lattice points (i.e. points with integer coordinates) are given in the
plane. Prove that we can choose two of these points such that the segment joining
these two points passes through another lattice point.

7. Prove that from any 12 distinct two-digit numbers, we can select two with a two-digit
difference of the form aa.

8. (a) Prove that from any 52 positive integers, we can select two such that their sum or
difference is divisible by 100.

(b) Is the above assertion also valid for 51 positive integers?

9. Three hundred points are given inside a cube with edge 7. Prove that we can place a
small cube with edge 1 inside the big cube such that the interior of the small cube does
not contain any of the given points.

10. Prove that if there are n persons present in a room, then among them there are two
persons that have the same number of acquaintances.

11. Let a1, a2, and a3 be integers. Show that the product (a1 − a2)(a1 − a3)(a2 − a3) is
even.

12. Let a1, a2, a3, and a4 be integers. Show that the product
∏

1≤i<j≤4

(ai − aj) is divisible

by 12.

13. (a) Seven points are given inside a 9× 12 rectangle. Prove that there are two of them
such that the distance between them is less than 7.

(b) Is the above assertion also valid for six points?

14. Twenty-six points are given inside a 20 × 15 rectangle. Prove that there are at least
two points with distance less than or equal to 5.
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15. Kevin is paid every other week on Friday. Show that every year, in some month he is
paid three times.

16. Suppose that fifty-one small insects are placed inside a square of side 1. Prove that at
any moment there are at least three insects which can be covered by a single disk of
radius 1/7.

17. Prove that in any convex 2n-gon, there is a diagonal not parallel to any side.

18. (a) Prove that among 11 distinct positive integer numbers, there are two numbers
a < b such that the difference b− a ends with 0 (i.e. has the units digit 0).

(b) Is the above statement true for the tens digit?

19. Every block of a 3×7 board is colored either black or white. Prove that no matter how
the board is colored, it contains a rectangle consisting of more than one row and more
than one column whose four corners have the same color.

20. Every block of a 5 × 41 board is colored in one of four colors. Prove that, no matter
how the board is colored, there exists at least one same-color-corner rectangle (as in
problem 19).

21. Let n be a positive integer which is not divisible by 2 or 5. Prove that there is a multiple
of n consisting entirely of ones.

22. One thousand coins of radius 1 cm each are placed on a table of size 55 cm ×60 cm.
Prove that it is possible to put another coin so that it does not touch any of the 1000
original coins. (The coin must lie completely on the surface of the table, i.e. it cannot
stick out.)

23. Prove that if 1 = a1 < a2 < a3 < . . . < a8 = 100 and all ai’s are integers, then
ai+1 − ai ≥ 15 for some i.

24. Let twenty distinct positive integers be all less than 70. Prove that among their pairwise
differences there are four equal numbers.

25. Let {a1, a2, . . . , an+1} be numbers from the set {1, 2, . . . , 2n}. Prove that at least two
of the ai’s are relatively prime.

26. Let {a1, a2, . . . , an+1} be numbers from the set {1, 2, . . . , 2n}. Prove that one of the
ai’s is divisible by another.

27. Let f be a one-to-one function from X = {1, 2, . . . , n} onto X. Let fk = f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
k times

denote the k-fold composition of f with itself. Show that for some positive integer m,
fm(x) = x for all x ∈ X.
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Chapter 6

Number theory

In this chapter we recall basic properties of integers. (Some of them have been used in
previous chapters.)

Note. All numbers discussed in this chapter are integers.

Definition 6.1. If a 6= 0 and b = aq, then we say that a divides b, and write a|b, or that b

is divisible by a, and we write b
...a.

Theorem 6.2. (Fundamental properties of divisibility)

1. If a|b and b|c, then a|c.
2. If a|b and a|c, then a|(bx + cy) for any x and y.

Important special cases:

(a) If a|b, then a|bx for any x.

(b) If a|b and a|c, then a|(b + c) and a|(b− c).

Definition 6.3. Let a 6= 0 or b 6= 0. The largest number that divides both a and b is called
the greatest common divisor of a and b, and is denoted by gcd(a, b) or just (a, b).

Theorem 6.4. For any nonzero numbers a and b, (a, a) = a, (a, 1) = 1, (a, 0) = a, (a, b) =
(b, a).

Definition 6.5. An integer greater than 1 is called prime if it has exactly two divisors, 1
and itself. An integer greater than 1 that is not prime is called composite.

Theorem 6.6. There are infinitely many primes.

Theorem 6.7. (Euclid’s lemma) If p is prime, p|ab, then either p|a or p|b (or both).

Theorem 6.8. (Fundamental theorem of arithmetic) Every positive integer larger than 1
has a prime factorization, i.e. can be written as a product of primes, and such a product is
unique up to order of the factors.

Example 6.9. 12 = 2 · 2 · 3 = 2 · 3 · 2 = 3 · 2 · 2 are the only prime factorizations of 12. The
order of the factors is different, but the set of factors is the same.

Corollary 6.10. If p|a, q|a, and p and q are distinct primes, then (pq)|a.
Definition 6.11. Integers a and b are called relatively prime, or coprime, if (a, b) = 1.

23



24 CHAPTER 6. NUMBER THEORY

Remark. The numbers a and b may be relatively prime even if they are both composite. For
example, 8 = 2 ·2 ·2 and 15 = 3 ·5 are composite but relatively prime since they do not share
any factors.

Theorem 6.12. For any pair of nonzero numbers a and b, their greatest common divisor
(a, b) is a linear combination of a and b, i.e. there exist integers x and y such that (a, b) =
ax + by. Moreover, (a, b) is the smallest positive integer that can be written in the form
ax + by for some x and y.

Corollary 6.13. Nonzero numbers a and b are relatively prime if and only if there exist x
and y such that ax + by = 1.

Definition 6.14. For every pair a, b 6= 0 there exist unique q and r such that

a = bq + r, 0 ≤ r < b.

The numbers q and r are called the quotient and remainder upon division of a by b.

The following observations are often useful when solving problems involving integers.

• Any integer can be written in the form 10q + r for some q and r where 0 ≤ r ≤ 9.

• An integer anan−1 . . . a1a0 (with digits an, an−1, . . ., a1, a0) can be written as 10nan +
10n−1an−1 + . . . + 102a2 + 10a1 + a0.

If two numbers have the same remainder upon division by b, then they can be written
as bq1 + r and bq2 + r. Their difference is b(q1 − q2), and thus it is divisible by b. As was
discussed in chapter 5, since there are b possible remainders upon division by b, given b + 1
or more numbers, by Dirichlet’s Box Principle at least 2 of them have the same remainder.
Their difference is divisible by b.

Definition 6.15. Integers a and b are said to be congruent mod m, and we write a ≡
b (mod m) if m|(a− b). Equivalently, a− b = mq for some q, or a = b + mq, or a and b have
the same remainder upon division by m.

Example 6.16. 22 ≡ 7 (mod 5) because 5|(22 − 7). Note that 22 and 7 have the same
remainder upon division by 5.

Theorem 6.17. (Properties of congruences)

1. If a ≡ b (mod m) and c ≡ d (mod m), then a±c ≡ b±d (mod m) and ac ≡ bd (mod m).

2. If a ≡ b (mod m) then ac ≡ bc (mod m).

3. If (c,m) = 1 and ca = cb (mod m), then a ≡ b (mod m).

Theorem 6.18. (Fermat’s theorem) If p is prime, then ap ≡ a (mod p).

Corollary 6.19. If p is prime and p does not divide a, then ap−1 ≡ 1 (mod p) for any a.

Example 6.20. Let p = 5. Then 14 = 1 ≡ 1 (mod 5), 24 = 16 ≡ 1 (mod 5), 34 = 81 ≡
1 (mod 5), 44 = 256 ≡ 1 (mod 5), etc.

Finally, we give two useful formulas.

• an − bn = (a− b)(an−1 + an−2b + . . . + abn−2 + bn−1)

• if n is odd, an + bn = (a + b)(an−1 − an−2b + . . . + (−1)n−2abn−2 + (−1)n−1bn−1)
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Problems

1. Show that 3
√

25 is irrational.

2. Show that log2 5 is irrational.

3. (a) Prove that a natural number is divisible by 9 if and only if the sum of its digits is
divisible by 9.

(b) Prove that if the sum of the digits of a number is 66 then it is not a perfect square
(the square of an integer).

4. Show that 3 divides both a and b if and only if 3 divides a2 + b2.

5. (a) If c is a perfect square, what are the possible values of its units digit?

(b) Conclude that a number ending with 3 cannot be a perfect square.

6. (a) If c is a perfect square, what are the possible values of its remainder upon division
by 4?

(b) Conclude that a number ending with 66 cannot be a perfect square.

7. Can a number ending with 65 be a perfect square?

8. The four-digit number aabb is a perfect square. Find it.

9. Find 2100 mod 5 (that is, find the remainder upon division of 2100 by 5).

10. The number 82460 is written on a blackboard (it contains over 2,000 digits, so we hope
that the reader doesn’t mind that we didn’t write it out here). The sum of its digits is
calculated, then the sum of the digits of the result is calculated and so on, until we get
a single digit. What is this digit?

11. Show that 2457 + 3457 is divisible by 5.

12. Show that A = 3105 + 4105 is divisible by 7. Find A mod 11 and A mod 13.

13. Show that if the units digit of a natural number n is 3, then 5|(n2 + 1).

14. Show that for for any integer n, 6|(n3 + 5n).

15. Show that if n is composite, then 2n − 1 is composite.

16. Show for any n ∈ N, 2n does not divide n!.

17. Find all integral solutions of x + y = xy.

18. Find all primes p and q such that p2 − 2q2 = 1.

19. Show that x2 − 3y2 = 17 has no integral solutions.

20. Find all integral solutions of x + y = x2 − xy + y2.

21. How many pairs of positive integers are solutions to the equation 2x + 3y = 100?

22. How many pairs of positive integers are solutions to the equation 5x + 7y = 1234?

23. Does there exist a positive integer that starts with 123 and is divisible by 4567? If so,
find it.
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24. Does there exist a positive integer that ends with 123 and is divisible by 4567? If so,
find it.

25. Do there exist integer numbers m and n such that m2 + 12345678 = n2?

26. Prove that every odd integer can be written as the difference of two perfect squares.

27. A couple has a daughter and a son. The husband is 3 years older than his wife, and
their daughter is 2 years older than their son. The sum of ages of all four members of
this family is 73 years. Four years ago the sum of all members of the family was 58
years. What are the ages of all four people now?

28. A store manager made 24 bags of apples, some 5 kgs and others 3 kgs. The combined
weight of 5 kgs bags was equal to the combined weight of 3 kgs bags. How many bags
of each size did he make?

29. Suppose we write a natural number at each vertex of a cube. Then at the midpoint
of each edge we write the sum of the two numbers that are at the ends of this edge.
Finally, in the middle of each face we write the sum of the four numbers that are at
the vertices of this face. Could the sum of all 26 numbers be equal to 1234?

30. Prove that a natural number that consists of 300 ones, some zeros, and no other digits,
cannot be a perfect square.

31. The product of four consecutive integers is 3024. Find these integers.

32. Prove that the sum of four consecutive odd integers is divisible by 8.

33. When 3 was appended to a three-digit number on the left (i.e. written before the
number), the number increased by 9 times. What was the number?

34. When 6 was appended to a number on the right (i.e. as the rightmost digit), it increased
by 13 times. What was the number?

35. When 36 was appended to a number on the right, it increased by 103 times. What was
the number?

36.



Chapter 7

Proof by exhaustion (case
analysis)

We have seen in the previous chapter that some number theory problems can be solved by
considering all possible remainders mod n for a variable. The problem about roads in Sikinia
(problem 7 in chapter 4) also required considering some cases separately. As we will see in
future chapters, the technique of considering all possible cases can be used in many different
problems of very different types.

Below are given two typical situations where we need to consider two or more cases.

If a, b ∈ R, then ab = 1 if and only if at least one of the following holds:

• a = 1,

• a 6= 0, b = 0,

• a = −1 and b is an even integer.

Example 7.1. Find all values of x for which (x2 − 5x + 5)x2−9x+20 = 1.

Solution. Let a = x2 − 5x + 5 and b = x2 − 9x + 20. Then we have ab = 1.
Case I: a = 1, then x2 − 5x + 5 = 1. Therefore x = 1 or x = 4.
Case II: a 6= 0, b = 0. First solve b = 0, i.e. x2− 9x + 20 = 0. Then x = 4 or x = 5. For

both roots a 6= 0.
Case III: a = −1 and b is an even integer. First solve a = −1, i.e. x2 − 5x + 5 = −1.

Then x = 2 or x = 3. For both roots b is even.
Thus solutions are 1, 2, 3, 4, and 5.

Recall that the absolute value of a real number x is denoted |x| and is given by

|x| =
{

x if x ≥ 0
−x if x < 0

Here is the graph of |x|:

27
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x

y

y = xy = − x

To solve problems involving the absolute value, consider the following two cases: when
the expression inside the absolute value is positive or 0, and when it is negative.

Example 7.2. Solve 3|x2 − 9| − 11x + 7 = 0.

Solution. Case I: if x2 − 9 ≥ 0, then |x2 − 9| = x2 − 9, and the equation becomes 3(x2 −
9) − 11x + 7 = 0, or 3x2 − 11x − 20 = 0. Using the quadratic formula, we find x = 5 or
x = −4/3. The root x = 5 satisfies the condition x2 − 9 ≥ 0, but x = −4/3 does not, so we
throw it away.

Case II: if x2− 9 < 0, then |x2− 9| = −(x2− 9), and the equation becomes, −3(x2− 9)−
11x + 7 = 0, or −3x2 − 11x + 34 = 0. The roots are 2 and −17/3, but the second root does
not satisfy the condition x2 − 9 < 0, so we throw it away.

Thus the only roots are 5 and 2.

If there are several absolute values, we can consider two cases for each absolute value.
Note that if there are n absolute values, then we have 2n cases total. An alternative, often
shorter, way is to find all the points at which the expressions inside absolute values change
sign. These points divide the real number line into several intervals (two of which are infinite).
Consider each interval separately.

Problems

1. Prove that if n is an integer, then n2 + 2 is not divisible by 5.

2. Solve for x:

(a) xx2−7x+12 = 1

(b) (x− 3)x2−8x+15 = 1

(c) (xx+1)x2
= 1

3. Solve for x:

(a) x(x2) = x2

(b) x((x+1)2) = x16

(c) x(xx) = (xx)x

(d)
√

xx+1 = x
√

x+1

4. Find all pairs (x, y) that satisfy the system
{

x2x = y + 1
xy = 1.

5. Find all pairs (x, y) that satisfy the system
{

xx+y = y4

yx+y = x.
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6. Solve for x: x2 + |2x− 2| = 1

7. Solve for x:

(a) |2x + 3| − |x| = 3

(b) |2x− 1| − |x + 5| = 3

(c) |3x + 6|+ |x− 1| = 2

(d) |x + 1|+ |3x + 1| = |2x + 1|+ |4x + 1|
8. Solve for x:

(a) x2 − |5x− 6| ≤ 0

(b) |x + 1|+ 5− x2 > 0

(c) x2 − |7x + 15| ≥ 3

9. Solve for x:

(a) |x− 5|+ |2x− 4| ≤ 6

(b) |x− 5| − |x− 2| ≥ 1

(c) |x− 1| − |x− 3| > 5

10. Sketch the graph of

(a) f(x) = |x2 − 4|+ 2

(b) g(x) = |x2 − 1| − |x2 − 4|
11. Sketch the graph of

(a) f(x) = |x + |x + 2||
(b) g(x) = |x2 − 4|x|+ 3|

12. Sketch the graph of |x|+ |y| = 1 + |xy|.
13. Sketch the region:

(a) {(x, y) | |x|+ |y3| < 8}
(b) {(x, y) | |x− y|+ |x| − |y| ≤ 2}
(c) {(x, y) | 2|y − x|+ |y + x| ≤ 1}

14. Find all integral solutions of

(a) ab = 625

(b) (ab)c = 64
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Chapter 8

Finding a pattern

As suggested in the hint for problem 14 of chapter 4, a formula can be guessed after computing
a few values. Although a guess is not sufficient and a rigorous proof is needed to ensure
correctness of a formula, guessing often is a powerful technique. In this chapter we will
consider problems in which we can find the first few values of a certain sequence, guess a
formula for a general case, and then prove it (e.g. by Mathematical Induction or some other
proof tool).

Example 8.1. Find the n-th derivative of f(x) = 5x.

Solution. Find the first few derivatives (until you can see a pattern):
f ′(x) = ln 5 · 5x

f ′′(x) = ln 5 · ln 5 · 5x = (ln 5)2 · 5x

f ′′′(x) = (ln 5)2 · ln 5 · 5x = (ln 5)3 · 5x

We notice that f (n)(x) = (ln 5)n · 5x.
It is easy to prove this formula using Mathematical Induction.
The basis step is f ′(x) = ln 5 · 5x.
Inductive step: suppose f (k)(x) = (ln 5)k · 5x is true. Then
f (k+1)(x) = (f (k)(x))′ = ((ln 5)k · 5x)′ = (ln 5)k · ln 5 · 5x = (ln 5)k+1 · 5x.

Example 8.2. Guess a formula for the n-th term of the sequence: 1, 3, 6, 10, 15, 21, . . .

Solution. Notice that the difference between the first and the second terms is 2, the difference
between the second and the third terms is 3, and then the differences are 4, 5, 6, . . . Thus
a1 = 1,
a2 = 1 + 2,
a3 = 1 + 2 + 3,
a4 = 1 + 2 + 3 + 4,
a5 = 1 + 2 + 3 + 4 + 5,
a6 = 1 + 2 + 3 + 4 + 5 + 6.

So it appears that an = 1 + 2 + . . . + n =
n(n + 1)

2
.

Note. For the problems like this one, since only a few terms of a sequence are given, there

may be several different formulas valid for these few terms. For example, an = 2n − 1
60

n5 +
1
6
n4 − 11

12
n3 +

7
3
n2 − 77

30
n is another valid formula for this sequence. But we tried to find a

simple one.
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Problems

1. Guess a formula for the n-th term of the sequence a1, a2, a3, . . . whose first few terms
are given. Try to find the simplest possible formula, but any correct formula (that is,
any formula that works for the given terms) is acceptable.

(a) 1, 4, 9, 16, 25, 36, 49, ...

(b) -1, 0, 1, 2, 3, 4, 5, . . .

(c) 5, 7, 9, 11, 13, 15, . . .

(d) 8, 10, 12, 14, 16, 18, ...

(e) 3, 1, −1, −3, −5, −7, ...

(f) 1, 2, 1, 4, 1, 6, 1, 8, ...

(g) 1, 3, 4, 6, 7, 9, 10, 12, . . .

(h) 0, 1, 3, 7, 15, 31, ...

(i)
1
2
,

1
2
,

3
8
,

1
4
,

5
32

,
3
32

,
7

128
, . . .

2. Compute Sn =
1

1 · 2 +
1

2 · 3 +
1

3 · 4 + . . . +
1

(n− 1)n
for some small values of n. Notice

the pattern. Write a formula for Sn and prove it using Mathematical Induction.

3. Find a formula for
1

1 · 3 +
1

3 · 5 + . . . +
1

(2n− 1)(2n + 1)
.

4. Find a formula for

2n−1∏

i=1

(
1− (−1)i

i

)
=

(
1− −1

1

)(
1− 1

2

)(
1− −1

3

)
. . .

(
1− −1

2n− 1

)
.

5. Let f1(x) = 2x + 1 and fn = f1 ◦ fn−1 for n ≥ 2. Compute fn for some small values
of n. Notice the pattern. Write a closed formula for fn (i.e. a formula that does not
involve fk for k < n). and prove it using Mathematical Induction.

6. Let f1(x) =
1

2− x
and fn = f1 ◦ fn−1 for n ≥ 2. Find and prove a closed formula for

fn(x).

7. The units digit of a number ab can be found by computing the units digits of the first
few powers of a, i.e. a1, a2, a3, etc. and noticing a pattern. Find the units digit of the
following numbers.

(a) 107107

(b) 12345678

8. Find the last two digits of 750.

9. Find the remainder of 2100 upon division by 12.

10. Find the remainder of 54321 upon division by 11.

11. Find the n-th derivative of
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(a) f(x) = sin(x),

(b) g(x) = ln(x),

(c) h(x) = 2e5x.

12. Suppose that n lines in general position are given in a plane. (General position means
that no two lines are parallel, and no three lines have a common point.) Into how many
regions do they divide the plane?

13. Suppose that n circles are given in a plane, such that every pair of circles has 2 inter-
section points, but no 3 circles have a common point. Into how many regions do they
divide the plane?

14. Amanda is training her rabbit to climb a flight of 10 steps. The rabbit can hop up 1 or
2 steps each time he hops. He never hops down, only up. In how many different ways
can he hop up the flight of 10 steps?

15. Let F0 = 0, F1 = 1, F2 = 1, . . ., F99 be the first 100 Fibonacci numbers (recall that
Fn = Fn−1 + Fn−2 for n ≥ 2). How many of them are even?
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Chapter 9

Invariants

Definition 9.1. An invariant is something that does not change.

Example 9.2. The numbers 1, 2, . . . , 10 are written on the blackboard. We pick any two
numbers, let us call them a and b. We erase these numbers, and write a+1 and b−1 instead.
Is it possible to get ten 5’s by a sequence of such operations?

Solution. Notice that when we increase a by 1 and decrease b by 1, the sum of the numbers
does not change (so in this example the sum of the ten numbers is an invariant). Initially
the sum is 1 + 2 + . . . + 10 = 55, and 10 · 5 = 50, therefore it is not possible to get ten 5’s.

Example 9.3. Each of the numbers a1, a2, . . . , an is either 1 or −1, and

a1a2a3a4 +a2a3a4a5 + . . .+an−3an−2an−1an +an−2an−1ana1 +an−1ana1a2 +ana1a2a3 = 0.

Prove that 4|n.

Solution. Let

S = a1a2a3a4 +a2a3a4a5 + . . .+an−3an−2an−1an +an−2an−1ana1 +an−1ana1a2 +ana1a2a3.

If we replace ai by −ai, then S does not change modulo 4 since four terms (containing ai)
change their sign. Indeed, if all four terms are of the same sign, then their sum changes either
from −4 to 4 or from 4 to −4, thus S changes by ±8. If one or three of these four terms
are positive, then the sum of the four terms changes either from −2 to 2 or from 2 to −2,
thus S changes by ±4. Finally, if two of these four terms are positive and two are negative,
then the sum does not change. Initially, we have S = 0 which implies S ≡ 0 (mod 4). Now,
step-by-step, we can change each −1 into a 1. At the end, we have S = n, and we must still
have S ≡ 0 (mod 4), so 4|n.

Here are a few things that are very often invariants in problems involving sets of numbers
and allowed operations, so you may want to try look at them. Sometimes, of course, you
have to be very creative!

• The sum or the product of all given numbers

• The number of positive or negative numbers

• The number of even or odd numbers, or, more generally, the number of numbers con-
gruent to a modulo b for some integers a and b

35
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• One of the above modulo a positive number (e.g. the sum modulo 2, i.e. the parity of
the sum; the product modulo 3; the number of positive numbers modulo 4; etc.)

Sometimes a quantity that may change, however, may change only in a certain way, say,
it may only increase or decrease, is useful. For instance, in the example below we find a
positive decreasing function rather than a constant function. The idea is that the value of
that function must be non-negative. We apply a series of steps each of which decreases the
value of the function. Since the value cannot become negative, sooner or later it will reach 0.

Example 9.4. Suppose that 2n ambassadors are invited to a banquet. Every ambassador
has at most n− 1 enemies. Prove that the ambassadors can be seated around a round table
so that nobody sits next to their enemy.

Solution. First, we seat the ambassadors randomly. Let H be the number of neighboring
hostile couples. We must find an algorithm which reduces this number whenever H > 0. Let
(A,B) be a hostile couple with B sitting to the right of A:

BA
We want to separate them so as to not gain any new neighboring hostile couples. This

can be achieved by reversing some arc BC as shown below. The number H will be reduced if
(A,C) and (B,D) are friendly couples.

BA

D C D B

A C
It remains to be shown that such a couple C, D always exists. We start at A and go

around the table counterclockwise. We will encounter at least n friends of A. To their right,
there are at least n seats. They cannot all be occupied by enemies of B since B has at most
n− 1 enemies. Thus there is a friend C of A with the right neighbor D being a friend of B.

Problems

1. We start with the set {−3,−2,−1, 1, 2, 3}. In each step we may choose any two of these
numbers and change their signs. We may repeat this step as many times as we want.
Show that it is not possible to reach the set {3, 2, 1, 1, 2, 3}.
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2. We start with the set {−3,−2,−1, 1, 2, 3}. In each step we may multiply or divide any
of these numbers by any positive number. We may repeat this step as many times as
we want. Show that it is not possible to reach the set {−2,−1, 1, 2, 3, 4}.

3. We start with the set {1, 1, 1, 1}. In each step we may either multiply one of the
numbers by 3, or subtract 2 from it. We may repeat this step as many times as we
want. Is it possible to reach the set {1, 2, 3, 4}?

4. We start with the set {1, 4, 32, 128, 256}. In each step we may divide one number by
2 and multiply another number by 2. We may repeat this step as many times as we
want. Is it possible to reach the set {512, 32, 16, 16, 2}?

5. Initially 1 is written in every cell of a 5×5 table. In each step we may change the signs
of the numbers in any two adjacent cells. We may repeat this step as many times as
we want. Is it possible to make all of the numbers −1?

6. We start with the set {1, 2, 3, 4, 5, 6}. In each step we may either add 2 to any 5 numbers
or subtract 1 from any 5 numbers. We may repeat this step as many times as we want.
Can we reach {1, 2, 4, 8, 16, 32}?

7. We start with the set {1, 2, 3, 4}. In each step we may either add 2 times one of the
numbers to another number or subtract 2 times one number from another number. For
example, we may replace 1 by 1 + 2 · 2, or by 1 − 2 · 2, or by 1 + 2 · 3, etc. We may
repeat this step as many times as we want. Can we reach {10, 20, 30, 40}?

8. We start with the table shown below. In one step, we may either add 1 to all the
numbers in any row or column, or subtract 1 from all the numbers in any row or
column. We may repeat this step as many times as we want. Prove that it is not
possible to reach nine 1’s.

0 0 0

0 1 0

0 0 0

9. There are several + and − signs on a blackboard. We may erase any two signs and
write, instead, + if they are equal and − if they are unequal. We do this until only one
sign remains. Prove that the last sign on the board does not depend on the order of
erasure.

10. Assume we have an 8 × 8 chessboard with the usual coloring. We may repaint all
squares in any row or column. We may repeat this step as many times as we want.
The goal is to attain just one black square. Can we reach the goal? What if we are
allowed to repaint all squares in any 2× 2 square?

11. Each of the numbers 1 to 106 is repeatedly replaced by its digital sum until we reach
106 one-digit numbers. For example, 987654 is replaced by 9 + 8 + 7 + 6 + 5 + 4 = 39,
then 39 is replaced by 3+9 = 12, and finally, 12 is replaced by 1+2 = 3. Among these
106 one-digit numbers, will we have more 1’s or 2’s?

12. We may write all the digits from 1 to 9 in a row in any order we like, and then we write
plus signs between some digits (as many plus signs as we like). For example, we could
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write 7 + 35 + 19 + 4 + 286. Finally, we evaluate the obtained expression. Prove that
there is no way to get the value of 100. Or 101. Or 102. Or 103... What is the smallest
three-digit number that can be obtained in this game?

13. Let n be any positive integer. We start with the integers 1, 2, . . . , 4n− 1. In each step
we may replace any two integers by their difference. We do this until only one number
remains. Prove that an even integer will be left after 4n− 2 steps.

14. Let n be an odd positive integer. We start with the numbers 1, 2, 3, . . . , 2n. In each
step we may replace any two integers by their difference. We do this until only one
number remains. Prove that an odd number will remain at the end.

15. The numbers from 0 to 9 are written along a circle in random order. Between every two
neighboring numbers a and b (in the clockwise order) we write 2b − a. Then we erase
the original ten numbers. (For example, the numbers could be written in the following
order: 1, 5, 3, 9, 0, 2, 4, 6, 8, 7. Then the new numbers would be 9, 1, 15, −9, 4, 6, 8,
10, 6, −5.) This step can be repeated as many times as we want. Show that it is not
possible to reach ten 5’s.

16. We start with the set {1, 3, 6}. In each step we may choose any two of these numbers,
let’s call them a and b, and replace them by 0.6a−0.8b and 0.8a+0.6b. We may repeat
this step as many times as we want. Can we reach the set {2, 4, 5}?

17. We arrange the integers 1, 2, 3, 4, 5, 6 in any order on six places numbered 1 through 6.
Next we add its place number to each integer. Prove that at least two of the sums have
the same remainder upon division by 6.

18. There are seven 1’s and eight −1’s on a blackboard. In each step we may erase any
two numbers, say, a and b, and write −ab instead. We do this until only one number
remains. Show that no matter in what order we erase the numbers, 1 will remain in
the end.

19. Nine 1× 1 cells of a 10× 10 square are infected. Two cells are called neighbors if they
have a common side. In one time unit, the cells with at least two infected neighbors
become infected. Can the infection spread to the whole square (in any amount of time)?

20. Twelve 1×1 cells of a 10×10 square are infected. Two cells are called neighbors if they
share at least one vertex (thus an inner cell has 8 neighbors). In one time unit, the
cells with at least four infected neighbors become infected. Can the infection spread to
the whole square (in any amount of time)?

21. In the Parliament of Sikinia each member has at most three enemies. Prove that the
house can be separated into two houses so that each member has at most one enemy
in his own house.

22. There are a white, b black, and c red chips on a table. In one step we may choose two
chips of different colors and replace them by one chip of the third color. We do this
until all remaining chips are of the same color. If only one chip remains, prove that
its color does not depend on the evolution of the game, but it only depends on the
numbers a, b, and c.

23. A circle is divided into six sectors. Then the numbers 1, 0, 1, 0, 0, 0 are written into the
sectors as shown on the picture below. We may increase any two neighboring numbers
by 1. We may repeat this step as many times as we want. Is it possible to equalize all
the numbers?
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1

0

0

00

1

24. In the table below, we may switch the signs of all numbers in a row, column, or parallel
to one of the diagonals. In particular, we may switch the sign of each corner square.
We may repeat this step as many times as we want. Prove that at least one −1 will
remain in the table.

1 1

1 1 1 1

1 1

1 1 1

−1 −1

−1−1

−1
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Chapter 10

Coloring

In all examples and problems in this chapter, “covering” means a covering without overlap.

Example 10.1. In 1961, the British theoretical physicist M. E. Fisher solved a famous and
very tough problem. He showed that an 8× 8 chessboard can be covered by 2× 1 dominoes
in 24 · 9012 = 12,988,816 ways. Now let us cut out two diagonally opposite corners of the
board. In how many ways can we cover the 62 squares of the mutilated chessboard with 31
dominoes?

Solution. Zero. There is no way to cover the mutilated chessboard. Each domino covers one
black and one white square. If a covering of the board existed, it would cover 31 black and
31 white squares. But the mutilated chessboard has 30 squares of one color and 32 squares of
the other color.

Example 10.2. A rectangular floor is covered by 2×2 and 4×1 tiles. One tile got smashed.
There is a tile of the other kind available. Show that the floor cannot be covered by rear-
ranging the tiles.

Solution. Let us color the floor as shown on the picture below. A 4 × 1 tile always covers
either 0 or 2 black squares. A 2 × 2 tile always covers one black square. Therefore it is
impossible to exchange one tile for a tile of the other kind.
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Besides the colorings used in the above examples, the “stripe colorings” and the ”diagonal
colorings” shown below are often helpful.
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Also, you can use the stripe or diagonal pattern with more colors; or the stripe pattern
with one stripe of one color followed by several stripes of another color; and so on. Of course,
sometimes you have to be creative and find your own coloring that would work for a particular
problem!

Problems

1. Prove that a 14 × 14 board cannot be covered by 49 T-tetrominoes (see pictures of
tetrominoes below).

2. Prove that an 8 × 8 board cannot be covered by 15 T-tetrominoes and one square
tetromino.

3. Prove that a 10×10 board cannot be covered by 15 T-tetrominoes and 10 L-tetrominoes.

4. Is it possible to form a rectangle with the five tetrominoes shown below (using one
tetromino of each kind)?

T−tetromino
square

tetromino
L−tetromino

skew
tetromino

straight
tetromino

5. An 8× 8 board is covered by tetrominoes. Prove that the number of T-tetrominoes is
even.

6. In chess, is it possible for a knight to start at the upper left corner, go throught every
square on the chessboard exactly once and reach the lower right corner? (See allowed
moves in chapter 1.)

7. Prove that the figure shown below (with center block removed) cannot be covered by
dominoes.



43

8. The figure below shows a road map connecting 14 cities. Is there a path passing through
each city exactly once?

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

9. Prove that a 6× 6 board cannot be covered by 9 L-tetrominoes.

10. Prove that an 8 × 8 board cannot be covered by 11 straight tetrominoes and 5 L-
tetrominoes.

11. Prove that an 8 × 8 board with one corner square removed (so, 63 squares remain)
cannot be covered by 21 straight trominoes (i.e. 3× 1 tiles).

12. Prove that a 15× 8 board cannot be covered by 2 L-tetrominoes and 28 skew tetromi-
noes.

13. Prove that a 23× 23 board cannot be covered by 2× 2 and 3× 3 tiles.

14. Prove that a 10× 10 board cannot be covered by 25 straight tetrominoes.

15. Prove that an a × b rectangle can be covered by 1 × n rectangles if and only if n|a or
n|b.

16. A 7 × 7 board is covered by sixteen 3 × 1 and one 1 × 1 tiles. What are the possible
positions of the 1× 1 tile?

17. (a) The vertices and midpoints of the faces are marked on a cube, and all face diagonals
are drawn. Prove that there is no path along the face diagonals that visits each
marked point exactly once.
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(b) Show that if one walk along an edge is allowed, then there is a path visiting all
the marked points. (Find such a path.)

18. The map below shows the cities and one-way roads in Sikinia.

(a) Prove that there is no closed path (a path is closed if it starts and quits in the
same city) that visits every city exactly once.

(b) Is there a closed path that visits every city exactly twice?

(c) Is there a path, not necessary closed, that starts in the upper left corner and visits
every city exactly once?

(d) Is there a path, not necessarily closed, that starts in the upper left corner and
visits every city exactly twice?

19. Prove that there is no way to pack fifty-four 1× 1× 4 bricks into a 6× 6× 6 box.

20. Show that if 4× 1× 1 bricks and 2× 2× 2 cubes fill an 8× 8× 8 cube, then the number
of 2× 2× 2 cubes is even.

21. Is it possible for a chess knight to pass through all the squares of a 123×4 board having
visited each square exactly once, and return to the initial square?

22. Is it always possible to cover a chessboard with two squares removed, one black and
one white, by 31 dominoes?

23. Is it possible to write distinct natural numbers from 1 to 16 in the small triangles in
the figure below so that the sum of the two numbers in any two triangles that have a
common side is prime?
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Chapter 11

Areas and Volumes

Recall the following area and volume formulas:

1. Triangle

b

c

h

a
Area A =

1
2
bh =

√
p

2

(p

2
− a

)(p

2
− b

)(p

2
− c

)

where p = a + b + c.

2. Trapezoid

h

b

a

Area A =
1
2
(a + b)h.

3. Ball

r
Volume V =

4
3
πr3

where r is the radius.

4. Pyramid and cone

A

h h

A

Volume V =
1
3
Ah

where A is the area of the base.
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Problems

For problems 1-16, find the area of the given (shaded) region. If a grid is given, assume
that each small square is 1× 1.

1. 2 .

3. 4. Regular octagon

5. 6.

1
2

3

4

3

2

1
5

4

7. Trapezoid 8. Trapezoid

7

5

4 4

8

5

43

In problems 9 and 10 the curves that appear to be arcs of circles are indeed arcs of circles.
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9. 10.

In problems 11-14 each circle has radius 1 and passes through the center of each other
circle.

11. 12.

13. 14.

15. 16. Lines are tangent to the circle
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17. Sketch the region S = {(x, y) | |x|+ 2|y| ≤ 4} and find its area.

18. Sketch the region S = {(x, y) | x ≥ 2, x2 + y2 ≤ 16} and find its area.

19. An open box is formed from a square of cardboard by cutting a 3 cm × 3 cm square
from each corner and folding up the edges to form sides. If the volume of the box is 60
cubic cm, find the dimensions of the box.

20. What are the dimensions of a box with square bottom and open top if its volume is
500 cubic cm and its surface area of 300 square cm?

21. Find the volume of a regular octahedron with edge of length 1.

1

22. Find the volume of a truncated pyramid with a 2× 2 base, a 1× 1 top, and side edge
of length 1).

2

1
1

23. Find the volume of the solid inside a sphere of radius 1 and above the cube inscribed
in it.



Chapter 12

Symmetry, Translations,
Rotations, and Similarity

The following geometry problem can be solved algebraically as well as geometrically.

Example 12.1. There are two poles of heights a and b as shown below. The distance
between the poles is d. Find the point on the ground equidistant from the tops of the poles.

Depending on our goal, the word “find” here could mean either “calculate the location of
that point” (e.g. “find the distance between the point and one of the poles”), or “construct
this point geometrically”. Say, suppose we have a geometry software such as Geometer’s
sketchpad that can do the following things: translate objects any given distance in any given
direction; rotate objects about any given point through any given angle; reflect objects about
any given line; draw parallel and perpendicular lines; and bisect line segments and angles.
Note that all these operations can be done on paper using a ruler and a compass.

Now we will solve the above problem.

x d−x

d

B

L

A

a

b

P

Calculation. Let x be the distance between one of the poles and the point P we are looking
for. Then the distance between the other pole and the point P is d−x. We use the Pythagorean
theorem to compute the distances between P and the tops of the poles A and B, and set the two
distances equal:

√
a2 + x2 =

√
b2 + (d− x)2. Squaring both sides gives a2+x2 = b2+(d−x)2,

or a2 = b2 + d2 − 2dx. Therefore 2dx = b2 + d2 − a2, so x =
b2 + d2 − a2

2d
.
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Construction. Since the point P is equidistant from the tops of the poles, it lies on the
perpendicular bisector of AB. Thus all we have to do is to draw the perpendicular bisector
of AB, and then P is its intersection with the line L.

x d−x

B

L

A

a

b

d

P

Remark. If we do want to calculate the position of the point P , it is easy to do so using the
above construction. Let us introduce a coordinate system with the origin, say, at the bottom
of left pole; find the coordinates of the midpoint of AB; find the slope of the line AB; write an
equation of the perpendicular bisector, and find its x-intercept. Namely, the coordinates of

the midpoint of AB are
(

d

2
,
a + b

2

)
; the slope of the line AB is

b− a

d
, and therefore the slope

of a perpendicular line is − d

b− a
; therefore an equation of the perpendicular bisector is y −

a + b

2
= − d

b− a

(
x− d

2

)
; It’s x-intercept has y = 0, therefore −a + b

2
= − d

b− a

(
x− d

2

)
.

This implies x− d

2
=

(a + b)(b− a)
2d

, so x =
(a + b)(b− a)

2d
+

d

2
=

b2 − a2 + d2

2d
.

However, if our goal is to find the point geometrically, it is much easier to draw the
perpendicular bisector of AB than solve an equation and construct a line segment of length
b2 + d2 − a2

2d
(although the latter is also possible). In some problems even finding all re-

quired distances is easier by a calculation based on a geometric construction than purely
algebraically. Consider the following example.

Example 12.2. A rope of length l is strung between the tops of two poles of heights a and
b, and a weight is hung from a ring on the rope. The rope is not long enough for the weight
to reach the ground. How high from the ground does the weight hang?

First we will find the location of the weight geometrically.



53

B

L

la−h

h

x d−x

b−h

h

P’’P’

A

d

P

Solution. Let the height of the weight above the ground be h and let the distance from
the weight to the left pole be x. Using the Pythagorean theorem, we get

√
(a− h)2 + x2 +√

(b− h)2 + (d− x)2 = l.
Recall from physics that ∠APP ′ = ∠BPP ′′. Therefore triangles APP ′ and BPP ′′ are

similer, so
a− h

x
=

b− h

d− x
.

Thus we have a system of two equations with two unknowns. Although it is possible to
solve this system, it is not easy. There is a nicer way to solve this problem.

B

L

l

b−h h

b−h

P’’
b−h

B’

a−h

P’

A

A’

d

P

Let P be the position of the weight which we have to find. Reflect B about the horizontal
line P ′P ′′ through P , let B′ denote its image. Then PB = PB′, thus AB′ = AP + PB′ =
AP + PB = l. Therefore to find B′, we have to draw a circle of radius l centered at A,
and then B′ is its intersection point with the right pole. Once B′ is found, divide BB′ into
two equal intervals with P ′′ being the midpoint. Draw a horizontal line through P ′′. Its
intersection point with AB is the point P .

To find h, let A′B′ be the horizontal line through B′. Consider triangle A′B′A. Since
A′B′ = d, A′A = a + b − 2h, and AB′ = l, we have d2 + (a + b − 2h)2 = l2. Therefore

a + b− 2h =
√

l2 − d2, thus 2h = a + b−
√

l2 − d2, and h =
a + b−√l2 − d2

2
.

In further examples we will only describe geometric constructions. We will not calculate
positions of the objects algebraically.

Example 12.3. Two circles C and D, and a distance l ale given. Construct a horizontal 1

1We assume that a reference horizontal line is given. Thus any line parallel to it is horizontal and any line
perpendicular to it is vertical.
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segment XY of length l such that X lies on C and Y lies on D. Assume that such a segment
exists.

X

l

D

Y

C

Solution. Translate the circle C by the distance l to the right. Let’s call this new circle C ′.
Let Y be an intersection point of C ′ and D if it exists. Draw a horizontal line through Y .
Let X be the point on the horizontal line through Y , located a distance l to the left of Y . It
lies on circle C.

YX

C’

C

l

D

Note. If circles C and D are positioned so that C ′ and D do not intersect, then translate C
to the left instead of to the right.

C’’ C C’

XY

D

l

Example 12.4. Two distinct lines p and q, and a point S are given. Construct a square
ABCD that satisfies the following conditions (assume that such a square exists):

• Point S is the center of the square.
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• Vertex A of the square lies on line p.

• Vertex B, the counterclockwise neighbor of A, lies on line q.

A

B

C

D

S

q

p

Solution. Notice that segments SA and SB must be perpendicular and of the same length.
Let’s rotate line p through an angle of 90◦ in the counterclockwise direction around point S.
Let p′ be the new line. Let B be the intersection point of p′ and q. Once we have one vertex
and the center of the square, the rest is easy: draw line BS, find D such that SD = SB.
Draw the line through S perpendicular to SB, and find A and C such that SA = SC = SB.
Then A lies on line p.

A

B

C

D

p

q p’

S

Problems

In all problems below, the words “find” and “draw” mean construct using a ruler and a
compass (or using a geometry software as discussed above). You do not have to calculate
the locations of all the points. Assume that solutions exist. Also as in example 12.3, assume
that a reference horizontal line is given.

1. Two circles, S and T , and a point A are given. Find points B on S and C on T such
that 4ABC is isosceles with |AB| = |AC|, ∠ABC = ∠ACB = 75◦, and ∠BAC = 30◦.
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2. Two distinct lines p and q and a point S are given. Construct a square ABCD that
satisfies the following conditions:

• Point S is the center of the square.

• Vertex A of the square lies on line p.

• Vertex C, the opposite of vertex of A, lies on line q.

3. (a) Two points A and C and a line are given. Find a point B on the line such that
|AB|+ |BC| is as small as possible.

(b) A circle, a line, and a point C are given. The circle does not intersect the line.
Find a point A on the circle and a point B on the line such that |AB| + |BC| is
as small as possible.

(c) Two circles and a line are given. None of them intersect. Find a point A on
one circle, a point B on the line, and a point C on the second circle such that
|AB|+ |BC| is as small as possible.

4. A circle, a line, and a distance l are given. Find a point X on the circle and a point Y
on the line such that the segment XY is horizontal and has length l.

5. A point A and two lines p and q are given. Find a point B on p and a point C on q
such that 4ABC is isosceles with |AB| = |AC|, and base BC is horizontal.

6. Line segments of lengths a, b, and c are given. Construct a line segment of length
ab

c
.

7. Line segments of lenthgs a, b, and c are given. Find a point on the segment of length
a that divides it in the ratio b : c.

8. Line segments of lengths a and b are given. Construct a line segment of length
√

ab.

9. Two nonintersecting circles are given. Draw a line that is tangent to both circles and
such that the circles lie

(a) on one side of the line.

(b) on opposite sides of the line.

10. (a) Show that among all rectangles with given perimeter, a square has the maximal
area.

(b) A farmer has 2400 ft of fencing and wants to fence off a rectangular field that bor-
ders a straight river. He needs no fence along the river. What are the dimensions
of the field that has the largest area?
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River

11. A length l and lines p and q are given. The lines intersect at a point C at an angle of
30◦. Line q is horizontal. Find points A on p and B on q such that
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• AB is vertical and A lies above q

• The length of the bisector AD of ∠CAB is equal to l.

12. Two lines and a point are given. The point does not lie on either of the lines. Draw a
circle that is tangent to the given lines and passes through the given point.

13. Two lines p and q and a point A are given. Find points B on p and C on q such that
4ABC is isosceles with |AB| = |BC|, and ∠ABC = 90◦.

14. Two lines, p and q, and a point A are given. Construct a square ABCD that satisfies
the following conditions:

• Vertex A is the given point.

• Vertex B, the counterclockwise neighbor of vertex A, lies on line p.

• Vertex C, the counterclockwise neighbor of vertex B, lies on line q.

15. The shaded region in the figure below is bounded by three semi-circles. Cut this region
into four congruent parts, i.e. parts of equal size and shape.

16. Three lines are given. Find three points on these lines, one point on each line, that are
vertices of an equilateral triangle. (Hint: you can choose any point on the first line as
one of the vertices.)

17. A point A and two lines, p and q, are given. Find a point B on line p, and a point C
on line q, such that the perimeter of the triangle ABC is as small as possible.

18. Two circles with centers A and D are given. Find a point B on the first circle and a
point C on the second circle, such that AB is horizontal and |AB|+ |BC|+ |CD| is as
small as possible.

19. Four lines, p, q, r, and s, and a distance l are given. Construct a horizontal line that
intersects these four lines at points A, B, C, and D respectively in this order, and such
that |AB|+ |CD| = l.

20. Two spheres and a line are given in three-dimensional space. None of them intersect
and neither of the spheres lies inside the other. Find a point A on one sphere, a point
B on the line, and a point C on the other sphere so that |AB| + |BC| is as small as
possible.

!!!
need more 3-D problems
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Chapter 13

Graphs

Definition 13.1. A graph is an object consisting of a set of points called vertices, some
of which are connected by lines (or arcs) called edges.

Definition 13.2. A graph is simple if any 2 vertices are connected by at most one edge
and there are no loops (edges starting and ending at the same vertex).

Definition 13.3. If the edges are oriented, then we have an oriented or
directed graph. An example of an oriented graph is a one-way road system.

Definition 13.4. If an edge e connects the vertices v1 and v2, then we say that v1 and v2

are the endpoints of e. Also, we say that v1 and v2 are adjacent vertices. If two edges e1

and e2 share a common vertex, then we say that e1 and e2 are adjacent edges. A vertex v
has degree m if m endpoints of edges coincide with v (a loop contributes 2 to the degree of
a vertex).

Theorem 13.5. In any graph, the sum of the degrees of the vertices equals twice the number
of the edges.

Corollary 13.6. In any graph, the number of vertices with odd degrees is even.

Definition 13.7. An undirected graph in which every two vertices are connected is called a
complete graph. Kn denotes the complete graph with n vertices. The graphs K2, K3, K4,
and K5 are shown below.

59
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Definition 13.8. If the vertices of a graph can be separated into two parts X and Y so that
for every edge in the graph, one of its endpoints belongs to X and the other belongs to Y ,
then we call this kind of graph a bipartite graph.

X

Y
Definition 13.9. If every vertex in the set X is connected to every vertex in the set Y , then
the graph is called a complete bipartite graph. Km,n denotes the complete bipartite graph
with m vertices in the set X and n vertices in the set Y . The graphs K2,4 and K3,3 are
shown below.

Definition 13.10. We say that a graph can be embedded into a plane if it is possible
to draw it in such a way that no two edges intersect. For example, the graph K4 can be
embedded as follows:

Theorem 13.11. The graphs K5 and K3,3 can not be embedded into a plane.

Definition 13.12. A path is a sequence of edges e1, e2, . . ., en such that e1 = (x0, x1),
e2 = (x1, x2), . . ., en = (xn−1, xn). When there are no multiple edges in the graph, this path
is denoted by its vertex sequence x0, x1, . . . , xn. A path that begins and ends at the same
vertex is called a cycle. A path is simple if it does not contain the same edge more than
once.

Definition 13.13. An Euler path (resp. Euler cycle) is a simple path (resp. cycle)
containing every edge of the graph.

Theorem 13.14. A connected graph has an Euler cycle if and only if each of its vertices
has even degree.

Definition 13.15. A Hamilton path (resp. Hamilton cycle) is a simple path (resp.
cycle) visiting every vertex exactly once.

Definition 13.16. If all vertices of a graph can be visited by walking on edges, the graph is
connected.
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Definition 13.17. A connected graph without cycles is called a tree.
Here is an example of a tree:

Example 13.18. Prove that in any collection of six people either three of them mutually
know each other or three of them mutually do not know each other.

Solution. Let’s translate this problem into a graph theory problem. Let six vertices a, b, c,
d, e, and f represent the six people. If two people know each other, then we use a red edge
to join these two vertices. If two people do not know eath other, then we use a blue edge to
join these two vertices. Since there are edges between every two vertices in the graph, it’s
a complete graph K6 with red and/or blue edges. Now the problem has been translated into
the following problem: We use red red/or blue colors to color the edges in the complete graph
K6. Prove that there must exist either 3 vertices such that the edges joining them are all
red, or 3 vertices such that the edges joining them are all blue. Now, let’s pick any vertex
in K6, say a. The 5 edges between this vertex and the other 5 vertices are each either red
or blue. According to Dirichlet’s Principle, at least 3 edges of the five have the same color.
Let’s assume that ab, ac, ad are red (the blue case is similar). Now consider the triangle bcd.
If one of the edges bc, bd, cd is red, then we have a red triangle. Otherwise, if bc, bd, cd are
all blue, then the triangle bcd is a blue triangle. This proves that there must exist a triangle
all of whose edges are colored by the same color.

Example 13.19. Is it possible to draw a triangular map inside a pentagon so that the degree
of each vertex is even?

Below is an example of a triangular map (but some vertices have an odd degree):

Solution. The answer is no. We will prove this by contradiction. Suppose such a map exists.
We know (see problem 9 in chapter 4) that every map with all vertices of even degree admits
a proper coloring, i.e. its regions can be colored with 2 colors so that no neighbouring regions
have the same color. Color our map in blue and red so that the (infinite) region outside of
the pentagon is blue. All the other regions are triangles. Each edge has a red triangle on one
side and and a blue region (either a triangle or that infinite outside region) on the other side.
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Now, count the number of edges (boundaries) in the map in two ways: each red triangle has 3
sides, so the number of edges is a multiple of 3, say, 3n. Each blue triangle has 3 sides, and
the infinite region has 5 edges, so the number of edges is a multiple of 3 plus 5, say, 3m + 5.
Thus we have 3n = 3m + 5. But this is impossible.

Problems

1. Explain why a graph can not have 7 vertices of degrees 4, 4, 3, 3, 3, 2, 2.

2. Can a graph have 6 vertices of degrees 4, 3, 3, 2, 2, and 1?

3. Prove that in any group of people, the number of people that are friends with an odd
number of people is even.

4. How many edges does a graph have if it has vertices of degrees 4, 3, 3, 2, 2? Draw such
a graph.

5. Determine which of the following graphs are bipartite:

6. Which of the graphs in problem 5 have

(a) an Euler path?

(b) an Euler cycle?

(c) a Hamilton path?

(d) a Hamilton cycle?

7. There are 8 counties in Sikinia. There are no “four corners” points (like Arizona,
Colorado, New Mexico, and Utah). Each county counted the number of neighboring
counties. The numbers are 5, 5, 4, 4, 4, 4, 4, 3. Prove that at least one county made a
mistake.

8. Find the number of vertices and edges in Kn and Kn,m.

9. Find a necessary and sufficient condition for a graph to have an Euler path but not an
Euler cycle.

10. For which values of n does Kn have

(a) an Euler path?

(b) a Hamilton path?
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11. For what values of n and m does Kn,m have

(a) an Euler cycle?

(b) an Euler path?

(c) a Hamilton cycle?

(d) a Hamilton path?

12. A knight’s tour is a sequence of legal moves by a knight starting at some square of a
chessboard and visiting each square exactly once. A knight’s tour is called reentrant
if there is a legal move that takes the knight from the last square of the tour back to
where the tour began.

(a) Draw the graph that represents the legal moves of a knight on a 3× 4 chessboard.

(b) Show that there is no reentrant tour on a 3× 4 chessboard.

(c) Find a non-reentrant tour on a 3× 4 chessboard.

13. Show that there is no reentrant knight’s tour on a 4× 4 chessboard.

14. Show that there is no knight’s tour at all (reentrant or not) on a 4× 4 chessboard.

15. There are 7 men and 7 women attending a dance. After the dance, they recall the
number of people they have danced with. The numbers are as follows: 3, 3, 3, 3, 3, 3,
3, 5, 6, 6, 6, 6, 6, 6. Prove that at least one of them made a mistake. (Assume that
men only danced with women, and women only danced with men.)

16. There are 10 men and 10 women at a dance. Every man knows exactly 2 women and
every woman knows exactly 2 men. Prove that after suitable pairing, every man can
dance with a woman he knows.

17. There are 17 scientists who communicate with each other to discuss some problems.
They discuss only three topics, and each pair discusses at least one of these three. Prove
that there are at least 3 scientists who are all pairwise discussing the same topic.

18. Nine mathematicians met at an international conference. They found that among any
3 of them there are at least 2 that have a language in common. If every mathematician
speaks at most 3 languages, prove that at least three of the mathematicians can speak
the same language.

19. Hamilton’s “Round the World” puzzle: does the dodecahedron (shown below) have

(a) a Hamilton path?

(b) a Hamilton cycle?
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20. (a) Prove that in a finite simple graph having at least 2 vertices there are always two
vertices with the same degree.

(b) Does the above hold for graphs with loops (but no multiple edges)?

(c) Does the above hold for graphs with multiple edges (but no loops)?

21. A connected bipartite graph G has 8 vertices. Recall that the vertices of a bipartite
graph can be divided into 2 groups A and B so that every edge connects a vertex in
group A and a vertex in group B. Both groups for G have 4 vertices. Three of the
vertices in group A have degrees 4, 2, and 2. Three of the vertices in B have degrees 3,
1, and 1. What are the degrees of the remaining vertices?

22. A graph Kk,l,m has k + l + m vertices divided into three sets: k vertices in one set, l
vertices in another set, and m vertices in the third set. Two vertices are connected if
and only if they are in different sets. Does K1,2,4 have an Euler cycle?

23. Below is a map of the river and the bridges in Konigsberg. As we know from problem
7 in chapter 1, it is not possible to design a tour of the town that crosses each bridge
exactly once and returns to the starting point. Could the citizens of Konigsberg find
such a tour by building a new bridge?
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Working backwards

“Working backwards” is a very powerful tool that can be used to solve many different prob-
lems.

Euclid’s algorithm. Given numbers a and b, notice that if we divide a by b and obtain
quotient q and remainder r, then since a = qb + r, the greatest common divisor of a and b is
equal to the greatest common divisor of b and r. Euclid’s algorithm is based on this fact:

a = q1 · b + r1, r1 < b, (a, b) = (b, r1) r1 = a− q1 · b
b = q2 · r1 + r2, r2 < r1, (b, r1) = (r1, r2) r2 = b− q2 · r1

r1 = q3 · r2 + r3, r3 < r2, (r1, r2) = (r2, r3) r3 = r1 − q3 · r2

. . . ↓ . . . . . . . . . ↑
rn−2 = qn · rn−1 + rn, rn < rn−1, (rn−2, rn−1) = (rn−1, rn) rn = rn−2 − qn · rn−1

rn−1 = qn+1 · rn, rem. = 0, (rn−1, rn) = rn

Thus (a, b) = rn.

Theorem 14.1. If d = (a, b), then there exist integer numbers x and y such that x·a+y·b = d.

Example 14.2. Find the greatest common divisor d of a = 115 and b = 80, and find x and
y such that x · a + y · b = d.

Solution. 115 = 1 · 80 + 35
80 = 2 · 35 + 10
35 = 3 · 10 + 5
10 = 2 · 5
Therefore (a, b) = 5.

Note. To find (a, b), we could factor 115 = 5 · 23, 80 = 24 · 5, so (115, 80) = 5.

5 = 35− 3 · 10
= 35− 3(80− 2 · 35) = 35− 3 · 80 + 6 · 35 = 7 · 35− 3 · 80
= 7(115− 1 · 80)− 3 · 80 = 7 · 115− 7 · 80− 3 · 80 = 7 · 115− 10 · 80

Thus x = 7 and y = −10.

Example 14.3. Find a formula for the function whose graph is shown below.
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1

1
x

y

y=f(x)

Solution. Let f(x) denote the function that we want to find. Notice that f(x) is the absolute
value of the function g(x) whose graph is

y=g(x)

Record this fact: f(x) = |g(x)|. Here is the graph of g(x) + 1:

y=g(x)+1 

Notice that g(x) + 1 is the absolute value of h(x) whose graph is

y=h(x)

(So, g(x) + 1 = |h(x)|.) Finally, the graph of h(x) is obtained from the graph of the
absolute value of x by shifting it downward a distance of 1 unit, so h(x) = |x| − 1. Now,
g(x) + 1 = |h(x)| = ||x| − 1|, so g(x) = ||x| − 1| − 1, and f(x) = |g(x)| = |||x| − 1| − 1|.

Example 14.4. 4 ones and 5 zeros are written along a circle. Between two equal numbers
we write a one and between two distinct numbers we write a zero. Then the original numbers
are wiped out. This step is repeated. Show that we can never reach 9 ones.

For example, a possible initial distribution of ones and zeros and the first step are shown
below:
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1

1

0

0

1

00

1 0 0

0

1

0 0

1

0 1

0
1

0

0

01

0

1

1
0

0

1

1

0
0

1

0

0 0

Solution. Suppose the aim is attainable. Look at the first time we have 9 ones. One step
before we must have 9 equal numbers. Since it was the first time we got 9 ones, one step
before we must have 9 zeros. Still one step before we have 9 changes 0− 1− 0− 1− .... With
an odd number of integers (9), this is not possible.

Problems

1. Use Euclid’s algorithm to find the greatest common divisor d of the given numbers a
and b, and numbers x and y such that xa + yb = d.

(a) a = 46, b = 32

(b) a = 24, b = 10

(c) a = 96, b = 54

(d) a = 219, b = 51

2. Find integer numbers a and b such that 6 = 67a + 25b.

3. Find a and b such that in Euclid’s algorithm r7 = (a, b). Write out all the divisions.

4. Find a and b such that it will take 5 divisions to reach the greatest common divisor of
a and b.

5. Find a formula for the function whose graph is shown.

(a) .

1+cos x 1−cos x 1+cos x1−cos x

y

x

π 2π−π

(b) .
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(c) .

1

y=f(x)

y

x

3

2

(d) .

slope=1

x

y

Hint: try subtracting
x

2
from the given function.

(e) .

1

1
x

y

slope=2

Hint: do problem (d) first.
(f) .

y

1−1

1

2

x

slope=3
slope=−1

−2

6. The integers 1, 2, ..., n are placed in order, so that each value is either bigger than all
preceding values or is smaller than all preceding values. In how many ways can this be
done?

7. Starting with 2, 0, 0, 3, we construct the sequence 2, 0, 0, 3, 5, 8, 6, ..., where each
new digit is the mod 10 sum of the preceding four terms. Prove that the 4-tuple 0, 5,
0, 5 will never occur.
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8. Starting with 2, 0, 0, 3, we construct the sequence 2, 0, 0, 3, 5, 8, 6, ..., where each
new digit is the mod 10 sum of the preceding four terms. Will the 4-tuple 0, 4, 0, 7
ever occur?

9. Two players play the following game.

• Turns alternate.

• At each turn, a player removes 1, 2, 3, or 4 counters from a pile that had initially
27 counters.

• The game ends when all counters have been removed.

• The player who takes the last counter loses.

Find a winning strategy for one of the players.

10. Two players play the following game.

• Turns alternate.

• At each turn, a player removes 1, 2, 3, or 4 counters from a pile that had initially
27 counters.

• The game ends when all counters have been removed.

• The player who takes the last counter wins.

Find a winning strategy for one of the players.

11. Two players play the following game.

• Turns alternate.

• At each turn, a player removes either 1 or 2 counters from a pile that had initially
10 counters.

• The game ends when all counters have been removed.

• The player who takes the last counter loses.

Find a winning strategy for one of the players.

12. There are two piles of candy. One pile contains 20 pieces, and the other 21. Players
take turns eating all the candy in one pile and separating the remaining candy into two
(not necessarily equal) piles. (A pile may have 0 candies in it.) The player who cannot
eat a candy on his/her turn loses. Which player, if either, can guarantee victory in this
game?

13. Two players play the following game.

• Turns alternate.

• At each turn, a player removes 1, 2, 4, 8, 16, or 32 counters from a pile that had
initially 50 counters.

• The game ends when all counters have been removed.

• The player who takes the last counter wins.

Find a winning strategy for one of the players.
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14. Starting from 1, the players take turns multiplying the current number by any whole
number from 2 to 9 (inclusive). The player who first names a number greater than
1000 wins. Which player, if either, can guarantee victory in this game?

15. Suppose you are writing a calculus book. You want to find a few cubic polynomials
f(x) = ax3 + bx2 + cx + d (preferably with integer coefficients) whose critical numbers
are integers. (Recall that a critical number is a value of x at which the derivative is
equal to 0.) How would you find such polynomials? Use your strategy to find a couple
of polynomials.

16. Suppose you want to give your high school students a system of 2 linear equations with
2 variables. You’d like the answers to be integer numbers. You could, of course, try
random coefficients, say

{
2x + 3y = 4
5x− 6y = 7 ,

solve your systems, and hope that sooner or later you’ll find a system with integer
solutions, but is there a better strategy?

17. Suppose you are teaching linear algebra, and you need to find matrices with integer
entries whose reduced echelon forms also have integer entries. How would you find such
matrices?

18. I have seven coins whose total value is $0.57. What coins do I have? And, how many
of each coin do I have? (Coins being used at the time when this book is written have
values 1 cent, 5 cents, 10 cents, 25 cents, and 1 dollar.)

19. Two players play the following game.

• Turns alternate.

• At each turn, a player removes 1, 2, or 4 counters from a pile that had initially 10
counters.

• The game ends when all counters have been removed.

• The player who takes the last counter wins.

Find a winning strategy for one of the players.

20. A box contains 300 matches. Players take turns removing no more than half the matches
in the box. The player who cannot take any match(es) loses. Find a winning strategy
for one of the players.

21. Two players play the following game.

• Initially X = 0.

• Turns alternate.

• At each turn, a player adds any number between 1 and 10 (inclusive) to X.

• The game ends when X reaches 100.

• The player who reaches 100 wins.

Find a winning strategy for one of the players.
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Calculus

Recall the following important definitions and theorems.

Definition 15.1. loga x = y ⇔ ay = x

Theorem 15.2. (Properties of logarithms)

1. loga(xy) = loga x + loga y

2. loga

(
x

y

)
= loga x− loga y

3. loga(xr) = r loga x

4. loga(x) =
ln x

ln a

Definition 15.3. A function f(x) is called even if f(−x) = f(x) for all x in the domain of
f .
A function f(x) is called odd if f(−x) = −f(x) for all x in the domain of f .

Definition 15.4. A function f−1 is called the inverse of f if

f−1(y) = x ⇔ f(x) = y.

Theorem 15.5. If f−1 is the inverse of f : R→ R then the curves y = f(x) and y = f−1(x)
are symmetric about the line y = x.

Theorem 15.6. (Intermediate value theorem) Suppose f(x) is continuous on [a, b]. Let N
be any number between f(a) and f(b). Then there exists c ∈ [a, b] such that f(c) = N .

Definition 15.7. The derivative of f(x) at a point a is

f ′(a) = lim
h→0

f(a + h)− f(a)
h

.

The derivative f ′(a) is the slope of the tangent line to y = f(x) at (a, f(a)). Also, f ′(a)
is the rate of change of f(x) with respect to x at x = a.
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y=f(x)y

x

slope=f’(a)

f(a)

a

Theorem 15.8. (Important derivatives)

(xn)′ = nxn−1, (ex)′ = ex, (ax)′ = (ln a)ax,

(c)′ = 0, (lnx)′ =
1
x

, (loga x)′ =
1

(ln a)x
,

(sinx)′ = cos x, (cos x)′ = − sinx, (tan x)′ = (sec x)2,

(csc x)′ = − csc x cot x, (sec x)′ = sec x tan x, (cotx)′ = −(cscx)2,

(arcsin x)′ =
1√

1− x2
(arccosx)′ = − 1√

1− x2
, (arctanx)′ =

1
x2 + 1

Theorem 15.9. (Chain rule) (f ◦ g)′(x) = (f(g(x)))′ = f ′(g(x))g′(x)

Theorem 15.10. If f(x) is defined on some open interval containing a point c and has a
local maximum or minimum c, then c is a critical number of f(x) (i.e. either f ′(c) = 0 or
f ′(c) does not exist).

Definition 15.11. Let f(x) be continuous on an interval [a, b]. Divide the interval into n
subintervals of equal length: [x0, x1], [x1, x2], . . ., [xn−1, xn] where x0 = a and xn = b. Let

∆x =
b− a

n
be the length of each subinterval. Then the sum

Rn =
n∑

i=1

f(xi)∆x

is called the Riemann sum of f [x] on [a, b] using n subintervals. It can be proved that the
limit of Rn as n approaches infinity exists, and

∫ b

a

f(x)dx = lim
n→∞

n∑

i=1

f(xi)∆x

is called the integral of f(x) from a to b.

If f(x) ≥ 0, then
∫ b

a

f(x)dx is the area of the region under the curve y = f(x) and above

the x-axis from a to b.

If f(x) takes on both positive and negative values, then
∫ b

a

f(x)dx is the sum of the areas

under the curve and above the x-axis minus the sum of the areas under the x-axis and above
the curve.
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a b a b

y y

x x

y=f(x)
y=f(x)

+
+

Theorem 15.12. (Fundamental Theorem of Calculus)

I.
d

dx

(∫ x

a

f(t)dt

)
= f(x)

II. If F ′(x) = f(x), then
∫ b

a

f(x) = F (b)− F (a).

Theorem 15.13. (Substitution Rule)∫
f(g(x))g′(x)dx =

∫
f(u)du where u = g(x), du = g′(x)dx.

Theorem 15.14. (Some important series)
∞∑

n=1

1
n

= 1 +
1
2

+
1
3

+
1
4

+ . . . is divergent.

∞∑
n=0

qn = 1 + q + q2 + q3 + . . . =
1

1− q
if |q| < 1, and divergent if |q| ≥ 1.

∞∑
n=0

xn

n!
= 1 +

x

1!
+

x2

2!
+

x3

3!
+ . . . = ex for all x.

(
in particular, if x = 1, then

∞∑
n=0

1
n!

= 1 +
1
1!

+
1
2!

+
1
3!

+ . . . = e.
)

∞∑
n=0

(−1)n x2n+1

2n + 1
= x− x3

3
+

x5

5
− x7

7
+ . . . = arctan x for all x.

(
in particular, if x = 1, then

∞∑
n=0

(−1)n 1
2n + 1

= 1− 1
3

+
1
5
− 1

7
+ . . . = arctan 1 =

π

4
.
)

Problems

1. Evaluate the integral
∫ 2

−4

|x + 2|dx.

2. Evaluate the integral
∫ 3π

0

| sin x|dx.

3. Find a number c such that the line y = x− 1 is tangent to the parabola y = cx2.
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4. (a) Show that the function f(x) = ln(x +
√

x2 + 1) is odd.

(b) Find the inverse of f(x).

5. Find a cubic polynomial p(x) = ax3 + bx2 + cx + d that has a local maximum at (0, 1)
and a local minimum at (1, 0).

6. Find the interval [a, b] for which the value of the integral
∫ b

a

(2+x−x2)dx is a maximum.

7. Find all values of a for which the area of the region bounded by the line y = ax and
the parabola y = x2 is equal to 1.

8. There is a line through the origin that divides the region bounded by the parabola
y = x− x2 and the x-axis into two regions with equal area. What is the slope of that
line?

9. Find the sum of the series
∞∑

n=0

1
22n+1

=
1
2

+
1
23

+
1
25

+
1
27

+ . . .

Hint: e.g. factor out
1
2
, and notice that 22n = 4n.

10. Find the sum of the series

1 +
1
2

+
1
3

+
1
4

+
1
6

+
1
8

+
1
9

+
1
12

+
1
16

+
1
18

+ . . .

where the terms are the reciprocals of the positive integers whose only prime factors
are 2s and 3s.

11. The parabola y = x2 +2 has two tangent lines that pass through the origin. Find their
equations.

12. Suppose you have a large supply of books, all the same size, and you stack them at the
edge of a table, with each book extending farther beyond the edge of the table than
the one beneath it. Show that it is possible to do this so that the top book extends
entirely beyond the table. In fact, show that the top book can extend any distance at
all beyond the edge of the table if the stack is high enough. Try the following method
of stacking: The top book extends half its length beyond the second book. The second
book extends a quarter of its length beyond the third. The third extends one-sixth of
its length beyond the fourth, and so on. (You could try it yourself with a deck of cards,
or with tapes or CDs.) Consider centers of mass.
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13. Find the n-th derivative of f(x) =
1

x2 + x
.

Hint: use the partial fraction decomposition. Recall that since x2 + x = x(x + 1), the

partial fraction decomposition has the form
A

x
+

B

x + 1
.

14. Find the n-th derivative of the function f(x) =
xn

1− x
.

15. The parabola y = x2 and the line y = mx + 1 are given. They have two intersection
points, A and B. Find the point C on the parabola that maximizes the area of 4ABC.

16. The figure below shows a curve C with the property that, for every point P on the
middle curve y = 2x2, the areas A and B are equal. Find an equation for C.

A
B

y=2x

y=x

C

2

2

17. Find all values of a such that x2 + ax + 1 ≥ cos x for all real x.

18. For which positive numbers a is it true that ax ≥ 1 + x for all x?

19. The figure below shows a circle with radius 1 inscribed in the parabola y = x2. Find
the center of the circle.

y

x

y=x2

1

20. The figure below shows a region consisting of all points inside a square that are closer
to the center than to the sides of the square. Find the area of the region.
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21. Sketch the region S = {(x, y) | |x| ≥ 1, |y| ≥ 2, x2 + y2 ≤ 9} and find its area.

22. Find a positive continuous function f such that the area under the graph of f from 0
to t is A(t) = t3 for all t > 0.

23. The figure below shows a horizontal line y = c intersecting the curve y = 8x − 27x3.
Find the number c such that the areas of the shaded regions are equal.

24. Evaluate lim
n→∞

(
1√

n
√

n + 1
+

1√
n
√

n + 2
+ . . . +

1√
n
√

n + n

)
.

Hint: interpret the sum as a Riemann sum of a function. Then the limit as n approaches
infinity is the value of an integral.

25. Show that any ellipsoid (given by
x2

a2
+

y2

b2
+

z2

c2
= 1) has a section that is a circle.

Hint: any section of the ellipsoid that passes through the origin is an ellipse.

26. Evaluate
∫

1
x7 − x

dx.

The straightforward approach would be to start with partial fractions, but that would
be too brutal. We could reduce the power of the denominator as follows:∫

1
x7 − x

dx =
∫

x

x8 − x2
dx, let u = x2, then du = 2xdx, or

du

2
= xdx, and we have

∫
x

x8 − x2
dx =

1
2

∫
1

u4 − u
du.

u4 − u is better than x7 − x, but can you find an even better substitution?

27. Let a1, a2, . . ., a30 be real numbers. Show that a1 cos x+a2 cos(2x)+ . . .+a30 cos(30x)
cannot take on only positive values.
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28. If a0, a1, a2, . . ., ak are real numbers and a0 + a1 + a2 + . . . + ak = 0, show that

lim
n→∞

(a0

√
n + a1

√
n + 1 + a2

√
n + 2 + . . . ak

√
n + k) = 0.

Hint: Try the special cases k = 1 and k = 2 first, and then generalize.

29. Show that, for x > 0,
x

x2 + 1
< arctanx < x.

30. The figure below shows a point P on the parabola y = x2 and the point Q where the
perpendicular bisector of OP intersects the y-axis. As P approaches the origin along
the parabola, what happens to Q? Does it have a limiting position? If so, find it.

Q

P

O

y=x2

x

y

31. Recall that the area of a circle with radius r is A = πr2 and the circumference of the
circle is L = 2πr. Notice that (πr2)′ = 2πr. Similarly, the volume of a ball with radius r

is V =
4
3
πr3, the surface area is S = 4πr2, and

(
4
3
πr3

)′
= 4πr2. Is this a coincidence?

Actually, it isn’t. Explain these facts. What is the ratio of the 4-dimensional volume
and the usual 3-dimensional volume of its boundary (the analog of the surface area)
for a 4-dimensional ball with radius 4?

32. Find the volume of a 4-dimensional unit ball.

33. Evaluate
∫ 1

0

( 3
√

1− x7 − 7
√

1− x3)dx.

34. Show that e is irrational.

35. Let f(x) = a1 sin x+a2 sin(2x)+a3 sin(3x)+ . . .+an sin(nx), where a1, . . . , an are real
numbers and n is a positive integer. If it is given that |f(x)| ≤ | sin(x)| for all x, show
that |a1 + 2a2 + . . . + nan| ≤ 1.

36. Let T (x) denote the temperature at the point x on Earth at some fixed time. Assuming
that T is a continuous function of x, show that at any fixed time there are at least two
diametrically opposite points on the equator that have the same temperature.

37. Find a curve that passes through the point (3, 2) and has the property that if the
tangent line is drawn at any point P on the curve, then the part of the tangent line
that lies in the first quadrant is bisected by P .

38. Explain why the curve shown below cannot be the graph of a cubic polynomial.
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y

x

39. What is the ratio of the 5-dimensional volume of a 5-dimensional ball to the 4-
dimensional volume of its boundary (the analog of the surface area)?

40. Evaluate the integral:
∫ 1

0

arcsin(x)dx (hint: use areas).



Chapter 16

Various problems

Most problems in this section can be solved in a few different ways.

Problems

1. Show that there is no reentrant knight’s tour on a 5× 5 chessboard (recall that a tour
is called reentrant if there is a legal move that takes the knight from the last square of
the tour back to where the tour began).

2. Prove that for any integer number n, n7 − n is divisible by 7.

3. A sequence {an} is defined recursively by the equations

a0 = a1 = 1 n(n− 1)an = (n− 1)(n− 2)an−1 − (n− 3)an−2.

Find the sum of the series
∞∑

n=0

an.

4. Evaluate the integral:
∫ 3

−2

||x| − 1| dx

5. Solve the inequality: |6− |x| − x|+ x ≤ 3.

6. • Find an example of a polygon and a point in its interior, so that no side of the
polygon is completely visible from that point.

• Find an example of a polygon and a point in its exterior, so that no side of the
polygon is completely visible from that point.

7. A 6 × 6 rectangle is tiled by 2 × 1 dominoes. Prove that it has at least one fault-line,
that is, a straight line cutting the rectangle without cutting any domino.

8. The plane is colored with two colors. Prove that there exist three points of the same
color, which are vertices of a regular triangle.

9. The plane is colored with n colors where n is any natural number. Prove that there
exist four points of the same color, which are vertices of a rectangle. (Hint: recall the
“same-color-corner-rectangle” problem.)
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10. Each block of a 25× 25 board has either 1 or −1 written on it. Let ai be the product
of all numbers in the ith row and bj be the product of all numbers in the jth column.
Prove that a1 + . . . + a25 + b1 + . . . + b25 6= 0.

11. The Art Gallery Problem. An art gallery has the shape of an n-gon (not necessarily a
convex one). The boundary of the n-gon are the only walls, there are no walls inside
it. The gallery is to be guarded by security cameras that can each rotate to obtain
a full field of vision. Prove that

[n

3

]
(the integer part of

n

3
) cameras can survey the

building, no matter how complicated its shape.

For example:

pentagon,
[
5
3

]
= 1 7-gon,

[
7
3

]
= 2

1 camera can survey the building 2 cameras can survey the building

Note. There are many variations of this problem. In some versions cameras are re-
stricted to the walls (edges of the polygon), or even to the corners (vertices of the
polygon). Some versions require only the edges to be guarded. There is a book ([1])
dedicated to this problem.

12. Which natural numbers are sums of consecutive smaller natural numbers? For example,
30 = 9 + 10 + 11 and 31 = 15 + 16, but 32 has no such representation. Find a simple
necessary and sufficient condition.

13. Prove that if 40 coins are distributed among 9 bags so that each bag contains at least
one coin, then at least two bags contain the same number of coins.

14. December 14, 2005 is a Wednesday. What day of the week is December 14, 2025?



Chapter 17

Solutions and answers to
selected problems

17.1 Introduction

1. Assume that each of the eleven children contributed at most $2.72. Then the total
amount does not exceed 2.72 · 11 = 29.92 dollars. But the total amount is $30.00.
Therefore our assumption is false, thus at least one child contributed at least $2.73.
This kind of proof is called a proof by contradiction (see chapter 3). Such problems
can also be solved using the Generalized Dirichlet’s Principle (see chapter 5).

2. (a) Any two-digit number N can be written in the form N = 10a + b where b is the
units digit of the number and a is its tens digit. (For example, 27 = 10 · 2 + 7.)
Suppose that N is divisible by 3. Then N = 3k for some integer k. Thus
10a + b = 3k
9a + a + b = 3k
a + b = 3k − 9a
a + b = 3(k − 3a)
Since k − 3a is an integer, a + b is divisible by 3.
Conversely, suppose that a+ b is divisible by 3. Then a+ b = 3m for some integer
m. Thus
9a + a + b = 9a + 3m
10a + b = 3(3a + m)
N = 3(3a + m)
Since 3a + m is an integer, N is divisible by 3.

(b) Any natural number N can be written in the form

N = 10nan + 10n−1an−1 + . . . 10a1 + a0

where a0 is the units digit of the number, a1 is the tens digit, and so on (this is
called the base 10 expansion of the number N , see chapter 6). Now,

N = 99 . . . 9︸ ︷︷ ︸
n

an + an + 99 . . . 9︸ ︷︷ ︸
n−1

an−1 + an−1 + . . . + 9a1 + a1 + a0

= 99 . . . 9︸ ︷︷ ︸
n

an + 99 . . . 9︸ ︷︷ ︸
n−1

an−1 + . . . + 9a1 + (an + an−1 + . . . + a1 + a0).
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Since all multiples of 9 are divisible by 3, an argument similar to the one in part
(a) shows that N is divisible by 3 if and only if

an + an−1 + . . . a1 + a1

is (also, see chapter 6 for divisibility properties).

3. False. For example, for n = 41, n2 + n + 41 = 412 + 41 + 41 = 41 · 43 is not prime.

Note. You may be tempted to check a few small values of n. You would discover then
that for 1 ≤ n ≤ 39, the number n2 + n + 41 is indeed prime. However, the above
example shows that this is not the case for all natural values of n. Thus checking a few
examples is not sufficient!

4. Choose a row with the biggest number of stars in it. Note that this row contains at
least two stars since if each row contained at most one star then there would be at most
4 stars total. But there are 6 stars. (This argument is using Dirichlet’s box principle,
see chapter 5.) So we have the following three cases:
Case I. This row contains 4 stars. Then cross is out, and there will only be two stars
left. If they are in different columns, then cross out any other row, and the two columns
containing the remaining two stars. If the remaining two stars are in one column then
cross out one more row, the column containing the stars, and any other column.
Case II. This row contains 3 stars. Then cross it out, and there will only be three
stars left. Clearly we can eliminate three stars by crossing out one more row and two
columns.
Case III. This row contains 2 stars. Cross it out, and there will only be four stars in
three rows left. Therefore at least one of these rows contains two stars. Cross it out,
and there will only be two stars left. As above, it is clear that we can eliminate two
stars by crossing out two columns.

5. True. There are several ways to prove this. One is by induction (see chapter 4), another
one is considering all possible remainders of n modulo 3 (see chapters 6 and 7). Here
is a third way: n3 + 2n = n3 − n + 3n = n(n2 − 1) + 3n = n(n− 1)(n + 1) + 3n. The
term n(n− 1)(n + 1) is the product of three consecutive numbers, and one of them is
divisible by 3 (see chapter 6), therefore the product is divisible by 3. The term 3n is
also divisible by 3. Thus the sum is divisible by 3.

6. Since |x + 2| =
{

x + 2 if x + 2 ≥ 0, i.e. if x ≥ −2
−x− 2 if x + 2 < 0, i.e. if x < −2 and

|2x− 5| =
{

2x− 5 if 2x− 5 ≥ 0, i.e. if x ≥ 2.5
−2x + 5 if 2x− 5 < 0, i.e. if x < 2.5 , we have

f(x) = |x + 2|+ |2x− 5| =




x + 2 + 2x− 5 = 3x− 3 if x ≥ 2.5
x + 2− 2x + 5 = −x + 7 if − 2 ≤ x < 2.5
−x− 2− 2x + 5 = −3x + 3 if x < −2

So we draw the graph of each linear function for the corresponding interval:
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x

y

−2 2.5

4.5

9

7. No. Consider the four regions of the town, namely the two river banks and the two
islands. Each of them is connected with other regions by either 3 or 5 bridges. Suppose
that there is a tour of the town that crosses every bridge exactly once. For each
intermediate region on such a tour we must come to the region by a bridge and leave
the region by a bridge. So every time the tour visits a region, two bridges are crossed.
This means that for every region except the one where we start and the one where
we end there must be an even number of bridges connecting that region to others.
But we have 4 regions with an odd number of bridges. Thus we get a contradiction.
This solution can be explained in an easier and “smoother” way if we use the graph
terminology discussed in chapter 13.

8. Yes. There are even many such tours. Below are two tours (squares are numbered in
the order the knight can visit them). Notice that in the second one, it is possible to go
from square number 64 back to square number 1. Such a tour is called reentrant (see
chapter 13).

1 40 13 26 3 42 15 28

24 37 2 41 14 27 4 43

39 12 25 60 53 62 29 16

36 23 38 63 56 59 44 5

11 50 57 54 61 52 17 30

22 35 64 51 58 55 6 45

49 10 33 20 47 8 31 18

34 21 48 9 32 19 46 7

1 14 17 42 3 38 19 40

16 43 2 63 18 41 4 37

13 64 15 58 53 56 39 20

44 27 12 55 62 59 36 5

11 30 61 52 57 54 21 50

26 45 28 31 60 51 6 35

29 10 47 24 33 8 49 22

46 25 32 9 48 23 34 7

Note. You may not be able to find such a tour quickly. However, it is important to
recognize the fact that if you tried and were unable to find one, that does not prove
that such a tour does not exist.

17.2 Logic

1. Construct the truth tables:
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(a)
p q p→ q ¬q ¬p ¬q → ¬p
T T T F F T
T F F T F F
F T T F T T
F F T T T T

The truth values in the columns for p → q and ¬q → ¬p are the same, thus the
propositions are logically equivalent.

(c) .

3. Every student at my university has a computer or has a friend who has a computer.

5. (a) False since 4 6= −5.

(b) True since both P (4) and Q(4) are false.

(c) True. For example, x = 4.

(d) False. For example, if x = 4, then both P (4) and Q(4) are false, so the disjunction
is false.

(e) True. For example, if x = −5, then both P (x) and Q(x) are true, so the conjunc-
tion is true.

(f) True. If P (x) holds then x = −5, then x2 = 25, so Q(x) holds, so the implication
holds for any x.

(g) True. For example, if x = −5, then both P (x) and Q(x) are true, so the bicondi-
tional is true.

(h) False. For example, if x = 5, then P (x) is false and Q(x) is true, so the bicondi-
tional is false.

7. The statement ∀x∃y(x + y = 0) is true because for any x, let y = −x, then x + y = 0.
The statement ∃y∀x(x + y = 0) is false because there is no value of y such that for any
x the equality x + y = 0 holds: for any y, consider x = −y + 1, then x + y = 1, so
x + y 6= 0.

9. (a) True. Example: x = 1, y = 2, 1 < 2.

(b) True. For any x, if we take y = x + 1, then x < y.

(c) False. There is no such x that for any y, x < y, because for any x we can take
y = x, then x 6< y.

(d) False. Counterexample: x = 2, y = 1, 2 6< 1.

(e) False. Counterexample: x = −1, 1 6< −1.

11. (a) Not logically equivalent. Consider P (x) =“x = 2” with domain being the set of
real numbers. Then ∀x(¬P (x)) means ∀x(x 6= 2) and is false, while ¬(∀xP (x)) is
true since ∀xP (x), or ∀x(x = 2), is false.

(c) Logically equivalent. The proposition ∀x(P (x) ∧ Q(x)) is true if and only if
P (x) ∧Q(x) is always true, if and only if both P (x) and Q(x) are always true, or
(∀xP (x)) ∧ (∀xQ(x)).

(e) Not logically equivalent. Consider P (x) =“x is an odd integer” and Q(x) =“x is
an even integer” with domain being the set of integers. Then ∀x(P (x)↔ Q(x)) is
false (e.g. for x = 1, P (x) is true and Q(x) is false) while (∀xP (x)) ↔ (∀xQ(x))
is true since both ∀xP (x) and ∀xQ(x) are false.
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(g) Logically equivalent. The proposition ∃x(P (x)∨Q(x)) is true if and only if for at
least one value of x, P (x) ∨ Q(x) is true. i.e. for at least one value of x at least
one of P (x) and Q(x) holds, i.e. at least one of ∃xP (x) and ∃xQ(x) holds.

(i) Not logically equivalent. Consider P (x) =“x is an even integer” and Q(x) =“x2 =
−1” with domain being the set of integers. Then ∃x(P (x)→ Q(x)) is true (e.g. for
x = 1, both P (x) and Q(x) are false, so the implication is true) while (∃xP (x))→
(∃xQ(x)) is false (because ∃xP (x) is true and ∃xQ(x) is false, so the implication
is false).

13. The definition is as follows: the sequence a1, a2, . . . converges to a number L if for any
positive ε there exists an index N such that for any n ≥ N , |an − L| < ε. We rewrite
this definition using quantifiers: ∃L∀ε((ε > 0)→ (∃N∀n((n ≥ N)→ (|an − L| < ε))))
(where L and ε are real numbers, and n and N are natural numbers). This can also be
expressed as: ∃L ∈ R ∀ε > 0 ∃N ∈ N ∀n ≥ N |an − L| < ε.

17.3 Types of proofs

1. We will prove the statement by contrapositive: Suppose n is odd. Then n = 2k + 1 for
some integer k. Then 3n + 5 = 3(2k + 1) + 5 = 6k + 8 = 2(3k + 4) is even. Thus we
have proved that if n is odd, then 3n + 5 is even. Therefore if 3n + 5 is odd then n is
even.

3. The statement is false; n = 3 is a counterexample, since 23 + 1 = 9 is not prime.

5. By problem 2, an integer is even if and only if its square is even. Therefore an integer
is odd if and only if its square is odd. Thus If an odd integer N is a perfect square,
then N = m2 for some odd integer m. Thus m = 2k + 1 for some integer k. Then
N = m2 = (2k + 1)2 = 4k2 + 4k + 1 = 4(k2 + k) + 1, so N is of the form 4n + 1. This
proof is direct.

The converse is “if an odd number has the form 4n + 1, then it is a perfect square”.
This is false because for example 5 = 4 · 1 + 1 but 5 is not a perfect square. Thus 5 is
a counterexample.

7. (a) Let f(x) = x101 + x51 + x + 1. Then f(−1) = −2 < 0 and f(1) = 4 > 0. Since
f(x) is a continuous function, by the intermediate value theorem f(x) has a root.
This proof is nonconstructive because we did not construct a root, we only proved
its existence.

(b) Suppose f(x) has two distinct roots. By the mean value theorem there is a number
c between these roots such that f ′(c) = 0. But f ′(x) = 101x100 + 51x50 + 1 > 0
for all x. We get a contradiction. This is a proof by contradiction.

9. The value x =
π

6
is a root of the equation. This is a constructive proof since we

provided an explicit example.

11. The roots of the equation x2 + x + 1 = 0 can be found using the quadratic formula:

x =
−1±√−3

2
. Both roots are complex.numbers. Since any quadratic equation has

exactly two roots (counting multiplicity), there are no other roots. In particular, there
are no rational (or any real) solutions. This proof is direct.
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13. An integer divisible by 8 has the form 8n where n is an integer, and 8n = (4n2 + 4n +
1)− (4n2 − 4n + 1) = (2n + 1)2 − (2n− 1)2. This proof is direct and constructive: we
gave an explicit example of two perfect squares whose difference is equal to 8n.

15. Proof by contrapositive: suppose that at least one of n and m is even. Without loss
of generality, we can assume that n is even. Then n = 2k for some integer k. Then
nm + 2n + 2m = 2km + 4k + 2m = 2(km + 2k + m) is even.

17.4 Principle of Mathematical Induction

1. (a) We will prove this formula by Mathematical Induction.

Basis step: for n = 1 we have 12 =
1 · 2 · 3

6
which is true.

Inductive step: suppose the formula holds for n = k, i.e.

12 + 22 + 32 + . . . + k2 =
k(k + 1)(2k + 1)

6
.

Adding (k + 1)2 to both sides gives

12 + 22 + 32 + . . . + k2 + (k + 1)2 =
k(k + 1)(2k + 1)

6
+ (k + 1)2 =

k(k + 1)(2k + 1) + 6(k + 1)2

6
=

(k + 1)(k(2k + 1) + 6(k + 1))
6

=

(k + 1)(2k2 + k + 6k + 1)
6

=
(k + 1)(2k2 + 7k + 1)

6
=

(k + 1)(k + 2)(2k + 3)
6

=
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6
.

Thus the formula holds for n = k + 1.

(c) Proof by Mathematical Induction.
Basis step: for n = 1 we have 1 · 1! = 2!− 1, or 1 = 2− 1 which is true.
Inductive step: suppose the formula holds for n = k, i.e.

1 · 1! + 2 · 2! + . . . + k · k! = (k + 1)!− 1.

Adding (k + 1) · (k + 1)! to both sides gives
1 · 1! + 2 · 2! + . . . + k · k! + (k + 1) · (k + 1)! = (k + 1)! − 1 + (k + 1) · (k + 1)! =
(k + 1)!(1 + k + 1)− 1 = (k + 2)!− 1.
Thus the formula holds for n = k + 1.

(e) Proof by Mathematical Induction.
Basis step: for n = 1 we have 1 = 12 which is true.
Inductive step: suppose the formula holds for n = k, i.e.

1 + 3 + 5 + . . . + (2n− 1) = n2.

Adding 2(n + 1)− 1 to both sides gives
1+3+5+. . .+(2n−1)+(2(n+1)−1) = n2+(2(n+1)−1) = n2+2n+1 = (n+1)2.
Thus the formula holds for n = k + 1.

3. Proof by Mathematical Induction.
If q = 1, then it is true that 32q − 1 = 32 − 1 = 8 is divisible by 2q+2 = 23 = 8.
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Assume that the statement holds for q = k, i.e. 32k − 1 is divisible by 2k+2. We want
to prove that the statement holds for q = k + 1, i.e. 32k+1 − 1 is divisible by 2k+3. We

have: 32k+1 − 1 = 32k·2 − 1 =
(
32k

)2

− 1 =
(
32k − 1

) (
32k

+ 1
)
. By the induction

hypothesis, 32k − 1 is divisible by 2k+2. Clearly, 32k

+ 1 is an even number, thus it is
divisible by 2. Then the product

(
32k − 1

)(
32k

+ 1
)

is divisible by 2k+2 · 2 = 2k+3.

5. (a) Proof by Mathematical Induction.
Basis step. If n = 1, the identity says that F1F2 = F 2

2 , i.e. 1 ·1 = 12 which is true.
Inductive step. Assume the identity holds for n = k, i.e.

F1F2 + F2F3 + . . . + F2k−1F2k = F 2
2k. (17.1)

We want to prove that it holds for n = k + 1, i.e.

F1F2 + F2F3 + . . . + F2(k+1)−1F2(k+1) = F 2
2(k+1),

or, equivalently,

F1F2 + F2F3 + . . . + F2k+1F2k+2 = F 2
2k+2.

Using (17.1) we have:
F1F2 + F2F3 + . . . + F2k+1F2k+2 = F1F2 + F2F3 + . . . + F2k−1F2k + F2kF2k+1 +
F2k+1F2k+2 = F 2

2k + F2kF2k+1 + F2k+1F2k+2 = F2k(F2k + F2k+1) + F2k+1F2k+2 =
F2kF2k+2 + F2k+1F2k+2 = (F2k + F2k+1)F2k+2 = F 2

2k+2.
Thus the idenitity holds for n = k + 1.

(c) Proof by Mathematical Induction.
Basis step. For n = 1 the identity is F0F2 = F 2

1 + (−1)1. Since F0 = 0 and
F1 = F2 = 1, we have 0 · 2 = 1 + (−1) which is true.
Inductive step. Assume the identity holds for n = k, i.e.

Fk−1Fk+1 = F 2
k + (−1)k.

We want to show that it then holds for n = k + 1, i.e.

F(k+1)−1F(k+1)+1 = F 2
k+1 + (−1)k+1,

or, equivalently,
FkFk+2 = F 2

k+1 + (−1)k+1.

We have
FkFk+2 = Fk(Fk + Fk+1)

= F 2
k + FkFk+1

= Fk−1Fk+1 − (−1)k + FkFk+1

= Fk+1(Fk−1 + Fk) + (−1) · (−1)k

= F 2
k+1 + (−1)k+1.

Thus the identity holds for n = k + 1.

(d) Hint: recall that multiplication of 2× 2 matrices is defined by
(

a b
c d

) (
e f
g h

)
=

(
ae + bg af + bh
ce + dg cf + dh

)
.
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(e) Proof by Strong Mathematical Induction.
Basis step. If n = 1, then the identity says that F 2

0 + F 2
1 = F 2

1 , or 02 + 12 = 12

which is true.
Inductive step. Assume that it holds for all 1 ≤ n ≤ k. Namely, we will use that
it holds for n = k and n = k − 1, i.e.

F 2
k−1 + F 2

k = F2k−1

and F 2
(k−1)−1 + F 2

(k−1) = F2(k−1)−1, or equivalently,

F 2
k−2 + F 2

k−1 = F2k−3.

We want to prove that it holds for n = k + 1, i.e. F 2
(k+1)−1 + F 2

k+1 = F2(k+1)−1,
or, equivalently,

F 2
k + F 2

k+1 = F2k+1.

It may be easier here to work from the right hand side.
F2k+1 = F2k + F2k−1 = F2k−1 + F2k−2 + F2k−1 = 2F2k−1 + F2k−2 = 2F2k−1 +
F2k−1−F2k−3 = 3F2k−1−F2k−3 = 3(F 2

k−1+F 2
k )−(F 2

k−2+F 2
k−1) = 3F 2

k−1+3F 2
k −

F 2
k−2 − F 2

k−1 = 2F 2
k−1 + 3F 2

k − F 2
k−2 = 2F 2

k−1 + 3F 2
k − (Fk − Fk−1)2 = 2F 2

k−1 +
3F 2

k −F 2
k +2FkFk−1−F 2

k−1 = F 2
k−1+2F 2

k +2FkFk−1 = Fk−1(Fk−1+Fk)+Fk(Fk+
Fk−1) + F 2

k = Fk−1Fk+1 + FkFk+1 + F 2
k = (Fk−1 + Fk)Fk+1 + F 2

k = F 2
k + F 2

k+1.
Note. The idea of the above inductive step is the following: express F2k+1 in terms
of Fi’s with i odd and less than 2k +1, e.g. in terms of F2k−1 and F2k−3, then use
the inductive hypothesis to rewrite F2k−1 and F2k−3 as sums of squares (since we
assume that the formula holds for smaller indices), and then rewrite the obtained
expression in terms of Fk and Fk+1 (because the formula we want to prove involves
these terms).

7. Basis step. For n = 1 city there is nothing to prove because there is no “any other
city”. (The step n = 2, in which case we have 2 cities and one road between them, so
one city can be reached from the other, is also acceptable in this situation.)

Inductive step. Assume the statement is true for n = k. We want to prove that the
statement is true for n = k+1. Suppose we are given k+1 cities with roads as described
in the problem. Choose one city (let’s call this city N) and eliminate it and all roads
from and to it for a moment. We are left with k cities. By the inductive hypothesis,
there is a city that can be reached from any other city either directly or via at most
one other city. Let’s call it A, and let’s call those cities from which there are direct
roads to A group B, and the rest of the cities group C. Then from every city in group
C there is a road to at least one city in group B:

A

group B 

group C 
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Now we add our (k + 1)-th city N back. Consider the following 3 cases:

Case I. The road between A and N goes from N to A.

group B 

group C 

A N

Then we put N into group B, and A is still “a solution city”.

Case II. There is at lest one road from N to group B.

group B 

group C 

A N

Then we put N into group C, and A is still a solution city.

Case III. None of the above: the road between A and N goes from A to N , and all the
roads between group B and N lead to N .

group B 

group C 

A N

Then N is a new solution city, and A will join group B.

9. First of all, if at least one vertex has odd degree, than there is an odd number of regions
around it, and it is obvious that they can not be properly colored with two colors.

We will show that if the degree of each vertex is even, then the map can be properly
colored with two colors. We will use Strong Mathematical Induction, and the induction
will be on the number of line segments.
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Basis step. For n = 0 line segments, the whole plane is one big region. We can color it
with any color we like.

Inductive step. Suppose any map with less than or equal to k line segments can be
properly colored with two colors. We wish to show that any map with k+1 line segments
can be properly colored. Suppose we are given such a map. Remove temporarily all
the boundary lines of any one region.

We get a map with less than k line segments, and the degree of each vertex is still
even. By the inductive assumption this new map can be properly colored. Consider a
coloring,
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put the boundary of our region back, and change the color inside it. We get a proper
coloring for our original map with k + 1 line segments:

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�����������

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����

����
����
����
����
����
����
��������

����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

Remark. It is possible that upon eliminating the boundary of a region the degree of
some point(s) becomes zero. Then we have to temporarily remove these points as well.



17.4. PRINCIPLE OF MATHEMATICAL INDUCTION 91

11. First we will try to estimate the sum by estimating each term. We see that

1
3n + 1

≤ each term ≤ 1
n + 1

,

and there are 2n + 1 terms, therefore we have

2n + 1
3n + 1

≤ sum ≤ 2n + 1
n + 1

.

The left inequality doesn’t help us, but from the right one we have

sum ≤ 2n + 1
n + 1

<
2n + 2
n + 1

= 2,

thus we do not need Mathematical induction for this part. To show that the sum is
bigger than 1, we will use Mathematical induction.

Basis step. For n = 1 we have to check that 1 <
1
2
+

1
3
+

1
4
. We calculate

1
2
+

1
3
+

1
4

=
13
12

,
and we see that this is indeed bigger than 1.

Inductive step. Assume the inequality holds for n = k, i.e.

1 <
1

k + 1
+

1
k + 2

+ . . . +
1

3k + 1
. (17.2)

We want to prove that it holds for n = k + 1:

1 <
1

(k + 1) + 1
+

1
(k + 1) + 2

+ . . . +
1

3(k + 1) + 1
,

or
1 <

1
k + 2

+
1

k + 3
+ . . . +

1
3k + 1

+
1

3k + 2
+

1
3k + 3

+
1

3k + 4
. (17.3)

Compare (17.2) and (17.3), and notice that we “lost” the term
1

k + 1
but “gained” 3

terms:
1

3k + 2
,

1
3k + 3

, and
1

3k + 4
. If we can show that we gained more than we lost,

then the new sum (for k + 1) is bigger than 1. Thus we want to show that

1
3k + 2

+
1

3k + 3
+

1
3k + 4

>
1

k + 1
.

The following inequalities are equivalent:

1
3k + 2

+
1

3k + 3
+

1
3k + 4

>
3

3k + 3

1
3k + 2

+
1

3k + 4
>

2
3k + 3

6k + 6
(3k + 2)(3k + 4)

>
2

3k + 3

3k + 3
(3k + 2)(3k + 4)

>
1

3k + 3

(3k + 3)2 > (3k + 2)(3k + 4)

9k2 + 18k + 9 > 9k2 + 18k + 8,

and the last one is obviously true.
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13. Proof by Strong Mathematical Induction.

Basis step: for n = 1 we have det M1 = det [5] = 5 =
15
3

=
1
3
(42 − 1).

Inductive step: assume the formula det Mn =
1
3
(4n+1 − 1) holds for 1 ≤ n ≤ k. We

wish to prove it for n = k + 1.

Case I: if k = 1, then k + 1 = 2 and det M2 = det
[

5 2
2 5

]
= 52 − 22 = 21 =

63
3

=

1
3
(43 − 1).

Case II: if k ≥ 2, then k − 1 ≥ 1, and we can assume that the formula holds for n = k
and n = k − 1. Expanding Mk+1 across the first row and then expanding the second
of the two obtained matrices down the first column gives

det Mk+1 = det




5 2
2 5 2 0

2 5
...

0 5 2
2 5




(k+1)×(k+1)

=

5 det




5 2
2 5 2 0

2 5
...

0 5 2
2 5




k×k

− 2 det




2 2
0 5 2 0

2 5
...

0 5 2
2 5




k×k

=

5 det Mk − 22 det




5 2
2 5 2 0

2 5
...

0 5 2
2 5




(k−1)×(k−1)

=

5 det Mk − 4 det Mk−1 = 5 · 1
3
(4k+1 − 1)− 4 · 1

3
(4k − 1) =

1
3
(5 · 4k+1 − 5− ·4k+1 + 4) =

1
3
(4 · 4k+1 − 1) =

1
3
(4k+2 − 1).

15. Proof by Mathematical Induction.

Basis step. A 2× 2 board with one square removed has the shape of an L-tromino, and
thus can be covered by one L-tromino.

Inductive step. Assume that a 2k×2k board with any square removed can be covered by
L-trominoes. Now suppose we are given a 2k+1× 2k+1 board with one square removed.
Divide this board into four 2k × 2k boards. One of them has one square removed, and
the three others are whole boards. Temporarily remove corner squares from those three
whole boards as shown on the picture below.
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By the induction assumption, every of these four boards can be covered by L-trominoes.
Now place one more L-tromino in the center to cover the 3 squares that we temporarily
removed. We are done.

17.5 Dirichlet’s Box Principle

1. Think of months as “boxes” and people’s birth dates as “objects”. Since there are more
people (13) than months (12), By Dirichlet’s Box Principle, at least two birth dates
(“objects”) are in the same month (“box”).

3. There are 100 possible remainders upon division by 100 (namely, 0, 1, 2, . . ., 99). Since
we have 120 (more than 100) numbers, by Dirichlet’s Box Principle there are at least
two numbers with the same remainder. Their difference has remainder 0, and thus is
divisible by 100. Since all numbers are distinct, the difference is nonzero, and therefore
it ends in two zeros.

5. Divide the hexagon into 6 regions as shown in the figure below. Since we have 7 (more
than 6) points, by Dirichlet’s Box Principle there is a region with at least two points
in it (or on its boundary). The distance between those two points is at most 1 because
each region is an equilateral triangle with all sides of length 1.

6. Hint: show that we can choose 2 of the given points whose midpoint is a lattice point.

7. There are 11 possible remainders upon division by 11 (namely, 0, 1, 2, . . ., 10). Since we
have 12 (more than 11) numbers, by Dirichlet’s Box Principle at least two numbers have
the same remainder. Their difference is then divisible by 11. Since the given numbers
are two-digit, this difference is at most two-digit. Since the numbers are distinct, the
difference is non-zero. There are no one-digit numbers divisible by 11. Every two-digit
number that is divisible by 11, has the form aa (such numbers are 11, 22, 33, ..., 99).

9. Since 7 ·7 ·7 = 343, we can divide the cube into 343 small cubes, each with edge 1. Each
point is inside at most one small cube (if a point is on the boundary of a small cube,
then it is not inside any small cube). Since there are more small cubes than points,
there is a small cube (moreover, there are at least 43 of them) that does not contain
any points inside it.
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11. There are 2 possible remainders upon division by 2 (namely, 0 and 1). Since we have
3 numbers, at least two of them have the same remainder. Their difference is even,
therefore the product (x1 − x2)(x1 − x3)(x2 − x3) is even.

12. Notation clarification:∏

1≤i<j≤4

(ai − aj) = (a1 − a2)(a1 − a3)(a1 − a4)(a2 − a3)(a2 − a4)(a3 − a4).

13. (a) Divide the rectangle into six 3 × 6 rectangles as shown below. Since there are 7
points, by Dirichlet’s Box Principle at least two of them are in the same 3 × 6
rectangle. The distance between them is at most the length of the diagonal of a
3× 6 rectangle, which is

√
32 + 62 =

√
45 < 7.

(b) Answer: yes.
Note: Althought the proof in part (a) does not work for 6 points, it does not mean
that the statement does not hold for 6 points.
Hint: Divide the rectangle into 5 regions with the property that the distance
between any two points in one region is less than 7. This is harder than part (a),
but is possible!

15. Each year contains at least 365 days. Since 365 = 52 ·7+1, each year contains 52 whole
weeks, and thus at least 52 Fridays. Kevin is paid every other Friday, therefore he is

paid at least
52
2

= 26 times a year. There are 12 months, and 26 = 2 · 12 + 2. By the
Generalized Dirichlet’s Box Principle, at least one month contains three days on which
Kevin is paid.

17. “Make” a box for each side. There will be 2n boxes. We will “put” a diagonal into a
box if it is parallel to the corresponding side.

box 1: box 2n:
diagonals parallel to side 1 . . . diagonals parallel to side 2n

We will figure out the maximal possible number of diagonals that can be parallel to
one side (and thus parallel among themselves), i.e. the maximal possible number of
diagonals in each box, and we will figure out how many diagonals we have in a 2n-gon.
We will show that 2n times the maximal number of diagonals in each box is less than
the number of diagonals in a 2n-gon, thus there is not enough space for all the diagonals
in our boxes. Therefore, there is a diagonal that is not in any box, and thus not parallel
to any side.

Let p be the maximal possible number of diagonals parallel to the same side. We will
find a condition on p. Notice that the vertices of these p diagonals and the 2 vertices of
the side they are all parallel to, are distinct (because if 2 line segments have a common
vertex, they can not be parallel unless they lie on one line which is impossible in our
case). Let us draw the 2n-gon so that all these p diagonals and the parallel side are
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vertical, with the side on the left. Then we must also have at least one vertex on the
right (because the rightmost line segment must be inside the 2n-gon):

 p   diagonals 

Thus the number of vertices in this figure is at least 2p+2+1. So we have 2n ≥ 2p+3.
Since 2n is an even number and 2p + 3 is odd, we must have 2n ≥ 2p + 4. Then
2n− 4 ≥ 2p, and n− 2 ≥ p. So there may be at most n− 2 diagonals in the same box.

Next let’s count the number of diagonals in a 2n-gon. For every diagonal, there are
2n ways to choose the first vertex. Once the first vertex has been chosen, there are
2n − 3 ways to choose the second vertex (because the first vertex and its immediate
neighbours can not be chosen as the second vertex). Thus there are 2n(2n−3) ways to
choose an ordered pair of vertices of adiagonal. But this way we counted each diagonal
twice:

1

2

2

1

So we must divide by 2. Therefore there are
2n(2n− 3)

2
= n(2n− 3) diagonals.

Thus we have 2n boxes, at most n− 2 diagonals may be in the same box, therefore at
most 2n(n − 2) = 2n2 − 4n diagonals may be in the boxes. But we have n(2n − 3) =
2n2 − 3n diagonals. Since 2n2 − 3n > 2n2 − 4n, there is a diagonal which is not in any
box, and thus is not parallel to any side.

19. Since we have 3 rows and only 2 colors, every column has some color repeated. Since
there are 7 columns, there is a color that is repeated (at least twice) in at least 4
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columns. So each of these 4 columns contains at least 2 blocks of that color. If there is
a column that contains 3 blocks of that color, then choose any other of the 4 columns,
and we’ll have a rectangle, e.g. as shown in the picture below.

If no column contains 3 blocks of that color, then notice that there are 3 different ways
to have 2 out of 3 blocks of some color:

Since we have 4 columns, at least two of them have the same distribution of the colors.
Then, again, we have a desired rectangle, e.g. as shown below.

21. Consider the following numbers: 1, 11, 111, . . . , 11 . . . 1︸ ︷︷ ︸
n+1

. Since there are n possible

remainders upon division by n, at least two of the above numbers, say, 11 . . . 1︸ ︷︷ ︸
k

and

11 . . . 1︸ ︷︷ ︸
l

for k < l, have the same remainder. Their difference is 11 . . . 1︸ ︷︷ ︸
l

− 11 . . . 1︸ ︷︷ ︸
k

=

11 . . . 1︸ ︷︷ ︸
l−k

00 . . . 0︸ ︷︷ ︸
k

= 11 . . . 1︸ ︷︷ ︸
l−k

·10k and is divisible by n. Since n is not divisible by 2 or 5, n

and 10 are relatively prime. Therefore 11 . . . 1︸ ︷︷ ︸
l−k

is divisible by n.

23. Solution needed!

25. Divide the numbers {1, 2, . . . , 2n} into n pairs of consecutive integers: {1, 2}, {3, 4},
. . . , {2n− 1, 2n}. Since there are n + 1 numbers in the set {a1, a2, . . . , an+1}, at least



17.6. NUMBER THEORY 97

two of them are consecutive. Their greatest common divisor is 1 because if a natural
number p divides both k and k + 1, then p divides their difference (k + 1)− k = 1, so
p = 1. Thus our two consecutive numbers are relatively prime.

27. Since f : X → X is onto, it is a 1-1 correspondence from X onto itself, i.e. it permutes
the elements of X. Then so does fk for any integer k. If follows that fk has an inverse
f−k. Since |X| = n, there are n! permutations on X. Consider functions f , f2, f3,
. . ., fn!+1. Since there are more function than permutations, at least two of these
functions, say, f l and fm for l < m, define the same permutation, i.e. f l(x) = fm(x)
for all x ∈ X. Then fm−l(x) = f−l(fm(x)) = f−l(f l(x) = f l−l(x) = x for all x ∈ X.

17.6 Number theory

1. Suppose that the number 3
√

25 is rational. Then it can be wtitten as an irreducible

quotient: 3
√

25 =
m

n
, m,n ∈ Z, (m,n) = 1. Then 25 =

m3

n3
, so 25n3 = m3. Now there

are several ways to get a contradiction.

Way 1. From the last equation, 5|m, so m = 5a for some integer a. Then 25n3 = (5a)3,
so 25n3 = 125a3, thus n3 = 5a3. Now we see that 5|n. Thus both m and n are divisible
by 5, which contradicts the condition (m,n) = 1.

Way 2. If n = 1, then 25 = m3 which is impossible. If n > 1, then n|m which
contradicts (m,n) = 1.

Way 3. We have 5 · 5 · n3 = m3. Both n and m cab be written as products of primes.
Since n and m are cubed, the number of 5’s on the left is 2 plus a multiple of 3, and
the number of 5’s on the right is a multiple of 3. This contradicts the fundamental
theorem of arithmetic.

3. (a) The sum of the digits of a number

N = anan−1 . . . a1a0 = an · 10n + an−1 · 10n−1 + . . . + a1 · 10 + a0 =
n∑

k=0

ak · 10k

is

S = an + an−1 + . . . + a1 + a0 =
n∑

k=0

ak.

Since 10 ≡ 1 (mod 9), 10k ≡ 1 (mod 9). Then ak · 10k ≡ ak (mod 9), and
n∑

k=0

ak · 10k ≡
n∑

k=0

ak (mod 9). So N ≡ S (mod 9). Thus N is divisible by 9 if and

only if S is divisible by 9.
(b) If the sum of the digits of a number is 66, then the number is divisible by 3 (see

problem 2(b) in chapter 1) but not divisible by 9. But if a pefect square is divisible
by 3 then it must be divisible by 9. Therefore a number with the digital sum 66
cannot be a perfect square.

5. (a) First notice that if k is the last digit of m, then the last digit of m2 is that of k2

because m = 10n + k for some n, and m2 = (10n + k)2 = 100n2 + 20nk + k2 =
(10n2 + 2nk) · 10 + k2. So we consider all possible last digits and compute their
squares: 02 = 0, 12 = 1, 22 = 4, 32 = 9, 42 ends with 6, 52 ends with 5, 62 ends
with 6, 72 ends with 9, 82 ends with 4, and 92 ends with 1. Thus the last digit of
a perfect square can be 0, 1, 4, 5, 6, or 9.
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(b) Since 3 is not listed above, a number ending with 3 cannot be a perfect square.

7. No. Assume n = a2 is a perfect square that ends with 65, then it is divisible by 5.
Then a is divisible by 5, and therefore n is divisible by 25. Any number divisible by 25
ends with 00, 25, 50, or 75. Thus it cannot end with 65. We get a contradiction.

9. Since 2100 ≡ (22)50 ≡ 450 ≡ (−1)50 ≡ 1 (mod 5), the remainder is 1.
Note. There are many other ways to obtain this answer, e.g. 2100 ≡ (24)25 ≡ 1625 ≡
125 ≡ 1 (mod 5).

11. Since 24 = 16 ≡ 1 (mod 5) and 34 = 81 ≡ 1 (mod 5), 2457 + 3457 ≡ 2456+1 + 3456+1 ≡
2456 ·2+3456 ·3 ≡ 24·114 ·2+34·114 ·3 ≡ (24)114 ·2+(34)114 ·3 ≡ 1 ·2+1 ·3 ≡ 0 (mod 5).

13. If the units digit of n is 3 then n can be written in the form n = 10k+3 for some integer
k. Then n2+1 = (10k+3)2+1 = 100k2+60k+9+1 = 100k2+60k+10 = 5(20k2+12k+2)
is divisible by 5.

15. If n is composite, then n = ab for some 1 < a, b < n. Then

2n − 1 = (2a)b − 1b = (2a − 1)((2a)b−1 + . . . + 2a + 1).

Both factors are bigger than 1: 2a − 1 > 21 − 1 = 1, and (2a)b−1 + . . . + 2a + 1 > 1, so
2n − 1 is composite.

17. Solution 1. Rewrite the equation as xy − x − y = 0. Adding 1 to both sides gives
xy − x − y + 1 = 1, and factoring the left hand side gives (x − 1)(y − 1) = 1. Since
x− 1 and y − 1 are integers and their product is equal to 1, they are either both 1 or
both −1. If they are both 1, then x = 2 and y = 2. If they are both −1, then x = 0
and y = 0. Thus we have two solution pairs.
Solution 2. Rewrite the equation as y(x− 1) = x. Consider the following two cases.
Case I: x− 1 = 0, then x = 1. The equation becomes 0 = 1 which is impossible.
Case II: x−1 6= 0. Then y =

x

x− 1
. If y is an integer, then (x−1)|x. Since (x−1)|(x−1),

(x − 1)|(x − (x − 1)), i.e. (x − 1)|1. Then either x − 1 = 1 or x − 1 = −1. Therefore
either x = 2 (and then y = 2) or x = 0 (and then y = 0).

19. Suppose the equation has an integral solution. Consider the equation modulo 3. The
number x is congruent to 0, 1, or 2 modulo 3. Then x2 is congruent to either 0 or
1 modulo 3 (because 02 = 0, 12 = 1, and 22 = 4 ≡ 1(mod 3)). The number 3y2 is
congruent to 0 modulo 3 since 3y2 is divisible by 3. Thus the left hand side is congruent
to either 0 or 1 modulo 3. But the right hand side is 17 which is congruent to 2 modulo
3. We get a contradiction.

21. Notice first of all that y must be even because 3y = 100 − 2x and the right hand side
is even. Second, y must be positive. Third, y cannot exceed 32 because if y ≥ 34
then 3y ≥ 102 and then x would have to be negative. But if y satisfies all the above
conditions, namely, y is even and 2 ≤ y ≤ 32, then 3y is even and 6 ≤ 3y ≤ 96, so
100 − 3y is even and 4 ≤ 100 − 3y ≤ 94, so there exists a positive integer x such that
2x = 100−3y. Thus for any even y such that 2 ≤ y ≤ 32 we have a unique solution pair
(x, y). There are 16 even numbers satisfying 2 ≤ y ≤ 32, thus 16 pairs are solutions to
the given equation.

23. Yes. Let’s find the remainder of 1239999 upon division by 4567 and subtract the
remainder from 1239999. We’ll get a number that satisfies the required conditions.
Since 1239999 = 4567 · 271 + 2342, the number 1237657 = 1239999− 2342 = 4567 · 271
is divisible by 4567.
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Note. This, of course, is not the only such number. Another one is 1237657− 4567 =
1233090. Also, we could have started with e.g. 1239999, etc.

17.7 Proof by exhaustion (case analysis)

1. Solution 1. Since n can be congruent to 0, 1, 2, 3, or 4 modulo 5, we have five cases:
If n ≡ 0 (mod 5), then n2 + 2 ≡ 2 (mod 5);
if n ≡ 1 (mod 5), then n2 + 2 ≡ 3 (mod 5);
if n ≡ 2 (mod 5), then n2 + 2 ≡ 6 ≡ 1 (mod 5);
if n ≡ 3 (mod 5), then n2 + 2 ≡ 11 ≡ 1 (mod 5);
if n ≡ 4 (mod 5), then n2 + 2 ≡ 18 ≡ 3 (mod 5);
We see that n2 + 2 is never congruent to 0 modulo 5, so it is never divisible by 5.

Solution 2. By problem 5 in chapter 6, a perfect square n2 can end with 0, 1, 4, 5, 6,
or 9. Then n2 + 2 can end with 2, 3, 6, 7, 8, or 1. Since it never ends with 0 or 5, it is
never divisible by 5.

3. (a) First check x = 0. This is not a root because 00 is undefined. If x 6= 0, we can
divide both sides of the equation by x2. We get xx2−2 = 1. Consider the following
three cases.
Case I: x = 1 is a root since (as is easy to check) it satisfies the original equation.

Case II: x 6= 0, x2 − 2 = 0 gives x = ±
√

2. Both satisfy the original equation.
Case III: x = −1, x2 − 2 is even. This has no solutions because if x = −1, then
x2 − 2 = −1 which is not even.
Answer: −

√
2, 1,

√
2.

(c) Rewrite the equation as x(xx) = x(x2). Check x = 0. This is not a root since 00

is undefined. If x 6= 0, we can divide both sides of the equation by x(x2). We get
xxx−x2

= 1. Consider the following three cases.
Case I: x = 1 is a root.
Case II: x 6= 0, xx − x2 = 0. This equation is equivalent to xx = x2. Since x 6= 0,
we can divide both sides of the equation by x2 which gives xx−2 = 1. Next we
consider three cases for the equation xx−2 = 1.
Case IIA: x = 1 is a root.
Case IIB: x 6= 0, x− 2 = 0 gives x = 2 which is a root.
Case IIC: x = −1, x − 2 is even. However, x − 2 is odd when x = −1, so this is
not a root.
Now let’s continue considering cases for the original equation.
Case III: x = −1, xx − x2 is even. Since xx − x2 is indeed even when x = −1, it
is a root of the original equation.
Answer: −1, 1.

5. The given equations imply that y(x+y)2 =
(
yx+y

)x+y = xx+y = y4, so we have y(x+y)2 =
y4. If y = 0, then the first equation in the system becomes xx = 0 which has no
solutions. If y 6= 0, we can divide both sides of the eqution y(x+y)2 = y4 by y4. We get
y(x+y)2−4 = 1. Consider the following three cases.

Case I: y = 1. Then the second equation in the system becomes 1x+1 = x, so x = 1. It
is easy to check that the pair (1, 1) satisfies both equation in the system.
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Case II: y 6= 0, (x + y)2 − 4 = 0. This equation implies (x + y)2 = 4, therefore either
x + y = 2 or x + y = −2. Consider these two cases.

Case IIA: x + y = 2. Then y = 2− x, and the second equation in the system becomes
(2 − x)2 = x, or x2 − 5x + 4 = 0, or (x − 1)(x − 4) = 0. This equation has two roots:
x = 1 and x = 4. If x = 1, then y = 2 − 1 = 1, and we get the pair (1, 1) again. If
x = 4, then y = 2 − 4 = −2. It is easy to check that the pair (4,−2) satisfies both
equations in the system.

Case IIB: x+2 = −2. Then y = −2−x, and the second equation in the system becomes
(−2− x)2 = x, or x2 + 3x + 4 = 0. This equation has no real solutions.

Case III: y = −1, (x + y)2 − 4 is even. If y = −1, the second equation in the system
becomes (−1)x+y = x. This implies that either x = 1 or x = −1. As is easy to check,
the pair (1,−1) satisfies both equations in the system, but the pair (−1,−1) does not.

Answer: (1,−1), (1, 1), (4,−2).

7. (a) Solution 1. Consider two cases for each of the expressions inside an absolute value:
2x + 3 and x. Thus we have four cases total.
Case I. 2x + 3 ≥ 0, x ≥ 0. Then |2x + 3| = 2x + 3 and |x| = x, so the equation
becomes 2x+3−x = 3, or x = 0. This root satisfies both of the above conditions.
Case II. 2x + 3 ≥ 0, x < 0. Then |2x + 3| = 2x + 3 and |x| = −x, so the equation
becomes 2x + 3 + x = 3, or 3x = 0. Then x = 0. This root does not satisfy the
condition x < 0. (So we should disregard it here, however, it is a solution to the
equation according to Case I.)
Case III. 2x+3 < 0, x ≥ 0. Then |2x+3| = −(2x+3) and |x| = x, so the equation
becomes −(2x+3)−x = 3, or −3x = 6. Then x = −2. This root does not satisfy
the condition x ≥ 0, so we disregard it.
Note. Actually, we could notice that if x ≥ 0, then 2x + 3 cannot be negative, so
no real number would satisfy both of these conditions. So we could disregard this
case from the very beginning.)
Case IV. 2x + 3 < 0, x < 0. Then |2x + 3| = −(2x + 3) and |x| = −x, so the
equation becomes −(2x+3)+x = 3, or −x = 6. Then x = −6. This root satisfies
both of the above conditions.
Answer: −6, 0.

Solution 2. Since 2x + 3 changes sign at x = −3
2

and x changes sign at x = 0, we

will consider the following three intervals:
(
−∞,−3

2

)
,
[
−3

2
, 0

)
, and [0, +∞).

If x ∈
(
−∞,−3

2

)
, then 2x+3 < 0 and x < 0. Therefore |2x+3| = −(2x+3) and

|x| = −x. The equation becomes −(2x + 3) + x = 3, or −x = 6. Then x = −6.

This root lies in the interval
(
−∞,−3

2

)
, therefore is a solution.

If x ∈
[
−3

2
, 0

)
, then 2x + 3 ≥ 0 and x < 0. Therefore |2x + 3| = 2x + 3 and

|x| = −x. The equation becomes 2x+3+x = 3, or 3x = 0. Then x = 0. However,

this root does not lie in the interval
[
−3

2
, 0

)
, so we disregard it.

If x ∈ [0,+∞), then 2x + 3 ≥ 0 and x ≥ 0. Therefore |2x + 3| = 2x + 3 and
|x| = x. The equation becomes 2x + 3 − x = 3, or x = 0. This root lies in the
interval [0,+∞), therefore is a solution.
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Note. The interval
(
−∞,−3

2

)
corresponds to Case IV in Solution 1. The interval

[
−3

2
, 0

)
corresponds to Case II, and the interval [0, +∞) corresponds to Case I.

(As was noted in Solution 1, Case III is impossible.)
Remark. The technique used in Solution 2 is especially better when there are 3 or
more absolute values. Say, if three absolute values of linear functions are present,
then using the technique of Solution 1 we have to consider eight cases, but using
the technique of Solution 2 we have to consider only four intervals.

(c) Since 3x + 6 changes sign at x = −2 and x − 1 changes sign at x = 1, we will
consider the following three intervals: (−∞,−2), [−2, 1), and [1,+∞).
If x ∈ (−∞,−2), then 3x+6 < 0 and x−1 < 0. Therefore |3x+6| = −(3x+6) and
|x−1| = −(x−1). The equation becomes −(3x+6)− (x−1) = 2, or −4x−5 = 2.

Then x = −7
4
. This root does not lie in the interval (−∞,−2), so we disregard it.

If x ∈ [−2, 1), then 3x + 6 ≥ 0 and x − 1 < 0. Therefore |3x + 6| = 3x + 6 and
|x− 1| = −(x− 1). The equation becomes (3x + 6)− (x− 1) = 2, or 2x + 7 = 2.

Then x = −5
2
. This root does not lie in the interval [−2, 1), so we disregard it.

If x ∈ [1, +∞), then 3x + 6 ≥ 0 and x − 1 ≥ 0. Therefore |3x + 6| = 3x + 6 and
|x− 1| = x− 1. The equation becomes (3x+6)+ (x− 1) = 2, or 4x+5 = 2. Then

x = −3
4
. This root does not lie in the interval [1, +∞), so we disregard it.

Answer: the equation has no solutions.

9. (a) Since x−5 changes sign at x = 5 and 2x−4 changes sign at x = 2, we will consider
the following three intervals: (−∞, 2), [2, 5), and [5,+∞).
If x ∈ (−∞, 2), then x − 5 < 0 and 2x − 4 < 0. Therefore |x − 5| = −(x − 5)
and |2x − 4| = −(2x − 4). The inequality becomes −(x − 5) − (2x − 4) ≤ 6, or
−3x + 9 ≤ 6. This is equivalent to x ≥ 1. The solution set in this case is [1, 2).
If x ∈ [2, 5), then x − 5 < 0 and 2x − 4 ≥ 0. Therefore |x − 5| = −(x − 5) and
|2x− 4| = 2x− 4. The inequality becomes −(x− 5) + (2x− 4) ≤ 6, or x + 1 ≤ 6.
This is equivalent to x ≤ 5. Since each point in the interval [2, 5) satisfies the
condition x ≤ 5, the solution set in this case is [2, 5).
If x ∈ [5,+∞), then x − 5 ≥ 0 and 2x − 4 ≥ 0. Therefore |x − 5| = x − 5 and
|2x− 4| = 2x− 4. The inequality becomes (x− 5) + (2x− 4) ≤ 6, or 3x− 9 ≤ 6.
This is equivalent to x ≤ 5. Since the only value in the interval [5,+∞) that
satisfies the condition x ≤ 5 is 5, this is the only solution in this case.
Finally, we take the union of the above solution sets.
Answer: [1, 5].

(c) Solution 1. Since x− 1 changes sign at x = 1 and x− 3 changes sign at x = 3, we
will consider the following three intervals: (−∞, 1), [1, 3), and [3,+∞).
If x ∈ (−∞, 1), then x − 1 < 0 and x − 3 < 0. Therefore |x − 1| = −(x − 1) and
|x − 3| = −(x − 3). The inequality becomes −(x − 1) + (x − 3) > 5, or −2 > 5.
Since this inequality does not hold for any value of x, the solution set in this case
is empty.
If x ∈ [1, 3), then x − 1 ≥ 0 and x − 3 < 0. Therefore |x − 1| = x − 1 and
|x− 3| = −(x− 3). The inequality becomes (x− 1) + (x− 3) > 5, or 2x− 4 > 5.

This is equivalent to x >
9
2
. Since this inequality does not hold for any values of

x in the interval [1, 3), the solution set in this case is empty.
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If x ∈ [3,+∞), then x − 1 ≥ 0 and x − 3 ≥ 0. Therefore |x − 1| = x − 1 and
|x− 3| = x− 3. The inequality becomes (x− 1)− (x− 3) > 5, or 2 > 5. Since this
inequality does not hold for any value of x, the solution set in this case is empty.
Answer: the inequality does not have any solutions.
Solution 2. Observe that |x−1| is the distance between x and 1 on the real number
line, |x−3| is the distance between x and 3, and the left hand side |x−1|− |x−3|
represents the difference of these distances. It is clear that this difference is never
larger than 5: if x lies to the left of 1, then the difference is −2; if x lies between
1 and 3 (inclusive), the difference is between −2 and 2 (inclusive), and if x lies to
the right of 3, then the difference is 2. Therefore the inequality has no solutions.

11. (a) First let’s sketch the graph of h(x) = x + |x + 2|.
Case I: x+2 ≥ 0, or x ≥ −2. Then |x+2| = x+2, so h(x) = x+(x+2) = 2x+2.
Case II: x+2 < 0, or x < −2. Then |x+2| = −(x+2), so h(x) = x−(x+2) = −2.

Thus h(x) =
{

2x + 2 if x ≥ −2
−2 if x < −2 . Its graph is shown below.

−2

y

x

−2

2

Since f(x) = |x + |x + 2|| = |h(x)|, the graph of f(x) is obtained from the graph
of h(x) by reflecting the piece below the x-axis about the x-axis:

−2 −1

y

x

2

13. (a) Case I: x ≥ 0, y ≥ 0. The inequality becomes x + y3 < 8, or x < 8− y3.
Case II: x ≥ 0, y < 0. The inequality becomes x− y3 < 8, or x < 8 + y3.
Case III: x < 0, y ≥ 0. The inequality becomes −x + y3 < 8, or x > y3 − 8.
Case IV: x < 0, y < 0. The inequality becomes −x− y3 < 8, or x > −8− y3.
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Now we draw the corresponding region in each quadrant, and we get the following
figure:

8

2
y

x

Note: since the inequality is strict, the boundary of the region is excluded.

(c) Since y − x can be nonnegative or negative and x + y can be nonnegative or
negative, we have four cases:

x

y

Case I

Case IIICase II

Case IV

Case I: y − x ≥ 0, x + y ≥ 0. The inequality becomes 2y − 2x + y + x ≤ 1, or

3y ≤ 1 + x, or y ≤ 1
3

+
1
3
x.

Case II: y − x ≥ 0, x + y < 0. The inequality becomes 2y − 2x − y − x ≤ 1, or
y ≤ 1 + 3x.

Case III: y − x < 0, x + y ≥ 0. The inequality becomes −2y + 2x + y + x ≤ 1, or
−y ≤ 1− 3x, or y ≥ 3x− 1.

Case IV: y − x < 0, x + y < 0. The inequality becomes −2y + 2x− y − x ≤ 1, or

−3y ≤ 1− x, or y ≥ −1
3

+
1
3
x.

Now sketch the region in each case.
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y y=−1+3x

y=1+3x

x

y=−1/3+1/3x

y=1/3+1/3x

17.8 Finding a pattern

1. (a) an = n2

(c) an = 2n + 3

(e) an = 5− 2n

(g) an =
[
3n

2

]
=





3n− 1
2

if n is odd
3n

2
if n is even

(i) an =
n

2n

3. Let Sn =
1

1 · 3 +
1

3 · 5 + . . . +
1

(2n− 1)(2n + 1)
. Then

S1 =
1

1 · 3 =
1
3
,

S2 =
1

1 · 3 +
1

3 · 5 =
6
15

=
2
5
,

S3 =
2
5

+
1

5 · 7 =
15
35

=
3
7
,

S4 =
3
7

+
1

7 · 9 =
28
63

=
4
9
.

We guess from the above calculations that Sn =
n

2n + 1
. We will prove this formula by

Mathematical Induction.

Basis step: if n = 1, the formula S1 =
1

2 · 1 + 1
is correct.

Inductive step: suppose the formula Sn =
n

2n + 1
holds for some n = k, i.e. Sk =

k

2k + 1
. We want to prove that it holds for n = k + 1, i.e. Sk+1 =

k + 1
2(k + 1) + 1

.
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Indeed, Sk+1 =
1

1 · 3 +
1

3 · 5 + . . . +
1

(2k − 1)(2k + 1)
+

1
(2(k + 1)− 1)(2(k + 1) + 1)

=

Sk +
1

(2k + 1)(2k + 3)
=

k

2k + 1
+

1
(2k + 1)(2k + 3)

=
k(2k + 3) + 1

(2k + 1)(2k + 3)
=

2k2 + 3k + 1
(2k + 1)(2k + 3)

=
(2k + 1)(k + 1)
(2k + 1)(2k + 3)

=
k + 1
2k + 3

=
k + 1

2(k + 1) + 1
.

5. First we compute fn(x) for the first few values of n:
f1(x) = 2x + 1,
f2(x) = 2(2x + 1) + 1 = 4x + 3,
f3(x) = 2(4x + 3) + 1 = 8x + 7,
f4(x) = 2(8x + 7) + 1 = 16x + 15.
It appears that fn(x) = 2nx + 2n − 1, so we will try to prove this formula by Mathe-
matical Induction.
Basis step: if n = 1, then our formula gives f1(x) = 2x + 1 which is true.
Inductive step: suppose the formula holds for n = k, i.e. fk(x) = 2kx + 2k − 1. Then
fk+1(x) = f1 ◦ fk(x) = 2(2kx + 2k − 1) + 1 = 2k+1x + 2k+1− 2 + 1 = 2k+1x + 2k+1− 1.
Thus the formula holds for n = k + 1.

7. (a) As discussed in chapter 6, the units digit of a positive number is its remainder
upon division by 10.
Solution 1. First we find the units digit of 107n for some small values of n:
1071 ≡ 7 (mod 10),
1072 = 107 · 107 ≡ 7 · 7 ≡ 49 ≡ 9 (mod 10),
1073 = 1072 · 107 ≡ 9 · 7 ≡ 63 ≡ 3 (mod 10),
1074 = 1073 · 107 ≡ 3 · 7 ≡ 21 ≡ 1 (mod 10),
1075 = 1074 · 107 ≡ 1 · 7 ≡ 7 (mod 10),
1076 = 1075 · 107 ≡ 7 · 7 ≡ 49 ≡ 9 (mod 10).
We see that the units digits start repeating. As we keep multiplying our number
by 107, the 4-tuple of units digits 7, 9, 3, and 1 keep repeating. More precisely,

107n ≡





7 (mod 10) if n ≡ 1 (mod 4)
9 (mod 10) if n ≡ 2 (mod 4)
3 (mod 10) if n ≡ 3 (mod 4)
1 (mod 10) if n ≡ 0 (mod 4)

.

This formula can be proved by Strong Mathematical Induction.
Basis step: if n = 1, then 107n ≡ 7 (mod 10) is true.
Inductive step: Suppose the formula holds for all 1 ≤ n ≤ k. We want to prove
that it holds for n = k + 1.
Case I: k + 1 = 2. Then k + 1 ≡ 2 (mod 4), and 1072 ≡ 9 (mod 10) is true.
Case II: k + 1 = 3. Then k + 1 ≡ 3 (mod 4), and 1073 ≡ 3 (mod 10) is true.
Case III: k + 1 = 4. Then k + 1 ≡ 0 (mod 4), and 1074 ≡ 1 (mod 10) is true.
Case IV: k + 1 ≥ 5. Then k − 3 = (k + 1) − 4 ≥ 1, and we assumed that the
formula above was true for n = k − 3.
We consider all possible remainders of k + 1 modulo 4.
Case IVA: k+1 ≡ 1 (mod 4). Then k−3 ≡ 1 (mod 4), so 107k+1 ≡ 107k−3 ·1074 ≡
107k−3 · 1 ≡ 7 (mod 10).
Case IVB: k+1 ≡ 2 (mod 4). Then k−3 ≡ 2 (mod 4), so 107k+1 ≡ 107k−3 ·1074 ≡
107k−3 · 1 ≡ 9 (mod 10).
Case IVC: k+1 ≡ 3 (mod 4). Then k−3 ≡ 3 (mod 4), so 107k+1 ≡ 107k−3 ·1074 ≡
107k−3 · 1 ≡ 3 (mod 10).
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Case IVD: k+1 ≡ 0 (mod 4). Then k−3 ≡ 0 (mod 4), so 107k+1 ≡ 107k−3 ·1074 ≡
107k−3 · 1 ≡ 1 (mod 10).
Thus the formula holds for n = k + 1.
Now, since 107 ≡ 3 (mod 4), 107107 ≡ 3 (mod 10), so the units digit of 107107 is
3.

Solution 2. Since 1074 ≡ 1 (mod 10) and 1073 ≡ 3 (mod 10) (as we saw above),
107107 ≡ 107104 · 1073 ≡ (1074)26 · 1073 ≡ 126 · 1073 ≡ 1 · 3 ≡ 3 (mod 10).

9. First we find the remainder of 2n upon division by 12 for some small n: 21 = 2 ≡
2 (mod 12),
22 = 4 ≡ 4 (mod 12),
23 = 8 ≡ 8 (mod 12),
24 = 16 ≡ 4 (mod 12),
25 = 32 ≡ 8 (mod 12).
We see that the remainders 4 and 8 start repeating. Namely,

2n ≡
{

4 (mod 12) if n is even
8 (mod 12) if n ≥ 3 is odd .

As in problem 7, this can be proved by Strong Mathematical Induction. Since 100 is
even, the remainder of 2100 upon division by 12 is 4.

11. (a) For f(x) = sin(x), the first few derivatives are:
f ′(x) = cos(x),
f ′′(x) = − sin(x),
f ′′′(x) = − cos(x),
f (4)(x) = sin(x),
f (5)(x) = cos(x).
We got cos(x) again, so the derivatives cos(x), − sin(x), − cos(x), sin(x) will re-
peat. Therefore

f (n)(x) =





cos(x) if n ≡ 1 (mod 4)
− sin(x) if n ≡ 2 (mod 4)
− cos(x) if n ≡ 3 (mod 4)
sin(x) if n ≡ 0 (mod 4)

.

This formula can be proved by Strong Mathematical Induction (the proof is similar
to that in problem 7).

(c) For h(x) = 2e5x, the first few derivatives are:
h′(x) = 2 · 5e5x,
h′′(x) = 2 · 5 · 5e5x,
h′′′(x) = 2 · 5 · 5 · 5e5x.
We guess that h(n)(x) = 2 ·5ne5x, and prove this formula by Mathematical Induc-
tion.
Basis step: h′(x) = 2 · 5e5x is true.
Inductive step: suppose h(k)(x) = 2 · 5ke5x, then h(k+1)(x) =

(
2 · 5ke5x

)′
=

2 · 5k · 5e5x = 2 · 5k+1e5x.

13. First we find the number of regions for a few small values n:
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1

2

2 2

3

4

7 5

1 3

8

6

1

4

n = 1 n = 2 n = 3
2 regions 4 regions 8 regions

2
3

45
6

7 8 9

10

1213

14

1

11

1

2 3

45

6

8 9

10

111213

14

15
16

17

18

19

20
21

22

7

n = 4 n = 5
14 regions 22 regions

The sequence is 2, 4, 8, 14, 22, . . . . The differences between consecutive terms are 2, 4,
6, 8, . . . . We guess that the differences are increasing consecutive even numbers, so the
number of regions into which n circles divide the plane is 2+2+4+6+ ...+2(n−1) =

2 + 2(1 + 2 + 3 + ... + (n− 1)) = 2 + 2
(n− 1)n

2
= 2 + (n− 1)n = n2 − n + 2.

Now we will prove this formula by Mathematical Induction.

Basis step: if n = 1, the formula gives 2, and it is true that there are 2 regions.

Inductive step: suppose the formula is true for n = k circles. Given k + 1 circles,
temporarily remove one circle. The remaining k circles divide the plane into k2− k + 2
regions. Now add the (k + 1)-th circle back. This new circle intersects the old k circles
in 2k points. Thus the intersection points divide the new circle into 2k arcs. Therefore,
the number of regions increases by 2k (each arc divides an old region into 2). Then,
since k circles divided the plane into k2 − k + 2 regions, k + 1 circles will divide it into
k2 − k + 2 + 2k = k2 + 2k + 1 − k − 1 + 2 = (k + 1)2 − (k + 1) + 2 regions, and thus
the formula holds for k + 1.

14. Hint: do not try to list all the ways. There are too many of them! Better replace 10 by
small numbers, and guess the pattern. Prove your guess using Mathematical Induction.

15. We compute the first few Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, and notice
that every third Fibonacci number is even. More precisely, Fn is even if and only if
n ≡ 0 (mod 3). Therefore exactly one third of F1, F2, . . ., F99 are even which gives 33
numbers, and F0 is even, thus we have 34 even numbers total.

The pattern described above can be proved by Strong Mathematical Induction as fol-
lows.
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Basis step: if n = 0, F0 = 0 is even.

Inductive step: suppose the statement “Fn is even if and only if n ≡ 0 (mod 3)” holds
for 0 ≤ n ≤ k. We will prove that the statement holds for n = k + 1.

Case I: k + 1 = 1. Then k + 1 6≡ 0 (mod 3), and F1 = 1 is indeed odd.

Case II: k + 1 = 2. Then k + 1 6≡ 0 (mod 3), and F2 = 1 is indeed odd.

Case III: k + 1 ≥ 3. Then we consider all possible remainders of k + 1 modulo 3.

Case IIIA: k + 1 ≡ 0 (mod 3). Then k ≡ 2 (mod 3) and k − 1 ≡ 1 (mod 3). By the
inductive hypothesis Fk and Fk−1 are both odd, so Fk+1 = Fk + Fk−1 is even.

Case IIIB: k + 1 ≡ 1 (mod 3). Then k ≡ 0 (mod 3) and k − 1 ≡ 2 (mod 3). By the
inductive hypothesis Fk is even and Fk−1 is odd, so Fk+1 = Fk + Fk−1 is odd.

Case IIIC: k + 1 ≡ 2 (mod 3). Then k ≡ 1 (mod 3) and k − 1 ≡ 0 (mod 3). By the
inductive hypothesis Fk is odd and Fk−1 is even, so Fk+1 = Fk + Fk−1 is odd.

17.9 Invariants

1. Proof 1. We consider all possible cases of signs of the two numbers changed:

• positive, positive → negative, negative

• positive, negative → negative, positive

• negative, negative → positive, positive

We see that the number of positive numbers either does not change or changes by ±2.
Thus the parity of the number of positive numbers is an invariant. We start with the set
containing 3 positive numbers. It is not possible to reach 6 positive numbers because
3 is odd but 6 is even.

Proof 2. When two numbers are multiplied by −1, the product of all the numbers does
not change. Initially the product is −36. It is not possible to make it 36.

3. An odd number times 3 is an odd number, and an even number times 3 is an even
number. So multiplication by 3 does not change the parity of the number. Also, an
odd number minus 2 is an odd number, and an even number minus 2 is an even number.
So neither of the permitted operations changes the parity of the number. The initial
set consists of four odd numbers. Thus the four numbers will always be odd. It is not
possible to reach 2 odd and 2 even numbers.

5. When we change the signs of two numbers, the product of all numbers does not change.
Initially the product is 1. Since the product of twenty-five −1’s is −1, it is not possible
to change all numbers into −1.

7. When we replace a by a + 2b or a− 2b (where a and b are two numbers in the set), we
do not change its parity (if a is even, then a± 2b is even, and if a is odd, then a± 2b is
odd). Thus the parity of each number will always be the same. Initially we have two
even and two odd numbers. It is not possible to make all of the numbers even.

9. The parity of the number of − signs does not change:

• if two +’s are replaced by a +, then the number of −’s does not change,

• if two −’s are replaced by a +, then the number of −’s is decreased by 2,

• if a + and a − are replaced by a −, then the number of −’s does not change.
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Therefore if we had an even number of − signs, then a + will remain in the end, and
if we had an odd number of − signs, then a − will remain in the end.

11. We have seen in problem 3 in chapter 6 that any number is congruent to the sum
of its digits modulo 9. Thus the question is equivalent to whether there are more
numbers among 1, 2, . . ., 106 congruent to 1 or congruent to 2 modulo 9. Remainders
of consecutive natural numbers modulo 9 are 1, 2, 3, . . ., 8, 0, and this 9-tuple repeats.
The last number in our sequence is 106 ≡ 1 (mod 9), thus there will be more 1’s.

13. When we replace a and b (let a ≥ b) by a− b, the sum of all the numbers changes by

−a− b + (a− b) = −2b ≡ 0 (mod 2).

So the parity of the sum does not change. Initially the sum is

1 + 2 + . . . + (4n− 1) =
(4n− 1)4n

2
= (4n− 1)2n

which is even. Thus the sum of the numbers is always even. Therefore an even number
will remain in the end.

15. Proof 1. The sum of the numbers does not change since a, b, c, d, . . . are replaced by
2b− a, 2c− b, 2d− c, . . .. The sum of the original numbers is 45. But the sum of ten
5’s is 50. Therefore it is not possible to reach ten 5’s.

Proof 2. Since 2b− a ≡ a (mod 2), 2c− b ≡ b (mod 2), etc., and we start with 5 even
and 5 odd numbers, we will always have 5 even and 5 odd numbers. Therefore it is not
possible to reach ten 5’s.

17. Let the integers in the order they are written be a1, a2, a3, a4, a5, and a6. The sets
{a1, a2, a3, a4, a5, a6} and {1, 2, 3, 4, 5, 6} are equal. Thus the sum of all the ai’s is

a1 + a2 + a3 + a4 + a5 + a6 = 1 + 2 + . . . + 6 = 21.

When we add its place number to each integer, we get

a1 + 1, a2 + 2, a3 + 3, a4 + 4, a5 + 5, a6 + 6.

The sum of these is

(a1 + 1) + (a2 + 2) + (a3 + 3) + (a4 + 4) + (a5 + 5) + (a6 + 6) =
(a1 + a2 + a3 + a4 + a5 + a6) + (1 + 2 + 3 + 4 + 5 + 6) = 21 + 21 = 42.

Suppose that all the sums a1 + 1, a2 + 2, a3 + 3, a4 + 4, a5 + 5, and a6 + 6 have
different remainders upon division by 6. Then the remainders are a permutation of the
set {0, 1, 2, 3, 4, 5} whose sum is

0 + 1 + 2 + 3 + 4 + 5 = 15 ≡ 3 (mod 6).

Since 42 6≡ 3 (mod 6), we get a contradiction.

19. Consider cells with two, three, or four infected neigbors. Notice that when the infection
spreads to such a cell, the perimeter of the contaminated area cannot increase (but it
may decrease). Namely (look at the picture below), when a cell with two infected
neigbors becomes infected, the perimeter of the contaminated area does not change.
When a cell with three infected neigbors becomes infected, the perimeter decreases by
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2. When a square with four infected neigbors becomes infected, the perimeter decreases
by 4. Initially the perimeter is at most 4 · 9 = 36. It cannot become 40.

21. First we divide the Parliament into two houses randomly. We will say that a Parliament
member is unsatisfied with his placement if he has two or more enemies in his house.
If there are unsatisfied members, we will choose any one of them and move him to the
other house. Now there is at most one enemy in his house. By this move we reduced
the number of hostile pairs (because the member moved was in two hostile pairs and
now he is in at most one hostile pair, and no pairs not containing that member were
affected by his move). If any unsatisfied members remained, then again we will choose
one of them and move him, thus reducing the number of hostile pairs again. And so
on. Since it is not possible for the number of hostile pairs to become negative, sooner
or later there will be no unsatisfied members.

23. Color the sectors as shown in the picture below.

Let S be the sum of the numbers in blue sectors minus the sum of the numbers in white
sectors. When we increase the numbers in two neighboring sectors by 1, the quantity
S does not change. Initially S = 2. If it were possible to equalize all the numbers, S
would have to become 0. Therefore it is not possible to equalize all the numbers.

Note. See chapter 10 for more problems where the idea of coloring is helpful.
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17.10 Coloring

1. Suppose such a covering is possible. A 14 × 14 board has 196 squares. Color the
board using the standard chessboard coloring. Then it has 98 black squares and 98
white squares. Each T-tetromino covers either 3 black and 1 white or 1 black and
3 white squares. Suppose there are n T-tetrominoes covering 3 black squares. Then
there are 49− n T-tetrominoes covering 1 black square. Then all 49 tetrominoes cover
3n+(49−n) = 2n+49 black squares. They must cover 98, so 2n+49 = 98, or 2n = 49.
However, this equation has no integer solutions since 49 is not divisible by 2. We get a
contradiction.

3. Suppose such a covering is possible. A 10 × 10 board has 100 squares. Consider the
standard chessboard coloring. Then the board has 50 black squares and 50 white
squares. Each T-tetromino covers either 3 black and 1 white or 1 black and 3 white
squares. Suppose there are n T-tetrominoes covering 3 black squares. Then there
are 49 − n T-tetrominoes covering 1 black square. Every L-tetromino covers 2 black
and 2 white squares. Therefore 10 L-tetrominoes cover 20 black squares. Thus all 25
tetrominoes cover 3n + (15− n) + 20 = 2n + 35 black squares. They must cover 50, so
2n + 35 = 50, or 2n = 15. However, this equation has no integer solutions since 15 is
not divisible by 2. We get a contradiction.

5 Consider the standard chessboard coloring. A T-tetromino covers either 1 or 3 (i.e. an
odd number of) black squares. Every other tetromino covers 2 (i.e. an even number of)
black squares. If the number of T-tetrominoes were odd, then they would cover an odd
number of black squares, and the other tetrominoes would cover an even number of black
squares. Thus all tetrominoes together would cover an odd number of black squares.
But the chessboard has 32 black squares, and 32 is even. We get a contradiction.

7. There are 36 squares, and each domino covers 2, so we need 18 dominoes. Color the
figure as a chessboard (see picture below). It has 20 black and 16 white squares. Since
each domino covers one black square and one white square, 18 dominoes must cover
18 black and 18 white squares while we have 20 and 16. Therefore it is not possible to
cover the figure with dominoes.

9. Suppose such a covering is possible. Color the board using the stripe pattern with
three black and three white stripes (see the first of the four colorings on page 42).
There are 18 black squares. The rest of the argument is the same as in problem 1.
Each L-tetromino covers either 1 or 3 black squares. Let n tetrominoes cover 3 black
squares, then 9−n tetrominoes cover 1 black square, so all 9 tetrominoes together cover
3n + (9− n) = 2n + 9 black squares. Therefore 2n + 9 = 18, or 2n = 9. However, this
equation has no integer solutions. We get a contradiction.
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11. Suppose the upper right corner has been removed.

Proof 1. Color the board diagonally using three colors as shown below.

The board contains 21 white, 22 black, and 20 blue squares. Since each straight tromino
must cover 1 white, 1 black, and 1 blue square, the board cannot be covered by straight
trominoes.

Proof 2. Suppose such a covering is possible. Color the board using horizontal stripes
of three colors, say, from top to bottom: white, blue, black. Then there are 23 white
squares (three rows minus one removed square), 24 blue squares (three full rows), and
16 black squares (two full rows). Each tromino covers either three squares of the same
color or one square of each color. Let a be the number of trominoes covering three
white squares, b the number of trominoes covering three blue squares, c the number of
trominoes covering three black squares, and d the number of trominoes covering one
square of each color. Then, for the total number of squares of each color, we have:
3a + d = 23, 3b + d = 24, and 3c + d = 16. Subtracting e.g. the first equation from the
second we have 3b − 3a = 1, or 3(b − 1) = 1. Since the left-hand side is divisible by 3
and the right-hand side is not, the system does not have integer solutions. We get a
contradiction.

13. Suppose such a covering is possible. Color the board using the stripe coloring using
two colors, say, white and black, starting with black (see the first of the four colorings
on page 42). Then there are 12 black columns and 11 white columns, so there are 23
more black squares than white ones. Each 2×2 tile covers 2 black and 2 white squares,
so if there are n of such tiles they cover 2n black and 2n white squares. Each 3× 3 tile
covers either 6 or 3 black squares and, respectively, either 3 or 6 white squares. Let m
be the number of 3 × 3 tiles that cover 6 black and 3 white squares, and let k be the
number of 3× 3 tiles that cover 3 black and 6 white squares. Then the total number of
black squares covered by 3× 3 tiles is 6m + 3k, and the total number of white squares
covered by 3 × 3 tiles is 3m + 6k. Thus the total number of black squares covered by
all tiles is 2n + 6m + 3k, and the total number of white squares covered by all tiles
is 2n + 3m + 6k. Since there are 23 more black squares than white squares, we have
(2n+6m+3k)− (2n+3m+6k) = 23, or 3m−3k = 23, where n, m, and k are integers.
However, we see that the left-hand side is divisible by 3, but the right-hand side is not.
Therefore this equation has no integer solutions. We get a contradiction.

15. Let a be the number of rows and let b be the number of columns. If n|a, then a = nk for
some integer k, and each column contains nk squares. Thus we can cover each column
by k “vertical” 1 × n tiles. Similarly, if n|b, then b = nk for some integer k, and each
row contains nk squares. Thus we can cover each row by k “horizontal” 1× n tiles.
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Now suppose that n 6 | a and n 6 | b but an a × b board can be covered by 1 × n tiles.
Color the board diagonally using n colors. Each tile must cover exactly one square of
each color. Therefore each color must appear the same number of times. We will show
below that this is not possible, thus obtaining a contradiction.

If a > n, then in the first n rows each color appears exactly b times (because each color
apears exactly once in each column of length n). Therefore if we throw these first n
rows away, each color must still appear the same number of times. Similarly, we can
throw away the next set of n consecutive rows, and so on, until less than n rows remain.
Similarly for the columns. So now we reduced our board to, say, a c × d board where
c < n and d < n, and each color must appear the same number of times. Without loss
of generality we can assume that c ≤ d. This c × d piece is colored diagonally, and
we can assign numbers 1 through n to our colors so that they appear in the increasing
order as shown in the picture below.

1 2

2

3

3

3

d

d

d

d d+1

d+1

d+1

d

c

Since d < n, the number of colors is at least d + 1, so the first d + 1 “diagonals” are of
different colors. Since only c−2 ≤ d−2 < d “diagonals” remain, colors d and d+1 will
not repeat. Therefore in this piece there are c squares of color d but only c− 1 squares
of color d + 1. Thus the colors are not distributed evenly. We get a contradiction.

17. (a) Notice that every piece of a face diagonal connects a vertex and a face midpoint.
Thus if we only use face diagonals, vertices and midpoints must alternate. But
there are 8 vertices and 6 midpoints, so there is no way to make them alternate
(there are too many vertices).

Note. We could color all the marked points, e.g. let vertices be black, and let
midpoints be white. Then black and white points must alternate, but there are 8
black points and 6 white points, so that’s impossible.

(b) If one edge is allowed, then we could have two vertices in the beginning, after
which we would be left with 6 midpoints and 6 vertices, and we can make them
alternate. Again, let vertices be black and midpoints white, then a path could be
e.g. bbwbwbwbwbwbwb.

Here is an example. (But there are many other such paths.)
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19. Suppose such a filling is possible. “Color” the small (i.e. 1×1×1) cubes of the 6×6×6
cube as follows. Color each other “level” as in Example 10.2, and each other “level” all
white.

Then the 6× 6× 6 cube contains 27 black cubes. Each 4× 1× 1 brick fills either 0 or
2, so, an even number of black cubes. Therefore all bricks together must fill an even
number of black cubes. We get a contradiction.

21. No. Assume that such a reentrant knight tour exists. Color the board as shown on the
picture below:

. . . 

.

Notice that from any black square a knight can only get to a yellow square; from any
white square a knight can only get to a red square. Since there are 123 squares of
each color, the tour must contain 123 pairs ”black, yellow” and 123 pairs ”white, red”.
However, there is no way to get from a yellow square to a white one or from a red
square to a black one. We get a contradiction.

17.11 Areas and Volumes

1. Solution 1. Divide the region into smaller regions whose areas are easy to find, for
example:

B C

D E

A

The areas of these regions are: A = 1, B = 1, C =
1
2
, D = 1, E =

3
2
.
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Then the total area is the sum of these areas: 1 + 1 +
1
2

+ 1 +
3
2

= 5.

Solution 2. Consider the 2× 4 rectangle containing the region. Its area is 8. The area

of the complement is F + G + H = 1 +
1
2

+
3
2

= 3, therefore the area of the region is
8− 3 = 5.

G

H

F

3. Consider the 2 × 4 rectangle containing the triangle. Its area is 8. The area of the
complement is A+B +C = 1+2+2 = 5, therefore the area of the trianle is 8− 5 = 3.

A B

C

5. Divide the region into two triangles. One of them is a right triangle and has area A = 1.
By the Pythagorean theorem its hypothenuse is

√
12 + 22 =

√
5.

1
2

3

4

A

B

Therefore the area of the second trianle is B =
√

p

2

(p

2
− a

)(p

2
− b

)(p

2
− c

)
where

a, b, and c are its sides and p is its perimeter: a = 3, b = 4, c =
√

5, p = 7 +

√
5. Thus we have B =

√√√√7 +
√

5
2

(
7 +
√

5
2

− 3

)(
7 +
√

5
2

− 4

) (
7 +
√

5
2

−
√

5

)
=

√
7 +
√

5
2

· 1 +
√

5
2

·
√

5− 1
2

· 7−
√

5
2

=

√
(7 +

√
5)(7−√5)(

√
5 + 1)(

√
5− 1)

16
=

√
(49− 5)(5− 1)

16
=

√
44 · 4
16

=
√

11.

Therefore the total area is A + B = 1 +
√

11.

7. Draw two heights of the trapezoid as shown in the picture below.
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5

4 4h

1 5 1

7
Since the two triangles on the sides are congruent, the heights divide the base into
segments of length 1, 5, and 1. Then the height is h =

√
42 − 12 =

√
15, therefore the

area of the trapezoid is A =
1
2
(5 + 7)

√
15 = 6

√
15.

9. Consider the 2× 2 square containing the region. Its area is 4. The complement of the
region in the square consists of four quarters of a circle with radius 1, therefore the
total area of the complement is the same as the area of the circle, i.e. π. Therefore the
area of the region is 4− π.

11. Consider the following sectors:

Each of the above sectors is one-third of a full circle of radius 1, thus has area
π

3
. Their

total area is
2π

3
, and they cover our region, but they overlap. We must subtract the

area of the overlap from
2π

3
to obtain the area of the region. The overlap consists of

two equilateral triangles with side 1:

Using the Pythagorean theorem it is easy to find that the height of such a triangle is√
3

2
, and thus the area is

√
3

4
. The total area of two triangles is then

√
3

2
, and the area

of the original region is
2π

3
−
√

3
2

.
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13. Divide the region into ten regions (four equilateral triangles and 6 thin pieces around
them) as shown in the picture below.

The area of each triangle (see problem 11) is
√

3
4

. The area of each thin piece is
π

6
−
√

3
4

(the area of one-sixth of the circle minus the area of the triangle). Thus the total area

of the region is 4 ·
√

3
4

+ 6

(
π

6
−
√

3
4

)
= π −

√
3

2
.

15. Consider one of the four leaves in the figure. It is the overlap of two sectors, one quarter

of a circle (of radius
1
2
) each. The area of a quarter of a circle is

π

16
, therefore the area

of the overlap is 2 · π

16
− 1

4
=

π

8
− 1

4
.

The total area of the region is 4
(

π

8
− 1

4

)
=

π

2
− 1.

17. Since each of x and y can be nonnegative or negative, we consider the following four
cases.

Case I: x ≥ 0, y ≥ 0 (first quadrant). Then |x| = x and |y| = y. The inequality
becomes x + 2y ≤ 4, or y ≤ −x

2
+ 2.

Case II: x ≥ 0, y < 0 (fourth quadrant). Then |x| = x and |y| = −y. The inequality
becomes x− 2y ≤ 4, or y ≥ x

2
+ 2.

Case III: x < 0, y ≥ 0 (second quadrant). Then |x| = −x and |y| = y. The inequality
becomes −x + 2y ≤ 4, or y ≤ x

2
+ 2.

Case IV: x < 0, y < 0 (third quadrant). Then |x| = −x and |y| = −y. The inequality
becomes −x− 2y ≤ 4, or y ≥ −x

2
− 2.

Now we draw the region in each case and obtain the following figure.
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4−4

−2

x

y

2

This figure consists of four triangles with base 4 and height 2, therefore its area is

4 · 1
2
· 4 · 2 = 16.

19. Clearly, the base of the box is a square. Let the base be a cm ×a cm. Since the height
of the box is 3 cm, its volume is 3a2 cubic cm. We are given that the volume is 60
cubic cm, therefore we have 3a2 = 60, so a2 = 20, and a =

√
20 = 2

√
5. Thus the box

has dimensions 2
√

5 cm ×2
√

5 cm ×3 cm.

21. Consider the top half of the octahedron.

1

1
1

It is a pyramid with a square 1×1 base (whose area is 1). The base diagonal has length
√

2, therefore the distance from the center of the octahedron to any vertex is
√

2
2

. Thus

the height of the pyramid is
√

2
2

, and then its volume is
1
3
· 1 ·
√

2
2

=
√

2
6

. Since the

octahedron consists of two such pyramids, its total volume is 2 ·
√

2
6

=
√

2
3

.

23. Let a be half the length of any edge of the cube. By the Pythagorean theorem, the
distance from the center of the cube to any of its vertices is a

√
3. On the other hand,

this distance is the radius of the sphere, so a
√

3 = 1. Therefore a =
1√
3
, the edge has

length
2√
3
, and thus the volume of the cube is

8
3
√

3
.

Next let us intoduce the coordinate system so that the center of the cube and the
sphere is at the origin and the z-axis is vertical as shown in the picture see picture
below. We will use an integral to calculate the volume of the solid inside the sphere

and above the plane z =
1√
3

as follows: the horizontal cross-section at z is a disk with

radius r =
√

1− z2 (because by the Pythegorean theorem z2 + r2 = 1), therefore V =∫ 1

1√
3

π(
√

1− z2)2dz = π

∫ 1

1√
3

(1−z2)dz = π

(
z − z3

3

)∣∣∣∣
1

1√
3

=
(

1− 1
3
− 1√

3
+

1
9
√

3

)
π =



17.12. SYMMETRY, TRANSLATIONS, ROTATIONS, AND SIMILARITY 119

(
2
3
− 8

9
√

3

)
π.

x

y

z

Notice that the cube and six “caps”, one adjacent to each side of the cube, whose
volume we calculated above, fill the cub with the overlap consisting of twelve thin
pieces, one along each edge of the cube.

Since the volume of the sphere is
4
3
π, the total volume of these twelve thin pieces is

8
3
√

3
+ 6π

(
2
3
− 8

9
√

3

)
− 4

3
π =

8
3
√

3
+

8
3
π− 16

3
√

3
π. The volume of the solid inside the

sphere and above the cube is the volume of one “cap” minus the volume of four thin

pieces, i.e.
(

2
3
− 8

9
√

3

)
π − 4

12

(
8

3
√

3
+

8
3
π − 16

3
√

3
π

)
=

8
9
√

3
π − 8

9
√

3
− 2

9
π.

17.12 Symmetry, Translations, Rotations, and Similar-
ity

1. Assume that a solution exists. Rotate circle S through an angle of 30◦ around A so
that the image of B is C. Let S′ be the image of S. Then S′ and T have point C in
common.
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B

A

SS’
T

C

Thus to find a solution, we rotate circle S through an angle of 30◦ around A (say, in
the clockwise direction; if its image does not intersect circle T , then rotate S in the
counterclockwise direction). Let S′ be its image, and let C be an intersection point
of S′ and T . Rotate the point C back – let B be its image. It lies on the original
circle S. Then AB = AC and ∠BAC = 30◦. The other angles are as required because
∠ABC = ∠ACB since 4ABC is isosceles, and the sum of all the angles in a triangle
is 180◦.

3. (a) Let l be the given line.
Case I: points A and C lie on the opposite sides of l. Since the shortest path
from A to C is a straight line, draw a line through these points, and let B be the
intersection point of AC and l.

A

B

C

l

Case II: points A and C lie on the same side of l. Reflect point C about line l, and
let C ′ be its image. Since for any point B on l we have |BC| = |BC ′|, minimizing
|AB|+ |BC| is equivalent to minimizing |AB|+ |BC ′|. The latter is minimal when
A, B, and C ′ lie on one line.

A C

B

C’

l

Case III: at least one of points A and C lies on l. Without loss of generality we can
assume that point A lies on l. Since the shortest path from A to C is a straight
line, taking B = A minimizes |AB|+ |BC|.
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5. Assume that a solution exists. Draw a vertical line l through A. Reflect line p about l,
let p′ be its image. Let I be the intersection point of l and BC. Since BC is horizontal,
∠AIB = ∠AIC. Since also |AB| = |AC|, triangles AIB and AIC are congruent.
Therefore the image of B is C. Thus p′ and q have point C in common.

��
��
��
��

��
��
��
��

A

B C

p

q

p’

l

Thus to find a solution, draw a vertical line l through A. Reflect line p about l, let
p′ be its image. Let C be the intersection point of p′ and q. Now reflect the point C
about l, and let B be its image. It lies on p. Since B and C are symmetric about a
vertical line l, we have that BC is horizontal and |AB| = |AC|.

7. Draw any angle and mark segments of lengths a, b, and c on its sides as shown in the
picture below.

c

A
b

a

B

C

I

Draw a line through points A and C, and then draw a line through B and parallel to
AC. Let D be the intersection point of this line with the other side of the angle, and
let x = |ID| and y = |DA|.

x y

c
C

D A

B
b

I

Since 4ICA and 4IBD are similar, we have
x + y

x
=

b + c

b
, or 1 +

y

x
= 1 +

c

b
.

Therefore
y

x
=

c

b
, so

x

y
=

b

c
.

9. (a) Let S and T be the centers of the circles, and let r and r′ be their radii respectively.
If r = r′, then a common tangent line is parallel to line ST , thus it suffices to
draw radii perpendicular to ST and draw a line through the ends of the radii.
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S T

If r 6= r′, then without loss of generality we can assume that r > r′.
Solution 1. Draw a circle centered at S with radius r − r′. Then draw a tangent
line to this circle that passes through T . This can be done e.g. by drawing a
semi-circle with diameter ST . If A is the intersection point of the semicircle and
the circle with radius r − r′, then ∠SAT = 90◦.

T

A

S

Extend SA until it intersects the given circle centered at S, and let B be this
intersection point. Let TC be the radius of the second given circle perpendicular
to AT so that B and C lie on the same side of AT . Then |AB| = |CT | =
r′, ∠BAT = ∠ATC = 90◦, therfore ABCT is a rectangle. Therefore BC is
perpendicular to both SB and TC, so it is tangent to both of the given circles.

T

B

S

A
C

Solution 2. Let d = |ST |. Draw a line through S and T . It must cross the common
tangent line that we are looking for. Let us find the location of the intersection
point I. Let x = |TI|, then |SI| = d + x.

S T

r

r’ I

d x
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From similar triangles we see that
x

r′
=

d + x

r
. Solving this equation for x gives

x =
r′d

r − r′
. See problem 6 on how construct a segment of this length.

Once we have this intersection point, we draw semicircles with diameters SI and
TI, and find the intersection points A and B of these semicircles with the given
circles. Since ∠SAI = ∠TBI = 90◦, line AB is tangent to both circles.

S T

r

r’

d x

A

B

I

11. Solution 1. Since ∠CAB = 60◦ and AD bisects ∠CAB, ∠DAB = 30◦. Then ∠ADB =
60◦. Thus the problem is equivalent to finding points A and D such that ∠ADB = 60◦

and |AD| = l. To do this, translate line q a distance l in the direction of the ray r such
that the angle between r and q is 60◦ (see picture below). Let q′ be its image. Let A
be the intersection point of p and q′. Translate A back – get point D on the original
line q. Now draw a vertical line v through A. Let B be the intersection point of v and
q. By our construction, |AD| = l, AB is vertical, ∠ADB = 60◦, thus ∠DAB = 30◦,
and thus AD bisects ∠CAB.

D
C 30

q’A

B q

v

60

p

l r

Solution 2. Since ∠DAB = 30◦,
|AB|
|AD| = cos 30◦ =

√
3

2
. Then |AB| =

√
3

2
|AD| =

√
3

2
l.

Thus we have to translate q a distance
√

3
2

l upward (this can be done with a ruler and

a compass), and let A be the intersection point of the new line q′ and p. (Note: the
new line q′ here is, of course, the same as in solution 1.) Then draw a vertical line
through A to find B.

Solution 3. As in solution 2, |AB| =
√

3
2

l. Now, since ∠ACB = 30◦,
|AB|
|CB| = tan 30◦ =
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1√
3
. Then |CB| =

√
3|AB| =

3
2
l. Thus we merely have to find B on q such that

|CB| = 3
2
l, and then draw a vertical line through B to find A.

Solution 4. Since we need ∠CAD = 30◦ = ∠DCA, 4CAD must be isosceles. Thus
we need |CD| = |AD| = l. Therefore, we have to find D on q such that |CD| = l, then
draw a line AD such that ∠ADC = 120◦, and, finally, draw the vertical line AB.

Solution 5. Choose any point A′ on p. Draw a vertical line v′ through A′, and let B′ be
the intersection point of v′ and q. Draw the bisector A′D′ of ∠CA′B′. The length of
A′D′ is probably not equal to l. So we have to adjust our construction (proportionally)
to make this distance equal to l. Namely, let |A′D′| = l′. Since we need |AD| = l,

4CAB we are looking for is similar to 4CA′B′ with coefficient of similarity
l

l′
. Thus,

we find A on p such that |CA| = l

l′
|CA′|. See problem 6 on how construct a segment

of this length. Then draw a vertical line through A to find B as before, and, finally,

draw the bisector AD. From similar triangles, we have
|AD|
|A′D′| =

|CA|
|CA′| =

l

l′
. Then

|AD| = l

l′
|A′D′| = l

l′
l′ = l as desired.

D

C 30

p

qD’B’ B

v’

v

A’

A

Note. Solution 4 works only because 4ACD must be isosceles which uses the fact that
the given angle is 30◦ and AB must be vertical. Solutions 2 and 3 may work for some
other angles and directions of AB, but they still use the fact that all the angles are
“nice”. Solutions 1 and 5 would work for any angle and any direction of AB.

Note. The idea of solution 5 is very useful for many problems.

13. Assume that a solution exists. Notice that |AC| =
√

2 |AB| and ∠BAC = 45◦. This
means that if we rotate point B through 45◦ around A, then the image B′ lies on line
AC and |AC| =

√
2 |AB′|.
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p’’

q
B’

A

B

C

p’

p

Thus to find such points, we will rotate line p through an angle of 45◦ around A. Let
p′ be the image. Then we draw a line p′′ parallel to p′ and such that the distance from
A to p′′ is

√
2 times the distance from A to p′. Let C be the intersection point of p′′

and q. (If p′′ and q do not intersect, then rotate p in the opposite direction to find p′.)
Draw a line through A and C. Let B′ be the intersection point of AC and p′. Rotate
B′ through an agnle of 45◦ around A (in the opposite direction than we rotated line

p′). Let B be its image. Since |AB| = |AB′| = |AC|√
2

and ∠BAC = 45◦, triangle ABC

is as required.

15. Rotate the lower half of the left small circle through 45◦, 90◦, and 135◦ in the clock-
wise direction around the center of the bigger circle. Its images cut the region into 4
congruent parts.

17. Reflect the point A about p, and let A′ be its image. Then reflect A about q, and let
A′′ be its image. Since |AB| + |BC| + |CA| = |A′B| + |BC| + |CA′′|, minimizing the
perimeter of triangle ABC is equavalent to minimizing |A′B| + |BC| + |CA′′|. The
latter is minimimized when A′, B, C, and A′′ lie on one line (because the shortest path
from A′ to A′′ is a straight line). Thus we connect A′ and A′′, and let B and C be the
intersection points of A′A′′ with lines p and q respectively.

A

B C

p q

A’ A’’
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19. Case I: lines r and s are parallel. Then for any horizontal line intersecting r and s at
C and D respectively, |CD| is the same. Let m = l− |CD|. Thus we have to construct
a horizontal line intersecting p and q at A and B such that |AB| = m. Assume that a
solution exists. Move line p a distance m in a horizontal direction. Let p′ be its image.
Then p′ and q have point B in common.

BA C D
m

l

p q r sp’

Thus to find a solution, we have to move line p a distance m in a horizontal direction
and let B be the intersection point of the image and q. Then draw a horizontal line
through B and let A, C, and D be the intersection points as described in the problem.

Case II: lines r and s are not parallel. Let I be their intersection point. First we
will construct a line t such that for any horizontal line intersecting p, q, r, s, and t
at points A, B, C, D, and E respectively, |AB| + |CD| = |AE|. Draw a horizontal
line through I and let J be the intersection point of this line and q. Next choose
any point K on s that lies to the right of r, and draw a horizontal line throught
K. Let L and M be the intersection points of this line with q and r respectively.
Construct the point N on line LK such that |LN | = |MK|. Let t be the line through
J and N . Then for horizontal line intersecting p, q, r, s, and t at points A, B, C,
D, and E respectively, 4JBE and 4JLN are similar, and 4ICD and 4IMK are

similar. Therefore
|BE|
|LN | =

|JB|
|BL| =

|IC|
|CM | =

|CD|
|MK| . Since |LN | = |MK|, we have

|BE| = |CD|, therefore |AB| + |CD| = |AB| + |BE| = |AE|. Now we construct a
horizontal line intersecting p and t at points A and E such that |AE| = l. If p and t
are parallel, then |AE| must be equal to l for any such line in order for a solution to
exist. If p and t are not parallel, then the construction is similar to case I.

M

B C D

L K

I

p q r st

A
E

J

N

l
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17.13 Graphs

1. By corollary 13.6, in any graph, the number of vertices of odd degree is even. Here
there are 3 vertices of degree 3, so there is no such graph.

3. Let vertices represent people, and edges represent friendship (two vertices are connected
if and only if the corresponding people are friends). Then the degree of each vertex is
the number of friends of the corresponding person. Since in any graph the number of
vertices of odd degree is even, we have that the number of people with an odd number
of friends is even.

5. We can start with any vertex and assume it’s in set X. Then consider any vertex
connected with the first one, and if the graph is bipartite, this vertex must be in the
other set, say, Y . Then consider any vertex connected with the first or second one, and
so on. If we ever run into a situation when two vertices in one set are connected, the
graph is not bipartite. If not, we’ll have a division of the set of vertices into two sets
X and Y such that there are no edges within one set, and hense the graph is bipartite.

X X X X X

Y Y Y Y

X XX

X X X

X X XY Y

Y

X

X

X

X X

X

Y

Y Y

Y Y

Y Y

XX

X

contradiction, so not bipartite

bipartite

Similarly: 

bipartitenot bipartitebipartite

Y

7. If this were possible, consider the following graph with 8 vertices: each vertex represents
a county, and two vertices are connected if and only if the corresponding counties are
neighbors. Then the degree of each vertex is the number of the neighbors of that
county. Thus we would have a graph with 8 vertices of degrees 5, 5, 4, 4, 4, 4, 4,
3. But in any graph, the sum of the degrees of all the vertices is even. The sum
5 + 5 + 4 + 4 + 4 + 4 + 4 + 3 = 33 is odd. Contradiction.

9. A graph has an Euler path but not an Euler cycle iff it is connected and has two vertices
of odd degree.

11. First of all, recall that Kn,m has 2 groups of vertices, n vertices in group A, m vertices
in group B, and every vertex in group A is connected to every vertex in group B.
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(a) We know that there exists an Euler cycle if and only if the degree of each vertex
is even. The graph Kn,m has n vertices of degree m and m vertices of degree n.
Since all the degrees must be even, both m and n must be even.

(b) By problem 9, an Euler path exists if and only if the graph has at most 2 vertices
of odd degree. So consider the following cases:

(1) No vertices of odd degree, i.e. all the degrees are even. Then both m and n
are even.

(2) 2 vertices of odd degree, both in group A of n vertices. Since all the vertices
in this group have the same (odd) degree, and we can have at most 2 vertices of
odd degree, there are only 2 vertices in this group, thus n = 2. Since their degree
is odd, m is odd. Thus we have n = 2 and m is odd.

(3) 2 vertices of odd degree, both in group B of m vertices. This case is similar to
case (2), only n and m are switched. Thus m = 2 and n is odd.

(4) 2 vertices of odd degree, one in group A and the other in group B. Then both
m and n are odd, thus all the degrees are odd, but we can have at most 2 odd
degrees, so n = m = 1.

(d) A Hamilton cycle is a cycle that visits every vertex exactly once. If a Hamilton
cycle starts at a vertex in group A, then its second vertex belongs to group B, the
next one belongs to group A, the fourth one belongs to group B, and so on, i.e. A
and B will alternate. It must eventually come back to the original vertex, therefore
the number of vertices in group A must be equal to the number of vertices in group
B. Thus m = n.

(c) A path does not return to the starting point, thus in addition to the case m = n
(in this case a path has the form ABAB...AB), we have m = n − 1 (then we can
find a path of the form ABAB...ABA), and m = n + 1 (then we can find a path
of the form (BABA...BAB).

13. First draw the graph representing all possible moves of a knight:

A reentrant tour is a Hamilton cycle. Thus we have to show that this graph has no
Hamilton cycle. Notice that there are 4 vertices of degree 2, and in order to visit a
vertex of degree 2 we have to use both its edges. Consider the upper left corner vertex
and the lower right corner vertex. We must use both edges at each of them. But then
we get a cycle. There is no way of adding anything to this cycle (because if we add
more edges, we’ll have to go through some vertex more than once). But this cycle
misses many vertices. Thus there is no Hamilton cycle.
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15. If nobody made a mistake, we would be able to draw a bipartite graph with 14 vertices,
7 vertices representing men and 7 vertices representing women, and such that 2 vertices
are connected if and only if the corresponding people shared a dance. Then the sum of
the degrees of the 7 vertices representing men should be equal to the sum of the degrees
of the 7 vertices representing women (both sums being equal to the number of edges).
But it is not possible to divide the given 14 numbers into 2 groups such that the sums
are equal because one group must contain the 5, and the other group must consist of
3’s and 6’s. The sum of the numbers in the first group is congruent to 2 mod 3, and the
sum of the numbers in the second group is congruent to 0 mod 3, so the sums cannot
be equal.

17. Let scientists be represented by vertices. Connect all vertices. We get the complete
graph K17. Color the edges using three colors, say, blue, red, and green, according to
the topic discussed by the scientists these vertices represent. We have to prove that
there are three vertices connected (pairwise) by 3 edges of the same color. Choose
any vertex, say, vertex A. It is connected with 16 other vertices. Among the 16 edges
connecting vertex A with other vertices at least 6 are of the same color, say, blue. Look
at those 6 vertices. If at least two of them are connected by a blue edge then we have
a blue triangle. If not, look at the K6 graph for those 6 vertices. All its edges are red
and green. By example 13.18, it contains at least one triangle with all 3 sides of the
same color, either red or green.

19. (a) Yes. See the picture below.

(b) Yes. In the above picture, we can connect the two ends of the path.

21. Let the degrees of the remaining vertices be a (in group A) and b (in group B). The
sum of degrees of vertices in the first group must be equal to the sum of degrees of
vertices in the second group. Thus 4 + 2 + 2 + a = 3 + 1 + 1 + b, or 3 + a = b. Since the
graph is connected, the degree of each vertex is at least 1. Thus a ≥ 1. Now, it is easy
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to see that for every pair a, b satisfying 3 + a = b and a ≥ 1, there exists a graph with
vertices of such degrees. (Because we can have multiple edges between the vertices of
degrees a and b.) Draw a few such graphs!

23. We will use a graph to represent the city as follows. Let each of the four pieces of land
be represented by a vertex, and let each bridge be represented by an edge connecting
the corresponding vertices. Then we get the following graph:

Existance of a tour described in the problem is equiavalent to existance of an Euler
cycle in this graph. We know that an Euler cycle exists if and only if the degree of
each vertex is even. However, the degrees of the vertices in our graph are 5, 3, 3, and
3, i.e. all odd, and this is how we know that no such tour exists. Now, if we add one
more bridge we will change the degrees of two vertices (corresponding to the pieces of
land that this bridge connects), thus the degrees of two vertices will become even, but
the degrees of the other two vertices will remain odd. Therefore no such tour will exist
even if one bridge is built.

17.14 Working backwards

1. (a) 46 = 1 · 32 + 14
32 = 2 · 14 + 4
14 = 3 · 4 + 2
4 = 2 · 2
Thus d = (46, 32) = 2.
2 = 14− 3 · 4

= 14− 3(32− 2 · 14) = 7 · 14− 3 · 32
= 7(46− 1 · 32)− 3 · 32 = 7 · 46− 10 · 32

Thus x = 7 and y = −10.

(c) 96 = 1 · 54 + 42
54 = 1 · 42 + 12
42 = 3 · 12 + 6
12 = 2 · 6
Thus d = (96, 54) = 6.
6 = 42− 3 · 12

= 42− 3(54− 1 · 42) = 4 · 42− 3 · 54
= 4(96− 1 · 54)− 3 · 54 = 4 · 96− 7 · 54, so x = 4 and y = −7.

3.

5. (a) .

(c) .
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1

y=f(x)

y

x

3

2

Reflect the given graph about the x-axis (i.e. multiply the function by −1) and
shift 3 units upward (i.e. add 3).

y

x

y=−f(x)

2

−3

y

x

1

3

1

y=−f(x)+3

Then −f(x) + 3 = |g(x)| where

1

y

x

−3

y=g(x)

Shifting the graph of g(x) 3 units upward will give the graph of |3x|, therefore
g(x) + 3 = |3x|
g(x) = |3x| − 3
−f(x) + 3 = ||3x| − 3|
f(x) = 3− ||3x| − 3|

(e) Let’s denote the function whose graph is given by f(x). Let g(x) = f(x) − x

2
(using the hint given in problem ??). It’s easiest to sketch the graph of g(x) if we
write piece-wise linear formulas for f(x) and g(x) first:

f(x) =





0 if x < 0
x if 0 ≤ x < 1
2x− 1 if x ≥ 1

, so g(x) =




−x/2 if x < 0
x/2 if 0 ≤ x < 1
3x/2− 1 if x ≥ 1

.
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Then the graphs are as follows:

1

1
x

slope=2

1

1

y=f(x)
y=g(x)

slope=−1/2
slope=3/2

x

yy

slope=1/2

We see that g(x) = |h(x)| where the graph of h(x) is:

1

1

slope=3/2

x

y

slope=1/2

y=h(x)

Now we will move the graph of h(x) so that the vertex is at the origin, let’s call
the new function k(x):

slope=3/2

x

1

1

y

slope=1/2

y=k(x)

Sinc y = h(x) can be obtained from y = k(x) by shifting it 1 unit to the right and
1
2

unit upward, h(x) = k(x− 1) +
1
2
.

Subtracting x from k(x) gives l(x) = k(x)− x:

x

1

1

y

slope=−1/2

y=l(x)

slope=1/2

We see that l(x) =
∣∣∣x
2

∣∣∣.
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The equation l(x) = k(x)− x implies k(x) = l(x) + x =
∣∣∣x
2

∣∣∣ + x.

Then h(x) = k(x− 1) +
1
2

=
∣∣∣∣
x− 1

2

∣∣∣∣ + (x− 1) +
1
2

=
∣∣∣∣
x− 1

2

∣∣∣∣ + x− 1
2
.

Further, g(x) = |h(x)| =
∣∣∣∣
∣∣∣∣
x− 1

2

∣∣∣∣ + x− 1
2

∣∣∣∣.

Finally, g(x) = f(x)− x

2
implies f(x) = g(x) +

x

2
=

∣∣∣∣
∣∣∣∣
x− 1

2

∣∣∣∣ + x− 1
2

∣∣∣∣ +
x

2
.

7. Solution 1.

Suppose the 4-tuple 0, 5, 0, 5 does occur. Then before it we must have the digit 0, and
before that 5, and before that another 0... In fact, all the digits in our sequence must
be 0’s and 5’s.

Proof: Solving an ≡ an−4 + an−3 + an−2 + an−1 (mod 10) for an−4 gives

an−4 ≡ an − an−3 − an−2 − an−1 (mod 10).

This implies an−4 ≡ an − an−3 − an−2 − an−1 (mod 5).

Thus if four consecutive digits are divisible by 5, then all the digits in the sequence are
divisible by 5.

But the starting sequence 2, 0, 0, 3 contains 2 and 3 which are not divisible by 5.
Contradiction.

Solution 2.

If the 4-tuple 0, 5, 0, 5 does occur, look at the very first time it occurs. Then working
backwards, determine a few digits before these 4:

2, 0, 0, 3, . . . . . . , 0, 5, 0, 5, . . .
2, 0, 0, 3, . . . . . . , 0, 0, 5, 0, 5, . . .
2, 0, 0, 3, . . . . . . , 5, 0, 0, 5, 0, 5, . . .
2, 0, 0, 3, . . . . . . , 0, 5, 0, 0, 5, 0, 5, . . .
2, 0, 0, 3, . . . . . . , 5, 0, 5, 0, 0, 5, 0, 5, . . .
2, 0, 0, 3, . . . . . . , 0, 5, 0, 5, 0, 0, 5, 0, 5, . . .

We see that we have this 4-tuple in the sequence again, hence the one we started with
was not the first occurence. Contradiction.

9. We want to force our opponent to take the last counter. Thus we have to leave 1
counter on our last turn. To ensure that we’ll be able to do that, we’ll leave 6 counters
on our next to last turn (then if our opponent takes 1, we take 4 and leave 1; if our
opponent takes 2, we take 3; if they take 3, we take 2; if they take 4, we take 1). On
the turn before the next to last we’ll leave 11... and so on. Thus we have to go first,
take 1 counter and leave 26. Then no matter how our opponent plays we’ll be able to
leave 21, 16, 11, 6, 1.

11. On our last turn we want to leave one counter. Then our opponent will have to take
it, and they will lose. Notice that no matter how our opponent plays, we can always
play in such a way that the number of counters our opponent takes plus the number of
counters we take is equal to 3 (namely, if they take 1, we can take 2; if they take 2, we
can take 1). Thus on our next to last turn we’ll leave 4 (then no matter how they play,
we’ll be able to leave 1). On the turn before that we want to leave 7. This means that
we should let our opponent go first. Then, if they take x, we take 3 − x, and leave 7.
Then we leave 4, then we leave 1, and we win.
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13. We will work backwards. We want to take the last counter. How many counters should
we leave on our next to last turn so that our opponent cannot take the last counter?
We can’t leave 1 because they will take it. We can’t leave 2 either, since they can
take 2. But we can leave 3. Then they can take either 1 or 2, that will leave 2 or 1
(respectively), and we will take them. So, we must leave 3 counters.
How many should we leave on the turn before that so that our opponent cannot take
all or leave 3? We can’t leave 4 (they may take all of them). We can’t leave 5 (they
may take 2 and leave 3). How about 6? Let’s see what choices our opponent has then.
If they take 1 and leave 5, that’s good - we’ll take 2 then. If they take 2 and leave 4,
also good for us - we’ll take 1. They can also take 4 and leave 2. That’s good too, we
will then take the last 2. So, we must leave 6.
The turn before that: we don’t want to give our opponent an opportunity to leave 0 or
3 or 6. 7 is bad (they may take 1 and leave 6), 8 is bad (they may take 2 and leave 6).
How about 9? Our opponent may take 1 (and leave 8) or take 2 (and leave 7) or take
4 (and leave 5) or take 8 (and leave 1). In each case, we’ll be able to leave 6 or 3 or 0.
So, we must leave 9.
Now notice that the numbers 3, 6, 9 are multiples 3. Does this mean that leaving
multiples of 3 is a winning strategy? Let’s see... Suppose we leave a multiple of 3. Our
opponent will take a power of 2. Since a power of 2 is not divisible by 3, they will leave
a number not divisible by 3. Then we can take the remainder, and leave a multiple of
3 again. Thus we have to go first, take 2 counters, and leave 48 (or take 8 and leave 42,
or take 32 and leave 18). Then, each time we’ll be able to leave a multiple of 3. Thus
sooner or later we’ll leave 0, and we’ll win.

15. The derivative of a cubic polynomial is a quadratic polynomial. We want this quadratic
polynomial to have integer roots. Instead of trying random coefficients a, b, c, and d,
let’s choose the roots of the quadratic polynomial (the derivative of f), and then find
f :

Choose the roots, e.g. r1 = 3 and r2 = 5.

(x− 3)(x− 5) = x2 − 8x + 15.

Now f(x) can be any antiderivative of this polynomial, say,
1
3
x3 − 4x2 + 15x − 3.

However, we want it to have integer coefficients, so let’s mulitply this function by 3:

f(x) = x3 − 12x2 + 45x − 9. (Then f ′(x) = 3x2 − 24x + 45 = 3(x2 − 8x + 15) =
3(x− 3)(x− 5) has integer roots.)

Here is another choice of roots and the constant d:

r1 = −3, r2 = 4, (x+3)(x−4) = x2−x−12, an antiderivative is
1
3
x3− 1

2
x2−12x− 1

6
,

multiply by 6:

f(x) = 2x3−3x2−72x−1. (Then f ′(x) = 6x2−6x−72 = 6(x2−x−12) = 6(x+3)(x−4)
has integer roots.)

17. Start with a matrix in reduced echelon form with integer entries, and perform a few
operations (i.e. work backwards in the reducing algorithm) to modify some (or all)
coefficients.

For example:


1 0 3
0 1 −2
0 0 0


←




1 0 3
0 1 −2
0 −2 4


←




1 1 1
0 3 6
0 −2 4


←




1 1 1
−2 1 4
0 −2 4


←
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


1 1 1
−2 1 4
3 1 7


←




4 4 4
−2 1 4
3 1 7




18. We will use the following names of coins: penny (1 cent), nickel (5 cents), dime (10
cents), quarter (25 cents).

Based on the amount we see that coins of some value must be present. For example,
at least two pennies must be used to make 57 cents. Instead of adding the values of
coins, we will subtract the value of known coins from the initial amount and keep track
of the number of other coins.

So, since at least two pennies must be present, the value of the other 5 coins is 55 cents.
These 5 coins cannot all be less than a quarter, because 5 coins whose value is at most
10 cents would not add up to 55, and no coins can be larger than a quarter since the
next available value is 1 dollar, so at least one quarter must be present. Thus the value
of the remaining 4 coins is 55− 25 = 30. Here no pennies or coins larger than 10 cents
can be used, and four dimes would be too much, so at least one nickel is present. The
value of the 3 remaining coins is 25, so again at least one nickel must be present, and
the value of the remaining 2 coins is 20. The only possibility here is two dimes.

Thus I have two pennies, two nickels, two dimes, and one quarter.
Note. There are other ways to derive the answer.

19. In order to win we want to take the last counter. Thus we will win if we get 1, 2,
or 4 counters on our last turn. This means that if we leave 3 counters on the turn
before that, our opponent will be able to take 1 or 2 counters leaving us with 2 or 1
respectively. In order to be able to leave 3, we want to get 4, 5, or 7 counters. Now
notice that if we leave 6 on the turn before that, our opponent will be able to take 1,
2, or 4, leaving us with 5, 4, or 2 respectively, and all of these are winning positions for
us. Thus we want to go first and take 4 counters on our first turn. This will leave 6.
Then, as described above, we will win. (This is a strategy for the first player.)

20. If we want to win, we want to leave 1 match on our last turn so that our opponent loses.
To be able to do this, we should get 2 matches on our last turn (if we get 3 or more,
we won’t be able to remove all but one). This means that we want to leave 3 the turn
before that: our opponent can only remove 3 leaving us with 2. To be able to leave 3,
we should get 4 or 5 or 6. Notice that if we leave 7 the turn before that, our opponent
will be able to take 1 or 2 or 3 leaving us with 6 or 5 or 4 respectively which is exactly
what we want. We can leave 7 if we get any number from 8 to 14 inclusive. Thus
if we leave 15 before that our opponent will be able to take 1-7 leaving us with 14-8.
And so on... Notice that the numbers of matches we should leave on our turn (going
backwards) are 1, 3, 7, 15, - these all are one less than powers of 2. So it seems that the
strategy is to always leave one less than a power of 2. Namely, we get a strategy for the
first player: he/she should remove 45 matches leaving 255; the opponent will remove
some number from 1 to 127 (inclusive), leaving some number between 254 and 128
(inclusive). The first player then will be able to remove the some number between 127
and 1 leaving 127 (which means that he/she removed no more than half); the opponent
will remove some number between 1 and 63 leaving some number between 126 and 64.
The first player should remove the required number between 63 and 1 to leave 63; the
opponent will remove 1-31 leaving 62-32. The first player should remove the required
number between 31 and 1 to leave 31; the opponent will remove 1-15 leaving 30-16. The
first player should remove the required number between 15 and 1 to leave 15. Then, as
described above, the first player should leave 7, 3, and, finally, 1, and he/she wins.
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17.15 Calculus

1. Since |x + 2| =
{

x + 2 if x + 2 ≥ 0, i.e. x ≥ −2
−(x + 2) if x + 2 ≤ 0, i.e. x ≤ −2 , we have:

∫ 2

−4

|x + 2|dx =
∫ −2

−4

|x + 2|dx +
∫ 2

−2

|x + 2|dx = −
∫ −2

−4

(x + 2)dx +
∫ 2

−2

(x + 2)dx =

−
(

x2

2
+ 2x

)∣∣∣∣
−2

−4

+
(

x2

2
+ 2x

)∣∣∣∣
2

−2

= −(2− 4) + (8− 8) + (2 + 4)− (2− 4) = 10

Note: another way to do this problem is to interpret the integral in terms of areas.

3. Let the given line be tangent to the parabola at the point (a, a − 1). Then first, the
parabola passes through (a, a− 1), thus

a− 1 = ca2.

Second, the line and the parabola have the same slope at this point:

1 = 2ca.

From the second equation we have c =
1
2a

. Substitute this for c in the first equation:

a− 1 =
a2

2a
⇒ a− 1 =

a

2
⇒ 2a− 2 = a ⇒ a = 2 ⇒ c =

1
4

5. We need the polynomial to pass through the given points, and have slope (which is
p′(x) = 3ax2 + 2bx + c) equal to 0 at both points.
The value at 0: d = 1.
The value at 1: a + b + c + d = 0.
The slope at 0: c = 0.
The slope at 1: 3a + 2b + c = 0.
Since d = 1 and c = 0, the second and fourth equations become a + b = −1 and

3a + 2b = 0. Then b = −3
2
a, and a− 3

2
a = −1. This gives a = 2. Then b = −3.

p(x) = 2x3 − 3x2 + 1.

7. To find the intersection points of the line y = ax and the parabola y = x2, solve
ax = x2.

The roots are x = 0 and x = a, thus the intersection points are (0, 0) and (a, a2).

If a > 0, the area is
∫ a

0

(ax− x2)dx =
(

a
x2

2
− x3

3

)∣∣∣∣
3

0

=
a3

2
− a3

3
=

a3

6
.

We want the area to be equal to 1, so
a3

6
= 1 ⇒ a3 = 6 ⇒ a = 3

√
6

If a < 0, then the area is
∫ 0

a

(ax− x2)dx = −a3

6
⇒ a = − 3

√
6.

9.
∞∑

n=0

1
22n+1

=
1
2

+
1
23

+
1
25

+
1
27

+ . . . =
1
2

(
1 +

1
22

+
1
24

+
1
26

+ . . .

)

=
1
2

(
1 +

1
4

+
1
42

+
1
43

+ . . .

)
=

1
2
· 1
1− 1

4

=
2
3
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11. Draw a picture so that you see what’s going on. Let the slope of such a tangent line be
m, then its equation is y = mx. Let (a,ma) be the touching point. Since this point lies
on the parabola, ma = a2 +2. The slope of the parabola at the touching point must be
m, therefore 2a = m. Substituting this into the first equation gives 2a2 = a2 +2. Then
a = ±

√
2, and m = ±2

√
2. Thus the equations of the tangent lines are y = 2

√
2x and

y = −2
√

2x.

13. First find the partial fraction decomposition, i.e. A abd B such that
1

x2 + x
=

A

x
+

B

x + 1
.

Multiply both sides by x2 + x = x(x + 1):

1 = A(x + 1) + Bx

1 = (A + B)x + A ⇒ A + B = 0 and A = 1, then B = −1.

Thus f(x) =
1

x2 + x
=

1
x
− 1

x + 1
= x−1 − (x + 1)−1.

f ′(x) = −x−2 + (x + 1)−2

f ′′(x) = 2x−3 − 2(x + 1)−3

f ′′′(x) = −2 · 3x−4 + 2 · 3(x + 1)−4

. . .

f (n)(x) = (−1)nn!x−n−1 − (−1)nn!(x + 1)−n−1

Note: this formula can be proved by Mathematical Induction.

15. Since A and B are given, the length of AB is given. Now, to maximize the area of
4ABC, we have to maximize the height hc. To do this, the point C must lie on the
tangent line parallel to the given line. Thus the slope of the parabola at C must be
equal to m. Then the x-coordinate of C is

m

2
(since the slope is 2x). The y-coordinate

of C is then
m2

4
.

x

y

A

B

C

17. Consider the graphs of f(x) = x2 + ax+1 and g(x) = cos x. Both graphs pass through
the point (0, 1). The graph of g(x) = cos x has slope 0 at that point. If the slope of
f(x) = x2 + ax+1 at (0, 1) is positive, then for some small negative values of x we will
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have x2 + ax + 1 < cosx. If the slope of f(x) = x2 + ax + 1 at (0, 1) is negative, then
for some small positive values of x we will have x2 + ax + 1 < cos x. The only case in
which x2 + ax + 1 ≥ cos x for all real x is when the slope of f(x) = x2 + ax + 1 at
(0, 1) is 0. The derivative of f(x) is f ′(x) = 2x+a, thus the slope at (0, 1) is f ′(0) = a.
Therefore a = 0 is the only such value of a.

pos. slope neg. slope

slope 0

19. Let the point A (with positive x-coordinate) where the circle touches the parabola be
(a, a2), and the center B of the circle be (0, b). Then the distance between these points
is 1, thus

a2 + (b− a2)2 = 1.

y

x

y=x2

1

A

B

The slope of the parabola at the point (a, a2) is 2a (the derivative of x2 at x = a), then

the slope of AB is − 1
2a

(since AB and the parabola are orthogonal at (a, a2)). Thus
we have

b− a2

0− a
= − 1

2a
.

The last equation gives b− a2 =
1
2
, then from the first equation we have

a2 +
1
4

= 1 ⇒ a2 =
3
4
. Then b = a2 +

1
2

=
3
4

+
1
2

=
5
4
.

21. Our region consists of 4 parts of equal area.
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3

3

2

1

The total area of our region is 4 times the area of each part.

2

A

B

O

A

B

D

C

O

 C

D

1 3

3

The area of each part is the area of sector OAD minus the area of sector OBD minus
the area of triangle OBC minus the area of triangle OAC.

A has coordinates (1,
√

8), thus AreaOAD =
9arccos(1/3)

2
.

B has coordinates (
√

5, 2), thus AreaOBD =
9arcsin(2/3)

2
.

OBC has base BC =
√

5− 1 and height hBC = 2, thus AreaOBC =
2(
√

5− 1)
2

.

OAC has base AC =
√

8− 2 and height hAC = 1, thus AreaOAC =
√

8− 2
2

.

Then AreaABC =
9 arccos(1/3)− 9 arcsin(2/3)− 2(

√
5− 1)− (

√
8− 2)

2

=
9 arccos(1/3)− 9 arcsin(2/3)− 2

√
5−√8 + 4

2

The total area is then 2(9 arccos(1/3)− 9 arcsin(2/3)− 2
√

5−
√

8 + 4)

23. Let the right intersection point have coordinates (a, c). Then c = 8a− 27a3.
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a

c

If the areas of the shaded regions are equal then the area of the region under the given
cubic curve from x = 0 to x = a is equal to the area of the rectangle with width a and
height c = 8a− 27a3. Thus we have∫ a

0

8x− 27x3 = a(8a− 27a3)

(
4x2 − 27

4
x4

)∣∣∣∣
a

0

= 8a2 − 27a4

4a2 − 27
4

a4 = 8a2 − 27a4

81
4

a4 = 4a2

81a4 = 16a2

81a2 = 16 (since a 6= 0)

a =

√
16
81

=
4
9

Then c = 8a− 27a3 =
32
9
− 27 · 43

93
=

32
9
− 64

27
=

96− 64
27

=
32
27

25. Assume that a, b, and c are all positive.

Case 1. At least 2 of a, b, and c are equal. Without loss of generality we can assume
that a = b. Then the intersection of the xy-plane and the ellipsoid is a circle whose

equation is
x2

a2
+

y2

b2
= 1, z = 0.

Case 2. The numbers a, b, and c are all distinct. Without loss of generality we can
assume that a > b > c. The intersection of the xy-plane and the ellipsoid is an ellipse

whose equation is
x2

a2
+

y2

b2
= 1, z = 0. The intersection of the zy-plane and the ellipsoid

is an ellipse whose equation is
z2

c2
+

y2

b2
= 1, x = 0. Now rotate the first ellipse until it

coincides the second ellipse so that the y-axis is always in its plane. Then one if its axes
is always b, and the other one is changing continuously from a > b to c < b. Becuase
of continuity, at some point it is equal to b.

27. If the function a1 cos x + a2 cos(2x) + . . . + a30 cos(30x) takes on only positive values,
then its integral over any interval must be positive (because it is the area of the region
under the graph of the function). However,
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∫ 2π

0

(a1 cos x + a2 cos(2x) + . . . + a30 cos(30x))dx =

(
a1 sinx +

a2

2
sin(2x) + . . . +

a30

30
sin(30x)

)∣∣∣
2π

0
= 0.

Therefore, the given function must take on negative values as well.

29. At x = 0 we have
x

x2 + 1
= arctan x = x.

Let’s compare the derivatives of these functions for x > 0. The derivatives are:(
x

x2 + 1

)′
=

1− x2

(x2 + 1)2
,

(arctan x)′ =
1

x2 + 1
=

1 + x2

(x2 + 1)2
,

(x)′ = 1 =
x2 + 1
x2 + 1

.

We see that for all x > 0,
(

x

x2 + 1

)′
< (arctan x)′ < (x)′, therefore the curve y =

x

x2 + 1
lies below the curve y = arctan x which lies below the line y = x.

31. Obviously, the 4-dimensional volume of a 4-dimensional ball is proportional to the
fourth power of its radius. Suppose V = cr4 where c is a constant. Then the 3-

dimensional volume of the boundary of this ball is S = V ′ = 4cr3. Therefore
V

S
=

cr4

4cr3
=

r

4
. If r = 4,

V

S
= 1.

33.
∫ 1

0

( 3
√

1− x7 − 7
√

1− x3)dx =
∫ 1

0

3
√

1− x7dx−
∫ 1

0

7
√

1− x3dx.

The integral
∫ 1

0

3
√

1− x7dx is equal to the area of the region bounded by y = 3
√

1− x7,

the x-axis, and the y-axis.

The integral
∫ 1

0

7
√

1− x3dx is equal to the area of the region bounded by y = 7
√

1− x3,

the x-axis, and the y-axis.

Equations y = 3
√

1− x7 and y = 7
√

1− x3 can be rewritten as x7 + y3 = 1 and
x3 + y7 = 1 respectively. It is easy to see that both curves pass through (1, 0) and
through (0, 1), and these two curves are symmetric about the line y = x. Thus the areas
of the two regions described above are equal, therefore the difference of the integrals∫ 1

0

3
√

1− x7dx and
∫ 1

0

7
√

1− x3dx is 0. Thus
∫ 1

0

( 3
√

1− x7 − 7
√

1− x3)dx = 0.

35. Since f(0) = 0 and sin(0) = 0, |f(x)| < | sin(x)| for all x, and the slope of y = sin(x)
at (0, 0) is 1, we have |f ′(0)| < 1.

Since |f ′(0)| = |a1 + 2a2 + . . . + nan|, the required inequality follows.

37. Let the curve be given by y = f(x). Since it passes through (3, 2), f(3) = 2.

At a point P (a, f(a)), the tangent line has slope f ′(a), and equation y−f(a) = f ′(a)(x−
a). Its x-intercept is

(
0,− f(a)

f ′(a)
+ a

)
. The part of the tangent line that lies in the
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first quadrant is bisected by P iff 2a = − f(a)
f ′(a)

+ a. Thus af ′(a) = −f(a). Since this

must be true for every point on the curve in the first quadrant, we have the differential
equation xf ′(x) = −f(x). Any function of the form f(x) =

c

x
is a solution of this

equation. Using the condition f(3) = 2, we find c = 6. So f(x) =
6
x

satisfies the
required condition.

38. Reason 1: a cubic polynomial has at most 3 real roots while the given curve has 5
x-intercepts.

Reason 2: a cubic poynomial has at most 2 local extremum points (because its derivative
is a quadratic polynomial and thus has at most 2 real roots) while the give curve has
4 local extrema.

39. The 5-dimensional volume of a 5-dimensional ball is proportional to the 5-th degree
of the radius. Let V = cr5 where c is a constant. The 4-dimensional volume of its
boundary (let’s denote it by B) is the derivative of the volume: B = 5cr4. Therefore

the ratio is
V

B
=

cr5

5cr4
=

r

5
.

40. Since arcsin(x) (defined on [−1, 1]) is the inverse function of sin(x) on
[
−π

2
,
π

2

]
, their

graphs are symmetric about the line y = x, thus the value of
∫ 1

0

arcsin(x)dx, the area

of the region under the graph of arcsin(x) on [0, 1], is equal to the area of the region
between y = sin(x) and y = 1 from x = 0 to x =

π

2
. (Draw the graphs to see this!)

The latter area can be calculated by
∫ π

2

0

(1− sin(x))dx = (x + cos(x))
∣∣∣

π
2

0
=

π

2
− 1.

17.16 Various problems

1. Show that there is no reentrant knight’s tour on a 5× 5 chessboard.

Proof 1: In a reentrant knight’s tour black and white squares must alternate. But a
5× 5 chessboard has 13 squares of one color and 12 squares of the other color, so it is
not possible to have a cylce in which the colors alternate.

Proof 2: Draw a graph representing legal moves of a knight.
Look at the corner vertices. They all have degree 2, thus, in
order to visit the corner vertices, we must use both edges at
each corner vertex. Those 8 edges form a cycle. It is not
possible to add more edges to this cycle, but the cycle misses
many points. Therefore there is no Hamilton cycle, and thus
there is no reentrant tour.

2. A sequence {an} is defined recursively by the equations

a0 = a1 = 1 n(n− 1)an = (n− 1)(n− 2)an−1 − (n− 3)an−2.
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Find the sum of the series
∞∑

n=0

an.

Sketch: Calculate first few terms, and notice that an =
1
n!

. Prove this formula by

induction. Then
∞∑

n=0

an =
∞∑

n=0

1
n!

= e.

3. Solve the inequality: |6− |x| − x|+ x ≤ 3.

Solution 1. Consider positive and negative values of x separately:

Case I. x ≥ 0, then |x| = x, and the inequality becomes |6− 2x|+ x ≤ 3.

Case Ia. If 6− 2x ≥ 0, or x ≤ 3, then |6− 2x| = 6− 2x, and we have 6− 2x + x ≤ 3.
This gives x ≥ 3. Together with the condition x ≤ 3, we get one root x = 3. This root
satisfies the condition x ≥ 0.

Case Ib. If 6−2x < 0, or x > 3, then |6−2x| = −6+2x, and we have −6+2x+x ≤ 3.
This gives x ≤ 3 which contradicts the condition x > 3. Thus we have no roots in this
case.

Case II. x < 0, then |x| = −x, and the inequality becomes |6| + x ≤ 3, or 6 + x ≤ 3
since |6| = 6. Then x ≤ −3. All the values of x ≤ −3 satisfy the condition x < 0.

Answer: x = 3 and x ≤ −3. In the interval notation, (−∞,−3] ∪ {3}.
Solution 2. Draw the graph of f(x) = |6− |x| − x|+ x.

y=6−|x|−x

6

3

y=6−|x|
6

y=|6−|x|−x|

3

6

3

6

y=|6−|x|−x|+x

−3

3

We see that f(x) ≤ 3 when x = 3 and when x ≤ 3.

4. • Find an example of a polygon and a point in its interior, so that no side of the
polygon is completely visible from that point.

• Find an example of a polygon and a point in its exterior, so that no side of the
polygon is completely visible from that point.

13. Suppose that the 9 bags contain different numbers of coins, and the total number of
coins is 40. Let a1 < a2 < . . . < a9 be the numbers of coins in the 9 bags. Then a1 ≥ 1,
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a2 ≥ 2, . . ., a9 ≥ 9, and 40 = a1 + a2 + . . . + a9 ≥ 1 + 2 + . . . + 9 = 45. Since 40 < 45,
we get a contradiction, thus it is not possible for all bags to contain different numbers
of coins.

14. First notice that years 2008, 2012, 2016, 2020, and 2024 are leap years. The other 15
years from 2006 to 2025 (including these) are not. Since non-leap years contain 365
days and leap years contain 366 days, the number of days that pass between December
14, 2005 and December 14, 2025 is 15 · 365 + 5 · 366 ≡ 1 · 1 + 5 · 2 ≡ 11 ≡ 4 (mod 7),
therefore December 14, 2025 is 4 days after a Wednesday, i.e. is a Sunday.
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