The

reatest

‘Two-Point
Answer Ever

WiLLiam DUNHAM AND HANK SNEDDON

William Dunham

have been teaching college mathematics for
nearly 40 years, and in that time I've given
(and, alas, graded) thousands of exams. It is no
small achievement for one particular answer on
one particular exam to stand out over all these
decades. But one does, and this is its story.

In the spring semester of 2013, T was a, visiting pro-
fessor of mathematics at Harvard, where I had been
invited to teach a course on the work of Leonhard
Euler. The course title, “Much Ado About Everything,”
pretty much says it all. Euler stands as a mathemati-
cal dynamo whose contributions were, and forever will
be, fundamental throughout our discipline. It is next
to impossible to take a mathematics class without en-
countering concepts such as the Euler phi function, the
Euler line, the Euler polyhedral formula, or the Euler
identity. He pops up in analysis, number theory, and
discrete mathematics. He is a fixture in courses both
pure and applied. We now live in an age of specialists,
but Euler’s specialty seemed to be omniscience.

I'had designed my class for mathematically inquisi-
tive students in their first or second year of college. I
imagined that my audience would display substantial
mathematical talent——it was Harvard, after all-—but
would also enjoy something a little different. Thus, the
course had historical and even biographical compo-

nents, but it was primarily an examination of some of
Euler’s greatest mathematical hits.
Partway through the semester, when considering
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Euler’s number theory, I introduced the Euler sigma
function. If n is a whole number, we define o(n) to be
the sum of all the whole number divisors of n. As an
example, 0(12)=1+2+3+4+6+12=28. T also
stressed this function’s critical multiplicative property:
If a and b are relatively prime, then o(ab) = o(a)a(b).

As an aside, [ should mention that Euler actually
wrote J n rather than o(n). Of course this borders on
sacrilege, given the exalted status of the integral sign.
It would be like using @ for something other than
the G-clef or £ for something besides pounds sterling.
Modern mathematicians have abandoned Fuler’s nota-
tion and made the lowercase sigma their symbol of
choice for the sum of a whole number’s divisors.

Be that as it may, at semester’s end I had to pre-
pare a final exam. As all professors know, this involves
balancing easier and harder problems that properly
reflect the class material. After several false starts
and adjustments, I still found myself two points short
and so needed to write one more (very easy) question.
Thus, I inserted the following:

Challenge. Prove, or disprove via counterex-

ample, the assertion: If n is a whole number, then
a{a(n)) < 4n.

I can report that, of my 23 students, all but two
instantly disproved this with the counterexample of
n =6, for clearly o(o0(6)) = 0(12) =28 >4-6. One
“student, who apparently had forgotten the definition
of o, said that the conjecture was true and offered a
flawed proof. And one student gave the most impres-
sive answer I had seen in four decades of exams.

The student was Hank Sneddon, a first-year math
concentrator from Los Angeles. Hank disproved the
conjecture with a curious theorem that he concocted
and demonstrated on the spot, namely: If n is an even
perfect number, then o(o(n)) > 4n.

Our class had studied perfect numbers—i.e., num-
bers that are the sum of their proper divisors, like
6 =1+ 2+ 3. In the last proposition of Book IX of
the Elements, Euclid demonstrated that, if 2F —1 is
prime, then the number n = 2k_1(2’C —1) is perfect. Of
course, in this case n is also even. So, Euclid had given
the world a sufficient condition for a number to be
even and perfect.

After the passage of 20 centuries, Euler came along
and showed that Euclid’s condition was also neces-
sary. That is, Euler proved that, if n is an even perfect
number, then n must have the form n = 2F71(2% —1),
where 2F —1 is prime. As I had showed in class,
Buler’s strategy of proof was to employ the sigma
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function, noting that a number n is perfect precisely
when o(n) = 2n. (For details, see W. Dunham, Euler:
The Master of Us All, MAA, 1999, chapter 1.)

S0, Hank had encountered perfect numbers before.
But he had not seen anything like the inequality that
I’d posed as my two-point challenge. And, in spite of
the fact that it was meant to be an easy exercise, he
furnished a nice proof of his little theorem.

I'll now pass the baton to Hank, who can describe
his proof and a few subsequent developments.

Hank Sneddon

pon seeing this problem on the final, I
figured that rather than just plugging
in a numerical value, I'd like to un-
derstand what o(o(n)) actually looked
like. At the very least, I wanted to
know if it was simple to calculate, and, because I
had plenty of time left on the exam, I wasn’t too
worried that these musings would hurt me. I began
to play around and push through the inequalities
that led to an answer. Here was my line of attack.

Theorem. If n is an even perfect number, then
o(o(n)) > 4n.

Assume n is even and perfect. Then we know that
n= 2k_1(2k —1) where the right-most factor is prime
and, further, that o(n) = 2n. Thus,

o(a(n)) = o(2n) = o(28(2¥ — 1)) = o(2M)e(2F — 1)

because 2% and 2% -1 are relatively prime. We had
seen in class that

oM =142+ 4+ +2F =2F1_1

and the primality of 2fF —1 guarantees that

o(2* —1) = 2%, Thus, I knew that

o(a(n)) = (2F —1)2%. It remained to relate this to the
inequality posed by the exam question. To do this, I
reasoned that

2F 1> oF 9 =92k —1).

Consequently,
o(o(n)) = (25 — 1)2*
> 2(2F —1)2*
= 4(2% 2% - 1))
= 4n.

This proved my theorem.
For good measure, I provided a specific numerical
example by using the first even perfect number that
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came to mind: n = 6. I figured I had earned my two
points.

Afterwards, I thought more about this problem and
realized that I could find a closed-form expression for
o(o(n)) that would yield the inequality immediately.
My new and improved proposition was:

Theorem. If n is an even perfect number, then

14+V1+8n
o(o(n)) = 4n+ 5 *

Before proving this theorem, T should concede that
it looks strange, for o(o(n)) must be a whole number,
yet the square root seems to inject a note of irrational-
ity. But nisn’t just any whole number. Because it is
even and perfect, it has a specific form that makes this
irrationality an optical illusion.

Starting with Euler’s criterion that n = 2¢71(2% —1),
Ifirst claim that

of _ L+ \/1+8n

2

This follows because

1 o oke ok
5((2) —-2%).

n = 2k~1(2k _1) - 22.’(571 _ 2k71 =
Thus (2%)% — 2% = 2n, and so (2%)* —(2%)—2n = 0.
The quadratic formula gives

_1++1+8n

2

2k

where we use only the positive root because 2¥ > 0.
Using our previous calculations and this
result, we see that

o(o(n)) = (2F —1)2k
— 9%+l _ 9k
e 4(22k—1 _ 2k—2)
— 4(2k—1(2k . 1) + (Zk_l _ 2]672))
= 4(n+ 252
=4n + ok

14+ 14 8n
— 5

=4n+

And that concludes the proof.
From this theorem, it is obvious that o(o(n)) > 4n.
Anyone wishing to push things further will find that,
if n is even and perfect, then

o(o(o(n))) = 1+ 8n- o(\/1+ 8n).

But I think T’ll stop there. After all, this was only a
two-point problem. M
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