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Welcome to the
Playground. Playground
rules are posted on page
33, except for the most
important one: Have fun!

In this section, we highlight
problems that anyone can play with, regardless of math-
ematical background. But just because these problems are
easy to approach doesn’t necessarily mean that they are
easy to solve!

Problem 326. In One-Sum, Alan Loper (Ohio
State, Newark) and Greg Oman (University of
Colorado) ask you to find all positive integers n such
that the base 10 representation of 1+ 2+ -+ n con-
sists of all ones.

Problem 327. A two-person game is played as fol-
lows. A rectangular box with dimensions 5x13 x 31
is filled with 5-13.31 = 2,015 unit cubes, where each
unit cube has a unique (z,y,2) address in the box. Alice
selects a cube (a,b,¢) and removes it; she also removes
all the cubes in the three lines through this cube parallel
to the edges of the box.

For instance, if Alice chooses (1,2,3), then all cubes
with addresses (x,2,3), (1,4,3), and (1,2,z) will be re-
moved. (The remaining cubes stay in place—there is no
gravity in this problem.)

Then Bob does the same thing; he chooses a unit
cube from what remains, and he removes it and every-
thing else along the three lines determined by his cube.
The players alternate turns, each time choosing a cube
as above.

Assume each player takes as many cubes as possible
each turn. There is no winner; the players hug at the
end. Grabbing Cubes asks three questions.

1) How long will this game last?

2) How many cubes will each player end up with?

3) Note that 2,015 is the product of three distinct

odd primes. Will I still be editing this column the
next year this happens?
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This section offers problems with connections to
articles that appear in the magazine. Not all Zip-Line

problems require you to read the corresponding article,
but doing so can never hurt, of course.

Problem 328. In A Conversation with Tim Gowers
(page 10), we discussed Gowers’s work with arithmetic
progressions. This problem, Prime Time, concerns
a subsequence of an arithmetic sequence. Show that
there is a prime number p and an infinite sequence of

positive integers a1 < az <--+ so that every term in

the sequence p+ 2015a1,p + 2015ay,p + 2015a3,... is
prime.
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Any type of problem may appear in the Jungle
Gym—climb on!

Problem 329. For each positive integer n, draw the
quarter-circle z% 4+ y% = n in the first quadrant of the
zy-plane. Let a, be the number of positive integer lattice
points on this quarter-circle, that is, points (a,b) where
both a and b are positive integers. For example, a5 = 2
because (1,2) and (2,1) satisfy 22 +y? = 5. The se-
quence begins a1 = 0,a3 = 1,a3 = 0,04 = 0,a5 = 2,...

In Supernova, you have two tasks:

1) Show that ay = 0 for infinitely many k.

2) Show that ay =1 for infinitely many k.

Extra credit: Can you say anything about the num-
ber of times ay =n for n>17

ARO)
OLDIES BUT GOODIES

In this section, we present an old problem that we
like so much we thought it deserved another go-round.
Try this, but be careful—old equipment can be danger-
ous. Answers appear at the end of the column.

Suppose every point in the ziy-plane is colored red,
green, or blue. Show that there must be two points a
distance 1 apart with the same color.

Problem 318. In Odd Job, Greg Oman asked you
to find all positive integers n and k satislying

14345+ +(2n—1)
=2n+1)+2n+3)+(2n+5)+ -+ (2n+ (25 —1)).

We received solutions from Adnan Ali (Mumbai,
India), Dmitry Fleischman, Dana Lacey (North
Central College), Brooke Logan (Rowan University),
Jessop Lueschow (University of Wisconsin, Platteville),
Angel Plaza (Universidad de Las Palmas de Gran
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Canaria, Spain), Henry Ricardo (New York Math
Circle), Tyler Schmitt (University of Wisconsin,
Platteville), Randy Schwartz (Schoolcraft College), and
the Armstrong Problem Solvers of Armstrong State
University, the Missouri State University Problem
Solving Group, the Northwestern University Problem
Solving Group, the Problem Solving Group from the
Department of Financial and Management Engineering
(University of the Aegean), the San Francisco
University High School Team, and the Pittsburg State
University Problem Solving Group.

We also received solutions from two separate teams
from Taylor University: Josh Stimmel, Cassidy Wyse,
and Becca Gerig; and Jason Kimball, Thaddeus
McClatchey, and Cameron Eckman.

There are no solutions to the equation. Note that
the sum on the left is n’, and the sum on the right is
(n+ k)2 —n> Settzing these equal and doing a bit of
algebra gives ("T*k = 2. This is impossible, because,
as the ancient Greeks proved before any of us were

born, 2 is irrational.

Problem 319. Tom Yuster gave us this problem. In
No Roots for You, Alice and Bob alternate turns,
each one assigning a nonzero real number to one of the
coeflicients of a polynomial, with Alice going first.
Once a value has been assigned to a coefficient, it
cannot be changed. The game ends when all the coef-
ficients have been assigned. Alice wins if the resulting
polynomial has no real roots, and Bob wins otherwise.

1} Suppose Alice and Bob play this game with the

quadratic polynomial az’ + bz + ¢ Assuming
both players use optimal strategies, who will
win? Describe that winning strategy.

2) Repeat part 1 for the quartic polynomial

az* +bz® 4 cz® + dz + e
We received a solution to both parts from the San

Francisco University High School Team (C J Dowd,
Julia Wei, Benjamin Share-Sapolsky, and Michael Lin).
We also received solutions for part 1 from the
Armstrong Problem Solvers (Armstrong State
University) and the Problem Solving Group from the

Department of Financial and Management Engineering
(University of the Aegean), and from two teams

from Taylor University: Jason Kimball, Thaddeus
McClatchey, and Cameron Eckman; and Josh Stimmel,
Cassidy Wyse, and Becca Gerig.

1) Note that Alice wins precisely when the discrimi-
nant b2 — 4ac < 0. Alice can force a win by assigning
b =1 in her initial turn. When Bob assigns a (nonzero)
value to a or ¢, Alice can select a value for the other co-
efficient so that 1—4ac < 0 (for example, if Bob assigns
a, Alice can choose ¢ =1/ a).

2} Bob can always win when the polynomial p(z) is a
quartic. We follow the proposer’s solution. First, note
that Bob wins if a and e have opposite signs. So Alice
will choose b, ¢, or d initially. On Bob’s first turn, he
sets a = 1. This forces Alice to choose a positive value
of e on her next turn.

At this point, there are two cases, depending on
whether Alice chooses ¢ or one of b or d on her first
turn (the choices for b or d can be treated together by
symmetry).

Case 1: Assume Alice chooses a value for b initially
(the d case is identical). Let f(z) = z* + bz + cz? + ¢,
where ¢ is temporarily undetermined. Bob can choose
cso that f(1) <0 and f(—1)< 0. Now, he wins: No
matter what value Alice chooses for d, at least one of
p(1) or p(—1) will be negative. Because p(0) >0, p
must have a real root.

Case ii: Assume Alice chooses a value for ¢ initially.
Then set f(z) = z* + cz? + e. Let M be the absolute
maximum of fon the interval [-2,2]. Then Bob can
win if he selects d = —2M. To see this, note that
g(z) = z* + ca? — 2Mz + e has g(1) < —M. This forces
Alice to choose b > M so that p(1) > 0. But then
p(—2) = f(—2)—8b 4+ 4M < —3M < 0, so p must have
a root.

Tom Yuster points out that this strategy works
for all polynomials of degree 2n > 2. Bob forces the
choice of lead and constant terms with the first move.
Then Bob removes even degree terms until move n.
There will either be an even degree term and an odd
left, or two odds. Then Bob plays as above in each
case (using the low degree term when there are two
odds).

Problem 320. Joshua Bowman’s article about bil-
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liard paths in polygons gave us Bank Shot. There
were two parts:

1) A pool table has dimensions a x b for positive
integers a and b, with holes in each of the four corners.
A ball is shot from one corner of the table at a 45-
degree angle. How many times will it bounce off a wall
before it lands in a pocket?

2) Now try this in three dimensions: A box with
dimensions a x b x ¢ (for positive integers a, b, and
¢) has holes in each of its eight corners, and a ball is
shot from one corner along the line z = y = z. How
many times will it bounce off a wall before it lands in
a pocket?

We received solutions from the Armstrong Problem
Solvers of Armstrong State University and the
Pittsburg State University Problem Solving Group. We
received partial solutions from Dmitry Fleischman, the
Missouri State University Problem Solving Group, and
the San Francisco University High School Team.

1) The answer is gc‘fi‘(jb) — 2. The easiest procedure
uses the reflection principle. Instead of having the ball
bounce around the table, tile the plane with a x b
rectangles and pretend the path of the ball is the line
y =z, as in figure 1.

Figure 1.

There is a one-to-one correspondence between the
places the ball bounces off a cushion and the places the
line y =z crosses one of the grid lines formed by the
rectangles. Thus, the ball will land in a pocket when
the line y = ¢ first meets a point of the form (ma,nb)
for some positive integers m and n. When this hap-
pens, the ball will have crossed m + n —2 lines in its
path from (0,0) to (ma,nb).

Thus, we seek the smallest values of m and n that
satisfy ma = nb. That is, ma = nb = lem(a,b).
Putting this together with the fact that
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lem(a,b)ged(a,b) = ab, we obtain our answer.

2) The Armstrong Problem Solvers envisioned
this as racquetball in zero gravity. The reasoning is
similar to the solution for part 1. Let [ = lem(a,b,c),
, =lem(a,b), lo =lcm(a,c), and I3 = lem(b,c). Then
the number of bounces is

. [z I
a+b c l1+lg+ng.

This follows exactly as before, but we need to con-
sider the cases where our ball hits two walls simul-
taneously. (Note: The incorrect, but tempting, guess
of i + é + ﬁ — 3 is valid when the three numbers are
pairwise relatively prime. In the general case, this
overcounts the number of bounces and the subtracted
terms correct the overcount.)

Problem 321. Draw n lines in the plane, no two
parallel, no three (or more) through a common point of
intersection. Call a region formed by these lines trivial
if it is bounded by only two lines. Region Count asks
you to find the maximum and minimum values for the
number of trivial regions n lines can create.

We received complete solutions from the Armstrong
Problem Solvers of Armstrong State University and
the San Francisco University High School Team. We
also received partial solutions from Sarah Seales and
the Taylor University team of Josh Stimmel, Cassidy
Wyse, and Becca Gerig.

When n = 2, there are four trivial regions. When
n > 2, the minimum number of trivial regions is three
and the maximum number is either n (when 7 is odd)
or n—1 (when n is even).

First, the minimum: To see that the minimum must
be at least three, choose a circle large enough to contain
all of the (72‘) intersection points. Then shrink the circle
until it meets three extreme points. Each of those points
will be the vertex of a trivial region, as in figure 2.

To see that the minimum is three, the Northwestern
group constructed
a collection of
lines mutually tan-
gent to a circle, as
figure 3. It is clear
this procedure will
create three trivial
regions, each one
incident to one of
the three distin-
guished points of

intersection.

Figure 2.




For the
maximum, we
again follow
the argument
given by the
Northwestern
group. First,
note that there
are a total of
2n unbounded
regions. (This
can be proven
by induction,
but it is easy to

5

Figure 3.

see: Draw n lines
on a piece of paper, then hold the paper very far from
your eye. It will appear that the n lines go through a
common point, and this clearly gives 2n unbounded
regions.) Tt is
impossible for
trivial regions to
share a bound-
ing line; if they
did, there would
be three lines
through a point.
Hence, the
number of trivial
regions is at
Figure 4.

most n.

As before, it
remains to show
that the maximum can be achieved. For odd n, draw a
regular n pointed star, as in figure 4.

For n even, we can achieve n —1 regions by first
creating a configuration of n +1 lines with n +1
trivial regions, then removing a line. This destroys two
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Submission & Contact Information

The Playground features problems for students at the
undergraduate and (challenging) high school levels. All prob-
lems and/or solutions should be submitted to Gary Gordon,
Mathematics Department, Lafayette College, Easton, PA
18042. Electronic submissions (PDF format preferred) may
also be sent to gordong@lafayette.edu. Please include your
name, email address, and school affiliation, and indicate if
you are a student. If a problem has multiple parts, solutions
for individual parts will be accepted. Unless otherwise stated,
problems have been solved by their proposers.

The deadline for submitting solutions to problems in this
issue is November g, 2015.

trivial regions, leaving n — 1. To see this is the larg-
est possible number, suppose there were a configura-
tion with n trivial regions. Then, moving through the
2n unbounded regions clockwise, we must encounter
trivial and nontrivial regions consecutively. Label these

Ty, Ny, To, Ny, ..., Ty, N,, where the T; are trivial and
the N; are nontrivial. But then T,/o and T, are trivial
regions bounded by the same lines, which is impossible.

] SOLUTION |
Suppose we tried to color the plane using three col-
ors so that points one unit apart have different colors.
We begin with the seven points in figure 5 called the
Moser spindle (named after brothers Leo and William
Moser). Edges indicate points that are one unit apart.

Color the top point
red. The four adjacent

points must be blue
and green, and one of
the remaining points is
red, but then there is
no color available for
the final point. Thus,
coloring the plane is
impossible.

This is (part of) a
famous unsolved prob-
lem: Find the mini-
mum number of colors
needed to color every point in the plane so that no two

Figure 5.

points that are a distance 1 apart are the same color.
Call this number m. Then the Moser spindle shows
m > 4. For sleepless nights, try showing m < 9. (In
fact, it is known that 4 <m <7.) W
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Corrections

We have two corrections for the April 2015
issue. In “The Spirograph & Mathematical
Models from 19th-Century Germany” by Amy
Shell-Gellasch, the curtate cycloid was mis-
spelled (‘é,s curate cycloid). And in “What Were
They Thinking? A Look at Life in 1915” by
Deanna Haunsperger and Pamela Richardson

Ivan Nivan’s first name was misspelled.
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