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Proposals
To be considered for publication, solutions should be received by November 1, 2018.

2046. Proposed by Ioan Bǎetu, Botoşani, Romania.

For integers m, n such that 1 ≤ m < n, let Sn be the group of all permutations of
{1, 2, . . . , n}, let F be the set of permutations σ ∈ Sn such that σ (m) < σ (m+ 1) <

· · · < σ (n), and let T be the set of transpositions in F . Prove that there exists a unique
subgroup G of Sn such that T ⊂ G ⊂ F .

2047. Proposed by George Stoica, Saint John, New Brunswick, Canada.

Let (an) be a sequence of nonzero real numbers such that

lim
n→∞ n

(∣∣∣∣ an
an+1

∣∣∣∣ − 1

)

exists and is strictly positive. Prove or disprove: The sequence (an) is necessarily
convergent.

2048. Proposed by Julien Sorel, Piatra Neamt, PNI, Romania.

Three points A, B,C are chosen uniformly at random in the three-quarter disk

Q = {(x, y) ∈ R
2 : x2 + y2 ≤ 1, and either x ≤ 0 or y ≤ 0}

obtained by removing the first quadrant of the unit disk. What is the probability that
the origin O = (0, 0) lies inside �ABC?
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We invite readers to submit original problems appealing to students and teachers of advanced
undergraduate mathematics. Proposals must always be accompanied by a solution and any relevant
bibliographical information that will assist the editors and referees. A problem submitted as a
Quickie should have an unexpected, succinct solution. Submitted problems should not be under
consideration for publication elsewhere.

Proposals and solutions should be written in a style appropriate for this Magazine.
Authors of proposals and solutions should send their contributions using the Magazine’s sub-

missions system hosted at http://mathematicsmagazine.submittable.com. More detailed instruc-
tions are available there. We encourage submissions in PDF format, ideally accompanied by LaTeX
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2049. Proposed by Scott Duke Kominers, Harvard University, Cambridge, MA.

Show that any finite set of squares in the plane (possibly of different sizes and not
necessarily disjoint) has a subset consisting of non-overlapping squares that together
cover at least 7% of the area covered by the full set.

2050. Proposed by Sung Soo Kim, Hanyang University, Ansan, Korea.

Find the number of sequences a1, a2, . . . , a9 in {1, 2, 3} such that

(i) a1 = a2 = 1, and
(ii) the nine pairs (a1, a2), (a2, a3), . . . , (a8, a9), (a9, a1) are the same as the nine

pairs (1, 1), (1, 2), . . . , (3, 2), (3, 3) in some order.

Quickies
1081. Proposed by Lokman Gökçe, Adana, Turkey.

Let �ABC be an obtuse “golden triangle” with angles ∠BAC = 108◦, ∠BCA =
∠CBA = 36◦. Let R and r be the circumradius and inradius of �ABC, respectively,
and let I be its incenter. Show that

AI + BI +CI = 3R− 2r, and

AI2 + BI2 +CI2 = 4R2 − 6Rr.

1082. Proposed by Michel Bataille, Rouen, France.

Let f be a nonnegative, continuous function on [0, 1]. Prove that

1

6

∫ 1

0
f (x) dx+ 1

2

∫ 1

0
( f (x))5 dx ≥ 1

3

∫ 1

0
( f (x))4 dx+ 1

5

∫ 1

0
( f (x))2 dx.

Solutions
When an operation on primes commutes June 2017

2021. Proposed by Mihai Caragiu, Ohio Northern University, Ada, OH.

For an integer n > 1, let �(n) be the greatest prime factor of n. Consider a binary
operation ‘∗’, on the set P = {2, 3, 5, 7, . . .} of all primes, defined by p ∗ q = �(2p+
q) for all primes p, q. Find all distinct primes p, q such that p ∗ q = q ∗ p.

Solution by Abhay Goel (student), Kalamazoo College, Kalamazoo, MI.
We have 2 ∗ 5 = �(9) = 3 = �(12) = 5 ∗ 2 and 2 ∗ 23 = �(27) = 3 = �(48) =
23 ∗ 2, sowe have solutions {p, q} = {2, 5} or {2, 23}.We prove that there are no others.

Assume that distinct primes p, q satisfy p ∗ q = q ∗ p = r, say. Thus, r is a prime, r |
2p+ q, and r | 2q+ p. Hence, r | 3(p+ q) = (2p+ q) + (2q+ p). Since r is prime,
either r = 3 or r | p+ q. However, if r | p+ q, then r | p = (2p+ q) − (p+ q) and
r | q = (2q+ p) − (p+ q); since p, q are different primes, they cannot have a common
prime factor r. Thus, we must have r = 3. Since r is the largest prime divisor of each
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2p+ q and 2q+ p, both these numbers must be of the form 2a3b for some integer
exponents a ≥ 0, b ≥ 1. We prove that p = 2 or q = 2. Indeed, if we had p �= 2 and
q �= 2, then p and q, and hence 2p+ q and 2q+ p, would both be odd; thus,

2p+ q = 3b and 2q+ p = 3c, for some integers b, c ≥ 1.

Solving for p, q we obtain,

p = 2 · 3b−1 − 3c−1 and q = 2 · 3c−1 − 3b−1.

If we had b > 1 and c > 1 then the expressions above show that 3 | p and 3 | q, con-
tradicting the assumption that p and q are distinct primes; therefore, b = 1 or c = 1.
Now, if b = 1, then p = 2 − 3c−1 < 2; if c = 1, then q = 2 − 3b−1 < 2, a contradic-
tion. Thus, we conclude that p = 2 or q = 2. Without loss of generality, assume p = 2
and q > 2. Since 2p+ q = 4 + q is odd,

4 + q = 3b and 2q+ 2 = 2a3c for some integers a, b, c ≥ 1.

It follows that

3(3b−1 − 1) = 3b − 3 = q+ 1 = 2−1(2q+ 2) = 2a−13c.

Clearly, 3c ≤ 2a−13c < 3b, so we must have b > c ≥ 1. Thus, the left-hand side of the
equation above is divisible by 3 but not by 32, while the right-hand side is divisible
by 3c. Hence, we must have c = 1, so the equation above gives

3b−1 − 1 = 2a−1 for integers a, b ≥ 1.

The solutions to this Diophantine equation are well known, namely (a− 1, b− 1) =
(1, 1) or (3, 2) (a proof is given below for completeness). Thus, b = 2 or b = 3, giving
q = 32 − 4 = 5 or q = 33 − 4 = 23 (and p = 2), and so proving that the only solutions
to the problem are {2, 5} and {2, 23}. Now we prove:
If 2n + 1 = 3m for nonnegative integers n,m, then either n = 1 and m = 1, or else

n = 3 and m = 2.
Clearly, these are the all the solutions with n ≤ 3, so it only remains to show that

there are no solutions with n ≥ 4. If n ≥ 4, then 2n is divisible by 24 = 16, so we have

3m = 2n + 1 ≡ 1 (mod 16).

The smallest proper power of 3 satisfying the above congruence is 34 = 81 ≡ 1
(mod 16), hence 4 | m. However, we also have 34 = 81 ≡ 1 (mod 5), hence 3m ≡ 1
(mod 5), so

2n = 3m − 1 ≡ 1 − 1 = 0 (mod 5).

Since no power of 2 is a multiple of 5, this contradiction shows that there are no solu-
tions with n ≥ 4, completing the proof.

Also solved by Michel Bataille (France), Brian Beasley, Bruce Burdick, Robert Calcaterra, John Christopher,
Joseph DiMuro, Wenwen Du & Paul Peck, James Duemmel, Dmitry Fleischman, Michael Goldenberg & Mark
Kaplan, Russell Gordon, Graham Lord, Rick Mabry, Missouri State University Problem Solving Group, Michael
Reid, Celia Schacht, Nicholas Singer, SkidmoreCollege ProblemGroup, John Smith, David Stone& JohnHawkins,
JosephWalsh, EdwardWhite&RobertaWhite, and the proposer. There were two incomplete or incorrect solutions.
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Poorly distributed irrational geometric sequences (modulo 1) June 2017

2022. Proposed by Mihàly Bencze, Bucharest, Romania.

Given an irrational number β > 1, show that there exists a number α ∈ (1, 2), such
that

0 < {αβn} <
1

β − 1
for all n ∈ N,

where {x} denotes the fractional part of x.
Solution by Northwestern University Math Problem Solving Group, Northwestern Uni-
versity, Evanston, IL.
Let β > 1 be irrational. If 1 < β ≤ 2, then 1/(β − 1) ≥ 1 > {αβn} for all n and all α,
so we only need to choose α ensuring that the inequality {αβn} > 0 holds, i.e., that
αβn is not an integer, for any n ∈ N. In case β is algebraic, choose α to be any
transcendental number in (1, 2); if β is transcendental, let α be any irrational al-
gebraic number in (1, 2). Then, αβn is transcendental (or, when n = 0, at least ir-
rational) and hence not an integer for arbitrary n ∈ N, completing the proof when
β ≤ 2.

Henceforth, assume β > 2. Define a sequence (dn)n≥0 of integers recursively by:

d0 = 1, and dn = �βdn−1� for n ≥ 1,

where �x� denotes the least integer no less than x. Since d0 and β are positive, it is clear
that dn ≥ 1 for all n. Let αn = dnβ−n. Since dn is a positive integer and β is irrational,
βdn is not an integer, so dn = �βdn−1� > βdn−1 for all n ≥ 1. Thus, αn = dnβ−n >

dn−1β
−(n−1) = αn−1 for all n ≥ 1, so (αn)n≥0 is strictly increasing. Next, we have, for

n ≥ 1:

0 < αn − αn−1 = dnβ
−n − dn−1β

−(n−1) = (dn − βdn−1)β
−n

= (�βdn−1� − βdn−1)β
−n < β−n,

since �x� − x < 1 for all x. Therefore, the sequence (αn) is strictly increasing, and we
have

1 = α0 < αn = α0 +
n∑
i=1

(αi − αi−1) < 1 +
n∑
i=1

β−n = β

β − 1

for all n ≥ 1. By the monotone sequence theorem, the sequence (αn) has a limit
α = limn→∞ αn such that 1 < α ≤ β/(β − 1) < 2 (by the assumption β > 2), hence
α ∈ (1, 2), andmoreover αn < α for all n since (αn) is strictly increasing; furthermore,

0 < α − αn =
∞∑

i=n+1

(αi − αi−1) <

∞∑
i=n+1

β−i = β−n

β − 1
,

hence 0 < αβn − dn = βn(α − αn) < 1/(β − 1) < 1 (since β > 2). It follows that
{αβn} = αβn − dn ∈ (0, 1/(β − 1)) for all n, concluding the proof.

Editor’s Note. Celia Schacht and George Stoica independently communicated that
the property stated in the problem was proved by R. Tijdeman in 1972. (R. Tijdeman,
Note on Mahler’s 3/2-problem, Det Kongelige Norske Videnskabers Selskabs Skrifter
16 (1972) 1–4.) Celia Schacht further pointed out that A. Dubickas has improved upon
Tijdeman’s result in recent years, and also remarked that the numbers α satisfying
the stated property for a fixed irrational β > 2 form a zero-measure set of exceptions
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to Weyl’s equidistribution property (H. Weyl, Über die Gleichverteilung von Zahlen
modulo Eins, Mathematische Annalen 77 (1916) 313–352): For any irrational β > 1
and almost every α ∈ R, the fractional parts {αβn} (n = 0, 1, . . .) are uniformly
distributed in [0, 1) (in particular, they are dense in [0, 1)).

Also solved by Robert Calcaterra, Souvik Dey (India), Soo Young Kim (South Korea), Reiner Martin
(Germany), Michael Reid, Celia Schacht, Nicholas C. Singer, George Stoica (Canada), Enrique Treviño, and
the proposer. There was one incomplete or incorrect solution.

Expressing natural numbers in the form a+ a+ b+ c June 2017

2023. Proposed by Mircea Merca, Craiova, Romania.

For every natural number n, let f (n) be the number of representations of n in the
form

n = a+ a+ b+ c

where a, b, c are distinct positive integers such that b < c. Show that there are infinitely
many values of n such that f (n+ 1) < f (n).

Solution by Michael Reid, University of Central Florida, Orlando, FL.
For a positive integer m, let g(m) denote the number of expressions m = b+ c with
b, c positive integers and b < c. For each integer b in the range 1 ≤ b < m/2 there is
exactly one such expression, so g(m) = �(m− 1)/2�. Next, let f̃ (n) be the number of
expressions n = a+ a+ b+ c with a, b, c positive integers and b < c. For each a in
the range 1 ≤ a < n/2 there are exactly g(n− 2a) such expressions, hence

f̃ (n) =
� n−1

2 �∑
a=1

g(n− 2a) =
� n−1

2 �∑
a=1

⌊
n− 2a− 1

2

⌋
=

� n−1
2 �∑

a=1

(⌊
n− 1

2

⌋
− a

)

= 1

2

⌊
n− 1

2

⌋2

− 1

2

⌊
n− 1

2

⌋
= 1

2

⌊
n− 1

2

⌋ ⌊
n− 3

2

⌋
.

Finally, to compute f (n), we subtract from f̃ (n) the number of expressions n = a+
a+ b+ cwhere either a = b or a = c. For each a ≥ 1with n− 2a > a, there is exactly
one such expression to exclude (namely n = a+ a+ a+ (n− 3a) if a < n− 3a, n =
a+ a+ (n− 3a) + a if n− 3a < a), except when n− 3a = a, in which case there are
none to exclude. Thus, f (n) = f̃ (n) − �(n− 1)/3� + δ(n), where δ(n) = 1 if 4 divides
n; otherwise, δ(n) = 0. This gives the explicit formula

f (n) = 1

2

⌊
n− 1

2

⌋ ⌊
n− 3

2

⌋
−

⌊
n− 1

3

⌋
+ δ(n).

For any positive integer n of the form 12k + 9 (k a nonnegative integer), we have:

f (n) = f (12k + 9) = 1
2 (6k + 4)(6k + 3) − (4k + 2) + 0 = 18k2 + 17k + 4,

f (n+ 1) = f (12k + 10) = 1
2 (6k + 4)(6k + 3) − (4k + 3) + 0 = 18k2 + 17k + 3.

This provides infinitely many n satisfying f (n+ 1) = f (n) − 1 < f (n).

Also solved by Dawson Bolus, Robert Calcaterra, Dmitry Fleischman, Graham Lord, Missouri State Univer-
sity Problem Solving Group, Celia Schacht, Nicholas Singer, David Stone, Brendan Sullivan, Enrique Treviño,
Edward White, and the proposer.
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Multiple binary expansions of 1 to a fractional base June 2017

2024. Proposed by George Stoica, Saint John, New Brunswick, Canada.

A binary expansion is an expression of the form

0.d1d2d3 . . . di . . .

where each numeral (digit) di is either 0 or 1 (i = 1, 2, 3, . . .). Given a real number
β > 1 (called the base) the base-β value of the binary expansion above is

(0.d1d2d3 . . .)β =
∞∑
i=1

di
β i

.

(i) If 1 < β < 2, show that some binary expansion has base-β value equal to 1;
in fact, if β ≤ φ, where φ = (1 + √

5)/2 is the golden ratio, then there are in-
finitely many such expansions.

(ii) Find all binary expansions with value 1 when β = φ.

Editor’s Note.Due to an editorial error, part (i) of the original published problem (Math.
Mag. 90 (2017) 231–238) asked for a proof that infinitely many binary expansions have
base-β value equal to 1 for any β ∈ (1, 2). This, however, is not true: The Komornik–
Loreti constant γ

.= 1.7872356 . . . has the property that the value 1 corresponds to a
unique base-γ binary expansion, but to multiple binary expansions to any base β ∈
(1, γ ). (V. Komornik and P. Loreti, Unique Developments in Non-Integer Bases, Amer.
Math. Monthly 105 (1998) 636–639.) The critical base γ is the unique positive number
such that

1 = (0.d1d2 . . .)γ = (0.1101001100101101 . . .)γ

where d1, d2, . . . is the Thue–Morse sequence recursively defined by d0 = 0, d2n = dn,
and d2n+1 = 1 − dn for n = 0, 1, 2, . . .. The solution below only proves that infinitely
many expansions with value 1 exist for β ≤ φ

.= 1.618 . . .. We apologize for this
mistake.

Solution by the editors.
(i) Fix β ∈ (1, 2). As customary, we identify a binary expression d = 0.d1d2 . . . with
its value (d) = (0.d1d2 . . .)β . A terminating binary expansion 0.d1d2 . . . dn means
0.d1 . . . dn000 . . ., while 0.d1d2 . . . dk1 means 0.d1d2 . . . dk111 . . . (an expansion with
a tail of unit digits). By d≤n (resp., d<n) we mean the expansion 0.d1 . . . dn (resp.,
0.d1 . . . dn−1). When we speak about the digits d1, d2, . . . of an expansion, we ignore
the leading “0.”; in particular, d≤0 = d<1 = 0. is a valid expansion regarded as having
no digits and value zero. Let B = 1/(β − 1) = 0.1. Note that B > 1 since 1 < β < 2.
We prove that any value v ∈ [0,B] has a binary expansion d. Recursively define the
digits di (i = 1, 2, . . .) by letting

di =
{
0, if (d<i) + β−i > v ,
1, if (d<i) + β−i ≤ v .

(1)

Straightforward induction shows that 0 ≤ v − (d≤k) ≤ β−kB for k = 0, 1, 2, . . .;
moreover, if dk = 0, the stronger bound v − (d≤k) ≤ β−k holds (in particular, dk = 0
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cannot be followed by an infinite sequence of unit digits). Clearly, β−k → 0 as
k → ∞ (since β > 1), so the equality v = 0.d1d2 . . . follows, proving the existence of
an expansion with given value v ∈ [0,B].

We call an expansion d chosen according to (1) greedy since at every step the digit
1 is chosen if at all possible. Obviously, any expansion (whether greedy or not) with
value v ∈ (0,B) must have both zero and unit digits.

Next, assume β ≤ φ = (1 + √
5)/2. We have (1 + β−1)(β − 1) = β − β−1 ≤ φ −

φ−1 = 1, hence 1 + β−1 ≤ 1/(β − 1) = B. Consider the base-β greedy expansion
d = 0.d1d2 . . . with value v = 1. Since 0 < 1 < B, the expansion d has both zero and
unit digits. Since d is greedy, it does not end with a tail of unit digits, so there is a
position k such that dk = 1 and dk+1 = 0. By construction of the greedy expansion, we
have (d≤k) = (d<k) + β−k and (d<k) + β−k ≤ 1 < (d<k) + β−k + β−(k+1). Let v ′ =
βk[1 − (d<k)]; thus, we have 1 ≤ v ′ < 1 + β−1 ≤ B. (Note the strict inequality.) The
value v ′ has a greedy expansion e = 0.e1e2 . . . with e1 = 1 (since v ′ ≥ 1 > β−1), giv-
ing an expansion

1 = (d′) = 0.d′
1d

′
2 . . . = 0.d1d2 . . . dk−101e2e3 . . .

different from the greedy expansion d. This construction may be iterated: the greedy
expansion e of v ′ ∈ [1,B) has both zero and unit digits, hence for some position
k′ we have ek′ = 1 and ek′+1 = 0, from which we obtain different expansion e′ =
0.e1e2 . . . ek′−101 f2 f3 . . . with value v ′, and hence a new expansion

1 = (d′′) = 0.d1 . . . dk−101e2 . . . ek′−101 f2 f3 . . . .

Successively repeating this procedure, infinitely many different expansions
d, d′, d′′, . . . with value 1 are obtained, provided β ≤ φ.
(ii) For the base β = φ, we have 1 = φ−1 + φ−2, hence φ−i = φ−(i+1) + φ−(i+2).
Hence, from any (nonzero) terminating expansion one can obtain another by replac-
ing the trailing digit 1 by the digits 011 (i.e., “100” becomes “011”). Starting with the
greedy expansion

a = 0.11 = φ−1 + φ−2 = 1,

we obtain the following expansions with value 1:

a′ = 0.1011, a′′ = 0.101011, . . . , a(n) = 0.1010 . . . 1011, . . . ,

where in a(n) there are n pairs “10” before the trailing “11” (thus, a above is a(0)). (These
are precisely the expansions obtained by application of the iterative procedure in the
solution to part (i), starting with a = 0.11.) We also have

b = 0.01 = 0.01111 . . . = φ−2 + φ−3 + · · · = φ−2

1 − φ−1
= 1.

Performing the substitution “100” for “011” as above, we obtain the following expan-
sions with value 1:

b′ = 0.1001, b′′ = 0.101001, . . . , b(n) = 0.1010 . . . 1001, . . . ,

where in b(n) there are n pairs “10” before the trailing “01” (thus, b(0) is b). Also,

c = 0.10 = 0.101010101010 . . . =
∞∑
j=0

φ−(2 j+1) = φ−1

1 − φ−2
= 1.
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We prove that there are no other base-φ expansions with value 1. Indeed, let d =
0.d1d2 . . . be any base-φ expansion with value 1. If d differs from c, let the first dif-
ference occur at position k. We prove that d is a(l−1) if k = 2l is even, d is b(l−1) if
k = 2l − 1 is odd (l = 1, 2, . . .).

If k = 1, then d1 �= c1 = 1, so d1 = 0; hence, 1 = (d) ≤ 0.01 = 1. Since equality
holds, dmust be the expansion b. If k = 2l − 1 for some l > 1, then ck = 1 and dk = 0,
so

0.dkdk+1 . . . = φk−1[(d) − (d<k)] = φk−1[(c) − (c<k)] = 0.10 = (c) = 1.

As shown above, 0.dkdk+1 . . . is the expansion b(0), so d is the expansion b(l−1). If
k = 2l for some l ≥ 1, then ck = 0 and dk = 1, so

0.dkdk+1 . . . = φk−1[(d) − (d<k)] = φk−1[(c) − (c<k)] = 0.01 = φ−1 = 0.1.

Since dk = 1, we must have 0 = dk+1 = dk+2 = . . ., so d is the expansion a(l−1).

Also solved by Ram Dubey, Dmitry Fleischman, Enrique Treviño, and the proposer.

Sign fluctuations of weighted partial sums of a sequence June 2017

2025. Proposed by Valerian Nita, Sterling Heights, MI.

Let n be a positive integer and let x1, x2, . . . , xn and a1, a2, . . . , an be real numbers such
that

∑n
k=1 xk = 0 and 0 < a1 < a2 < . . . < an. Define s1, s2, . . . , sn by sk = ∑k

j=1 a jx j
for k = 1, 2, 3, . . . , n. If there is at least one nonzero number among x1, x2, . . . , xn,
prove that there is at least one positive and at least one negative number among
s1, s2, . . . , sn.

Solution by Michel Bataille, Rouen, France.
There is nothing to prove if n = 1, because in this case x1 = ∑1

k=1 xk = 0 by hypoth-
esis, so it is not possible for the number x1 to be nonzero. Henceforth assume n ≥ 2.
Without loss of generality we may assume x1 is nonzero, because the truth of the state-
ment for xm, xm+1, . . . , xn and am, . . . , an implies its truth for 0, . . . , 0, xm, . . . , xn and
a1, a2, . . . , an, and moreover at least one of x1, x2, . . . , xn is nonzero by assumption.
By changing the sign of all numbers x1, x2, . . . , xn if necessary, we may further as-
sume x1 > 0. Thus, s1 = a1x1 is positive, so it remains only to show that one of the
numbers s2, . . . , sn is negative. For k = 1, 2, . . . , n, let Xk = ∑k

j=1 x j. We have, for
2 ≤ k ≤ n:

sk = a1X1 + a2(X2 − X1) + a3(X3 − X2) + · · · + ak(Xk − Xk−1)

= akXk +
k−1∑
j=1

(a j − a j+1)Xj.

Note that the coefficients a j − a j+1 above are all negative by hypothesis. We have X1 =
x1 > 0 and Xn = ∑n

k=1 xk = 0, so there exists m ∈ {2, . . . , n} such that X1, . . . ,Xm−1

are positive and Xm is nonpositive. Thus, we have

sm = amXm +
m−1∑
j=1

(a j − a j+1)Xj < 0
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since the term amXm is nonpositive and the terms (a j − a j+1)Xj are negative (there is
at least one of the latter, namely (a1 − a2)X1 < 0), concluding the proof.

Also solved by Paul Budney, Robert Calcaterra, Richard Daquila, James Duemmel, Dmitry Fleischman, Eu-
gene A. Herman, Dain Kim (South Korea), Miguel Lerma, ONU-SOLVE Group, Edward White, and the proposer.

Answers
Solutions to the Quickies from page 230.

A1081.

A

B C
H

O

I

r

r
RR

RR

Let O be the circumcenter of �ABC. Since OA = OB = OC = R and �ABC is
isosceles with AB = AC, the segments AO and BC are perpendicular and intersect
at the midpoint H of BC; moreover, AH bisects ∠BAC, so I lies on OA and IH = r.
It follows that ∠OBA = ∠OAB = 1

2∠BAC = 54◦, hence ∠OBC = ∠OBA− ∠CBA =
54◦ − 36◦ = 18◦. Since BI bisects ∠CBA we also have ∠CBI = ∠IBA = 1

2∠CBA =
18◦ = ∠OBC, and similarly ∠BCI = ∠OCB = 18◦, so OBIC must be a rhombus,
with sides of length OB = R and with OH = IH = r. It follows that AI = OA− OI =
R− 2r, so AI + BI +CI = (R− 2r) + R+ R = 3R− 2r.

Next, we have OI2 = R2 − 2Rr by Euler’s theorem. Since OI = 2r:

AI2 + BI2 +CI2 = (R− 2r)2 + R2 + R2 = 3R2 − 4Rr + (2r)2

= 3R2 − 4Rr + (R2 − 2Rr) = 4R2 − 6Rr.

A1082. The left-hand side of the stated inequality is equal to

L =
(∫ 1

0
y5 dy

) (∫ 1

0
f (x) dx

)
+

(∫ 1

0
y dy

) (∫ 1

0
( f (x))5 dx

)

=
∫ 1

0

∫ 1

0

(
y5 f (x) + y( f (x))5

)
dx dy.

Now, for a, b ≥ 0, the inequality a5b+ ab5 ≥ a2b4 + a4b2 holds (since a5b+ ab5 −
a2b4 − a4b2 = ab(a− b)2(a2 + ab+ b2) ≥ 0). Since f is nonnegative, it follows by
integration that L ≥ R, where

R =
∫ 1

0

∫ 1

0

(
y2( f (x))4 + y4( f (x))2

)
dx dy

=
(∫ 1

0
y2 dy

) (∫ 1

0
( f (x))4 dx

)
+

(∫ 1

0
y4 dy

) (∫ 1

0
( f (x))2 dx

)
is equal to the right-hand side of the stated inequality, completing the proof.


	ABSTRACT
	Proposals
	Quickies
	Solutions
	Answers

