
Full Terms & Conditions of access and use can be found at
https://maa.tandfonline.com/action/journalInformation?journalCode=ucmj20

The College Mathematics Journal

ISSN: (Print) (Online) Journal homepage: https://maa.tandfonline.com/loi/ucmj20

Problems and Solutions

Greg Oman (CMJ Problems ) & Charles N. Curtis (CMJ Solutions )

To cite this article: Greg Oman (CMJ�Problems ) & Charles N. Curtis (CMJ�Solutions )
(2021) Problems and Solutions, The College Mathematics Journal, 52:5, 388-396, DOI:
10.1080/07468342.2021.1969181

To link to this article:  https://doi.org/10.1080/07468342.2021.1969181

Published online: 24 Sep 2021.

Submit your article to this journal 

Article views: 205

View related articles 

View Crossmark data

https://maa.tandfonline.com/action/journalInformation?journalCode=ucmj20
https://maa.tandfonline.com/loi/ucmj20
https://maa.tandfonline.com/action/showCitFormats?doi=10.1080/07468342.2021.1969181
https://doi.org/10.1080/07468342.2021.1969181
https://maa.tandfonline.com/action/authorSubmission?journalCode=ucmj20&show=instructions
https://maa.tandfonline.com/action/authorSubmission?journalCode=ucmj20&show=instructions
https://maa.tandfonline.com/doi/mlt/10.1080/07468342.2021.1969181
https://maa.tandfonline.com/doi/mlt/10.1080/07468342.2021.1969181
http://crossmark.crossref.org/dialog/?doi=10.1080/07468342.2021.1969181&domain=pdf&date_stamp=2021-09-24
http://crossmark.crossref.org/dialog/?doi=10.1080/07468342.2021.1969181&domain=pdf&date_stamp=2021-09-24


PROBLEMS AND SOLUTIONS
EDITORS

Greg Oman Charles N. Curtis
CMJ Problems CMJ Solutions
Department of Mathematics Mathematics Department
University of Colorado, Colorado Springs Missouri Southern State University
1425 Austin Bluffs Parkway 3950 E Newman Road
Colorado Springs, CO 80918 Joplin, MO 64801
email: cmjproblems@maa.org email: cmjsolutions@maa.org

This section contains problems intended to challenge students and teachers of college mathematics.
We urge you to participate actively both by submitting solutions and by proposing problems that are
new and interesting. To promote variety, the editors welcome problem proposals that span the entire
undergraduate curriculum.

Proposed problems should be sent to Greg Oman, either by email (preferred) as a pdf, TEX, or
Word attachment or by mail to the address provided above. Whenever possible, a proposed problem
should be accompanied by a solution, appropriate references, and any other material that would be
helpful to the editors. Proposers should submit problems only if the proposed problem is not under
consideration by another journal.

Solutions to the problems in this issue should be sent to Chip Curtis, either by email as a pdf,
TEX, or Word attachment (preferred) or by mail to the address provided above, no later than May 15,
2022. Sending both pdf and TEX files is ideal.

PROBLEMS

1211. Proposed by Necdet Batir, Nevşehir Haci Bektaş Veli University, Nevşehir,
Turkey.

Evaluate the following limit, where below, H0 = 0 and for n > 0, Hn denotes the nth
harmonic number

∑n

k=1
1
k
:

lim
n→∞

(
(Hn)

2 −
n∑

k=1

Hn−k

k

)
.

1212. Proposed by Paul Bracken, University of Texas, Edinburg, TX.

Let n be an odd natural number and let θ ∈ R be such that cos(nθ) �= 0. Prove the
following:

n−1∑
k=0

sin θ

sin2 θ − cos2( kπ

n
)

= − n sin(nθ)

cos θ cos(nθ)
, and (1)

n−1∑
k=0

(−1)k+1 cos( kπ

n
)

sin2 θ − cos2( kπ

n
)

= n sin( nπ

2 )

cos θ cos(nθ)
. (2)

doi.org/10.1080/07468342.2021.1969181
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1213. Proposed by Rafael Jakimczuk, Universidad National de Lujá, Buenos Aires,
Argentina.

Let (an) be a sequence of positive integers, and for every positive integer n, define
Pn := (1 + 1

a1n
)a1 · (1 + 1

a2n
)a2 · · · (1 + 1

ann
)an . Find limn→∞ Pn.

1214. Proposed by Luis Moreno, SUNY Broome Community College, Binghampton,
NY.

The following sequence can be found in the text Intermediate Analysis by John Olm-
sted: (1, 2, 2 1

2 , 3, 3 1
3 , 3 2

3 , 4, 4 1
4 , 4 2

4 , 4 3
4 , 5, . . .). Now let n be a positive integer. Find a

closed-form expression for an, the nth term of the above sequence.

1215. Proposed by Greg Oman, University of Colorado at Colorado Springs, Colorado
Springs, CO.

Let R be a ring (assumed only to be associative but not to contain an identity unless
stated). Recall that a subring of R is a nonempty subset of R closed under addition,
negatives, and multiplication. Find all rings R with identity 1 �= 0 with the property
that no proper, nontrivial subring of R has an identity (which need NOT be the identity
of R).

SOLUTIONS

A continued fraction given by Fibonacci

1186. Proposed by Gregory Dresden, Washington and Lee University, Lexington, VA
and ZhenShu Luan (high school student), St. George’s School, Vancouver, BC, Canada.

Find a closed-form expression for the continued fraction [1, 1, . . . , 1, 3, 1, 1, . . . , 1],
which has n ones before, and after, the middle three.

Solution by Walther Janous, Ursulinengymnasium, Innsbruck, Austria.

In order to get the desired expression, we recall the following elegant way of evaluat-
ing the convergents of a continued fraction. [See, for instance,
https://de.wikipedia.org/wiki/Kettenbruch, particularly the paragraph “matrixdarstel-
lung.”] We have to evaluate the product[

1 1
1 0

]n

·
[

3 1
1 0

]
·
[

1 1
1 0

]n

Let Fn be the nth Fibonacci number. From the familiar representation

[1, 1, ..., 1] = Fn+1

Fn

,

(with n 1’s), we get [
1 1
1 0

]n

=
[
Fn+1 Fn

Fn Fn−1

]
,

whence[
1
1 0

]n

·
[

3 1
1 0

]
·
[

1 1
1 0

]n

=
[
Fn+1 Fn

Fn Fn−1

]
·
[

3 1
1 0

]
·
[
Fn+1 Fn

Fn Fn−1

]
;
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that is[
1
1 0

]n

·
[

3 1
1 0

]
·
[

1 1
1 0

]n

=
[

Fn+1 · (3Fn+1 + 2Fn) Fn+1 · Fn−1 + Fn (3Fn+1 + Fn)

Fn+1 · Fn−1 + 3FnFn+1 + F 2
n Fn (2Fn−1 + 3Fn)

]
.

This leads to the desired closed-form expression of [1, ..., 1, 3, 1, ..., 1]:

Fn+1 (3Fn+1 + 2Fn)

Fn+1 · Fn−1 + 3Fn · Fn+1 + F 2
n

= Fn+1 (3Fn+1 + 2Fn)

Fn+1 (Fn+1 − Fn) + Fn (3F − n + 1 + Fn)

= Fn+1 (3Fn+1 + 2Fn)

F 2
n+1 + 2Fn+1 · Fn + F 2

n

= Fn+1 (3Fn+1 + 2Fn)

(Fn+1 + Fn)
2

= Fn+1 (3Fn+1 + 2Fn)

F 2
n+2

= Fn+1 (Fn+1 + 2Fn+2)

F 2
n+2

.

This and

Fn+1 + 2Fn+2 = Fn+3 + Fn+2 = Fn+4

yield the closed-form result

Fn+1Fn+4

F 2
n+2

.

Also solved by Brian Beasley, Presbyterian C.; Anthony Bevelacqua, U. of N. Dakota; Brian Bradie,

Christopher Newport U.; James Brenneis, Penn State - Shenango; Hongwei Chen, Christopher Newport

U.;Giuseppe Fera, Vicenza, Italy; Eugene Herman, Grinnell C.; Donald Hooley, Bluffton, OH; Joel Iiams,

U. of N. Dakota; Harris Kwong, SUNY Fredonia; Seungheon Lee, Yonsei U.; Carl Libis, Columbia Southern

U.; Graham Lord, Princeton, NJ; Ioana Mihaila, Cal Poly Pomona; Missouri State U. Problem Solving

Group; Northwestern U. Math Problem Solving Group; Randy Schwartz, Schoolcraft C. (retired); Al-

bert Stadler, Herrliberg, Switzerland; Paul Stockmeyer, C. of William and Mary; David Terr, Oceanside,

CA; Enrique Treviño, Lakeforest C.; Michael Vowe, Therwil, Switzerland; and the proposer.

A limit of maxima

1187. Proposed by Reza Farhadian, Lorestan University, Khorramabad, Iran.

Let α > 1 be a fixed real number, and consider the function M : [1, ∞) → N defined
by M(x) = max{m ∈ N : m! ≤ αx}. Prove the following:

lim
n→∞

n
√

M(1)M(2) · · ·M(n)

M(n)
= e−1.
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Solution by Randy Schwartz, Schoolcraft College (retired), Ann Arbor, Michigan.

From the definition of the function M , we have [M(n) + 1]! > αn for α > 1, so
limn→∞ M(n) = ∞, and thus limn→∞ ln M(n) = ∞. Also from the definition, we
have

[M(n)]! ≤ αn ⇒ ln([M(n)]!) ≤ n ln α ⇒ ln([M(n)]!)

n
≤ ln α,

and thus

lim
n→∞

ln([M(n)]!)

n
≤ ln α. (1)

Applying Stirling’s approximation to (1) leads to

lim
n→∞

(
M(n) + 1

2

)
ln M(n) − M(n) + 1

2 ln 2π

n
≤ ln α

lim
n→∞

[
M(n)

n
(ln M(n) − 1) + ln M(n)

2n
+ ln 2π

2n

]
≤ ln α

lim
n→∞

[
M(n)

n
(ln M(n) − 1) + ln M(n)

2n

]
≤ ln α

The last term inside the brackets is nonnegative and, from the foregoing, the factor
ln M(n) − 1 increases without bound; thus, M(n)

n
must vanish, since otherwise the

above limit could not be a finite number such as ln α. Thus, we have established

∈n→∞
M(n)

n
= 0.

We can deduce more the definition of the function M:

[M(n) + 1]!αn

[M(n) + 1]M(n)! > αn

[M(n)]! >
αn

M(n) + 1

ln([M(n)!) > n ln α − ln[M(n) + 1]

ln([M(n)!])

n
> ln α − ln[M(n) + 1]

n

lim
n→∞

ln([M(n)]!)

n
≥ ln α,

and combining this with (1) yields

lim
n→∞

ln)[M(n)!])

n
= ln α

and then

lim
n→∞

ln)[M(n)!])

n
= 1. (2)
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Using Stirling again, we have

lim
n→∞

ln([M(n)!)

M(n) ln M(n)
= lim

n→∞

(
M(n) + 1

2

)
ln M(n) − M(n) + 1

2 ln 2π

M(n) ln M(n)

= lim
n→∞

[
M(n) + 1

2

M(n)
− 1

ln M(n)
+ ln 2π

2M(n) ln M(n)

]

= 1 − 0 + 0 = 1.

and combining this with (2) yields

lim
n→∞

M(n) ln M(n)

n ln α
= 1. (3)

We can now calculate the requested value, L. We have

L = lim
n→∞

n
√∏n

h=1 M(h)

M(n)
= lim

n→∞
n

√√√√ n∏
h=1

M(h)

M(n)
,

and then

ln L = lim
n→∞

n∑
h=1

1

n
ln

[
M(h)

M(n)

]
.

There are many repeated terms in the above summation. The interval between (j −
1)! and j !, involving as it does a multiplication by j , encloses approximately logα j

powers of α, each one of them associated with the same value of the function M . In
other words, the number of integer solutions of M(n) = j is asymptotically logα j =
ln j

ln α
. Using that as a weighting factor to gather the repeated terms, we can rewrite the

above summation as

ln L = lim
n→∞

M(n)∑
j=1

1

n
· ln j

ln α
ln

[
j

M(n)

]

= lim
n→∞

M(n)∑
j=1

(ln j)2 − ln j · ln M(n)

n ln α

= lim
n→∞

M(n)∑
j=1

(ln j)2 − ln j · ln M(n)

M(n) ln M(n)
, using (3),

and thus

ln L = lim
n→∞

⎡
⎣ 1

M(n) ln M(n)

M(n)∑
j=1

(ln j)2 − 1

M(n)

M(n)∑
j=1

ln j

⎤
⎦ . (4)

Using inscribed and circumscribed rectangles, we have

∫ k

1
ln x dx <

k∑
j=1

ln j <

∫ k+1

2
ln x dx
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k∑
j=1

ln j ≈
∫ k

1
ln x dx = k ln k − k + 1

lim
n→∞

1

k

k∑
j=1

ln j = ln k − 1,

and similarly

k∑
j=1

(ln j)2 ≈
∫ k

1
(ln x)2 dx = k(ln k)2 − 2k ln k + 2k − 2

lim
n→∞

1

k ln k

k∑
j=1

(ln j)2 = ln k − 2.

Applying these to (4) yields

ln L = lim
n→∞[(ln M(n) − 2) − (ln M(n) − 1)] = −1,

and thus

L = e−1.

Also solved by Dmitry Fleischman, Santa Monica, CA; Lixing Han, U. of Michigan-Flint and Xinjia Tang,

Chang Zhou U.; Albert Stadler, Herrliberg, Switzerland; and the proposer.

A recursively defined sequence of trigonometric functions

1188. Proposed by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Las
Palmas de Gran Canaria, Spain.

Let {fn(x)}n≥1 be the sequence of functions recursively defined by fn(x) = ∫ fn−1(x)

0 sin tdt ,
with initial condition f1(x) = ∫ x

0 sin tdt . For each n ∈ N, find the value of pn

such that Ln = lim
x→0

fn(x)

xpn ∈ R\{0} and the corresponding value Ln. Prove also that

log2(L
−1
n ) = 3 log2(L

−1
n−1) − 2 log2(L

−1
n−2) for n ≥ 3.

Solution by Michael Vowe, Therwil, Switzerland.

We have

f1(x) =
∫ x

0
sin t dt = 1 − cos x = x2

2!
+ O

(
x4
)

and hence p1 = 2, L1 = 1
2 . Further

f2(x) = 1 − cos(1 − cos x)

=
(

1 − cos x

2!

)2

−
(

1 − cos x

4!

)4

+ · · · = x4

2!4
+ O

(
x6
)
,
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which means that p2 = 4, L2 = 1
8 .

Since

fn(x) = 1 − cos (fn−1(x)) , p1 = 2, L1 = 1

2
,

we obtain

pn = 2pn−1 = 2 · 2pn−2 = · · · = 2n−1p1 = 2n

and

Ln = 1

2!
(Ln−1)

2 = 1

2!
· 1

(2!)2
(Ln−1)

4 = · · · = 1

2!1+2+4+···+2n−2 (L1)
2n−1

= 1

22n−1−1
· 1

22n−1 = 1

22n−1
.

Now

3 log2

(
L−1

n−1

)− 2 log2

(
L−1

n−2

) = 3
(
2n−1 − 1

)− 2
(
2n−2 − 1

)
= 2 · 2n−1 − 1 = 2n − 1 = log2 22n−1 = log2

(
L−1

n

)
.

Also solved by Michel Bataille, Rouen, France; Brian Bradie, Christopher Newport U.; Paul Budney, Sun-

derland, MA; Hongwei Chen, Christopher Newport U.; Christopher Newport U. Problem Solving Sem-

inar; Gerald Edgar, Denver, CO; Lixing Han, U. of Michigan-Flint; Justin Haverlick, State U. of New

York at Buffalo; Eugene Herman, Grinnell C.; Christopher Jackson, Coleman, Florida; Elias Lampakis,

Kiparissia, Greece; Albert Natian, Los Angeles Valley C.; Mark Sand, C. of Saint Mary; Randy Schwartz,

Schoolcraft C. (retired); Albert Stadler, Herrliberg, Switzerland; Seán Stewart, Bomaderry, NSW, Aus-

tralia; and the proposer. One incomplete solution and one incorrect solution were received.

A sum of harmonic sums

1189. Proposed by Seán Stewart, Bomaderry, NSW, Australia.

Evaluate the following sum:

∞∑
n=1

Hn+1 + Hn − 1

(n + 1)(n + 2)
,

where Hn = ∑n

k=1
1
k

denotes the nth harmonic number.

Solution by Robert Agnew, Palm Coast, Florida.

The sum

S =
∞∑

n=1

Hn+1 + Hn − 1

(n + 1)(n + 2)

can be written as

S =
∞∑

n=1

1

(n + 1)(n + 2)

(
−1 + 1

n + 1
+ 2 ·

n∑
k=1

1

k

)

394 © THE MATHEMATICAL ASSOCIATION OF AMERICA



= −
∞∑

n=1

1

(n + 1)(n + 2)
+

∞∑
n=1

1

(n + 1)2(n + 2)
+ 2 ·

∞∑
n=1

1

(n + 1)(n + 2)

n∑
k=1

1

k
.

Evaluating each of these sums in turn gives

∞∑
n=1

1

(n + 1)(n + 2)
=

∞∑
n=1

(
1

n + 1
− 1

n + 2

)
= 1

2
;

∞∑
n=1

1

(n + 1)2(n + 2)
=

∞∑
n=1

(
− 1

n + 1
+ 1

n + 2
+ 1

(n + 1)2

)

= −
∞∑

n=1

(
1

n + 1
− 1

n + 2

)
+

∞∑
n=1

1

(n + 1)2

= −1

2
+
(

π2

6
− 1

)

= −3

2
+ π2

6
;

and

∞∑
n=1

1

(n + 1)(n + 2)

n∑
k=1

1

k
=

∞∑
k=1

1

k

∞∑
n=k

1

(n + 1)(n + 2)

=
∞∑

k=1

1

k

∞∑
n=k

(
1

n + 1
− 1

n + 2

)
=

∞∑
k=1

1

k(k + 1)

= 1.

Hence

S = π2

6
.

Also solved by Arkady Alt, San Jose, CA; Farrukh Rakhimjanovich Ataev, Westminster International U.,

Tashkent, Uzbekistan; Michel Bataille, Rouen, France; Necdet Batir, Nevşehir Haci Bektaş Veli U.; Khristo

Boyadzhiev, Ohio Northern U.; Paul Bracken, U. of Texas, Edinburg; Brian Bradie, Christopher Newport

U.; Hongwei Chen, Christopher Newport U.; Geon Choi, Yonsei U.; Nandan Sai Dasireddy, Hyderabad,

India; Bruce Davis, St. Louis Comm. C. at Florissant Valley; Giuseppe Fera, Vicenza, Italy; Subhankar

Gayen, West Bengal, India; Michael Goldenberg, Baltimore Polytechnic Inst. and Mark Kaplan, U. of

Maryland Global Campus; GWStat Problem Solving Group; Lixing Han, U. of Michigan - Flint and Xinjia

Tang, Chang Zhou U.; Eugene Herman, Grinnell C.; Walther Janous, Innsbruck, Austria; Kee-Wai Lau,

Hong Kong, China; Seungheon Lee, Yonsei U.; Graham Lord, Princeton, NJ; Missouri State U. Problem

Solving Group; Shing Hin Jimmy Pa; Ángel Plaza and Francisco Perdomo, Universidad de Las Palmas

de Gran Canaria, Las Palmas, Spain; Rob Pratt, Apex, NC; Arnold Saunders, Arlington, VA; Volkhard

Schindler, Berlin, Germany; Randy Schwartz, Schoolcraft C. (retired); Allen Schwenk, Western Michigan

U. Albert Stadler, Herrliberg, Switzerland; Marián Ŝtofka, Slovak U. of Technology; Enrique Treviño,

Lake Forest C.; Michael Vowe, Therwil, Switzerland; and the proposer.
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A second-order differential equation

1190. Proposed by George Stoica, Saint John, New Brunswick, Canada.

Find all twice differentiable functions y = y(x) such that (y + x)y ′′ = y ′(y ′ + 1).

Solution by Eugene Herman, Grinnell College, Grinnell, Iowa.

Substituting z(x) = y(x) + x into the differential equation yields zz′′ = (z′ − 1)z′.
This has solutions z = k and z = x + k. Other than these, we have

d

dx

(
z′ − 1

z

)
= zz′′ − (z′ − 1)z′

z2
= 0

and so z′ − 1 = cz, where c �= 0. Separating variables yields z = kecx−1
c

. Therefore,
the solutions for y are

k − x, k,
kecx − 1

c
− x (where c �= 0).

Editor’s note: Solvers exercised various degrees of care in ensuring the existence of an
interval on which one could safely avoid dividing by zero. In the interests of space, we
have not incorporated that analysis here.

Also solved by Robert Agnew, Palm Coast, FL; Arkady Alt, San Jose, CA; Tomas Barajas, U. of Arkansas at

Little Rock; Michel Bataille, Rouen, France; Paul Bracken, U. of Texas, Edinburg; Brian Bradie, Christo-

pher Newport U.; Hongwei Chen, Christopher Newport U.; Richard Daquila, Muskingham U.; Bruce Davis,

St. Louis Comm. C. at Florissant Valley; Michael Goldenberg, Baltimore Polytechnic Inst. and Mark Ka-

plan, U. of Maryland Global Campus; Anna DePoyster, Missie Bogard, Rylee Buck, and Chanty Gray,

(students) U. of Arkansas, Little Rock; Raymond Greenwell, Hofstra U.; Lixing Han, U. of Michigan-Flint

and Xinjia Tang, Chang Zhou U.; Justin Haverlick, State U. of New York at Buffalo; Logan Hodgson;

Walther Janous, Innsbruck, Austria; Harris Kwong, SUNY Fredonia; Seungheon Lee, Yonsei U.; William

Littlejohn, Jason Pearson, and Cole Stillman (students) U. of Arkansas, Little Rock; James Magliano,

Union Country C. (emeritus); Albert Natian, Los Angeles C.; Randy Schwartz, Schoolcraft C. (retired); Al-

bert Stadler, Herrliberg, Switzerland; Seán Stewart, Bomaderry, NSW, Australia; Nora Thornber, Raritan

Valley Comm. C.; and the proposer.
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