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THE
PLAYGROUND

Welcome to the Playground! 
Playground rules are posted 
on page 33, except for the 

most important one: Have fun!

In this section, we highlight problems 
that anyone can play with, regardless of 
mathematical background. But just because 
these problems are easy to approach doesn’t 
mean that they are easy to solve!

Uniform Three-step (P422). New contributor 
António Guedes de Oliveira (University of 
Porto, Portugal) posed this classical ruler-and-

compass construction 
challenge. Given an 
arbitrary triangle ABC, 
construct points P and 
Q on rays AC

� ���
 and BC

� ���
,

respectively, so that all 
three segments AP, PQ, 
and QB are congruent 
(as in the example 
in fi gure 1).

These open-ended problems don’t have a 
previously known exact solution, so we intend 
for readers to fool around with them. The 
Playground will publish the best submissions 
received (proofs encouraged but not required).

Holes Uncovered (P423). Maintenance holes are 
round supposedly so that covers can’t drop into 
the holes. Of course, even a round hole must have 
some “lip” (area fi lled in to reduce the aperture) 
to prevent the cover from falling in. However, any 
reduction to the hole diameter suffi ces, so the 
infi mum of lip areas that will work is zero.

Suppose we only allow lips that leave a single 
convex aperture. What’s the infi mum lip area that 
will prevent the cover of a hole in the shape of 
an equilateral triangle from falling in? Note that 

the remaining 
aperture is not 
required to be a 
triangle—it need 
only prevent 
the equilateral 
triangular cover 
from passing 
through in any 
orientation (see 
fi gure 2 for an 
example). As 
always, submit 
your best shape 
even if you 
don’t have a full 
optimization.

This section offers problems with connections 
to articles that appear in the magazine. Not 
all Zip Line problems require you to read the 
corresponding article, but doing so can never 
hurt, of course.

Buffon Squared (P424). Frequent solver 
Randy K. Schwartz (Schoolcraft College) 
submitted this problem. It not only connects 
with his article “Approximating Pi with a 
Checkerboard” (p. 26), but also continues the 
Playground’s recent annual series of riffs on 
the Buffon experiment.

Suppose a square tile with unit diagonal is 
tossed randomly onto an infinite checkerboard 
composed of unit(-side) square cells. What 
is the probability that the tile lands entirely 
within one cell?

THE SANDBOX

THE MONKEY BARS

Figure 1. Three equal
segments in a triangle.

Figure 2. The (nonoptimal) 
blue shaded lip will prevent 
the cover of the equilateral 
triangular hole outlined in 
black from falling through.

THE ZIP LINE
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Any type of problem may appear in the Jungle 
Gym—climb on! 

Folder’s Inequality 
(P425). A traditional 
sangaku inspired 
this problem from 
returning contributor 
Yagub Aliyev (ADA 
University, Azerbaijan). 
(See “Seeking 
Sangaku” in the 
November 2016 issue 
of Math Horizons for 
background on this 
Japanese mode of 
mathematics.) Make 

a single straight-line fold in a unit-square piece of 
paper ABCD so that vertex A lands on edge BC, say 
at point E. Then edge AD lands so that it intersects 
CD; call the point of intersection F (see figure 3).

Let r be the inradius of triangle CEF. Show 
that r = 1 – EF— and that r � �2 1.

Editor’s note: The Skidmore College Problem 
Solvers solved P410 Hexsquare but were 
unfortunately not listed in the April issue.

Dense Dominoes (P403). Another update on the 
problem of finding small-perimeter “proper” 
packings of the set of double-n dominoes, in 
which adjacent squares of different dominoes 
must have matching numbers:

Erik Richey (Chatham University) found proper 
packings with smaller perimeter than Ganning’s 
and Praul’s previously conjectured minimum (see 
the Playground roundup for November 2020):  
n = 5 in a 7 × 8 rectangle (figure 4); n = 8 in 11×11; 
n = 10 in 13 × 14; n = 11 in 14 × 16;  and n = 12 
in a 16 × 16 square (figure 4). 

Notably, these include the first packings 
discovered that achieve fewer than one empty 
cell per non-double domino. Also, one can 
show that the 7 × 8 packing of the double-5 set 
achieves the minimum possible perimeter (a 
smaller perimeter only allows seven empty cells, 
which are not enough to provide necessary 
“gaps” next to each of the 15 non-doubles).

Based on the numerical results above, Richey 
conjectures that the minimum rectangle 
perimeter for a proper packing of a double-n set 
of dominoes is P n n� � �� �� �4 2 3 8/ .

Improved packings or a proof or disproof of this 
conjecture would be welcome in the Playground.

One World Octagon (P414). David Seppala-
Holtzman (St. Joseph’s College) sent this problem 
about One World Trade Center (OWTC) in 
Manhattan. The building rests on a square prism, 
200 feet on a side and 185 feet high. The 150 
foot-by-150 foot square parapet is centered over 
the base viewed from above, rotated 45° relative 
to the base, and is 1,368 feet high. Each corner of 
the parapet is connected by straight beams to the 
two nearest corners of the prism base. Is there 
a height at which the horizontal cross section of 
OWTC is a regular octagon? If so, what is it?

Yes, OWTC has a regular-octagonal cross section 861 
feet above the ground. We received a solution from 
the Missouri State University problem-solving group, 
and partial solutions from Randy K. Schwartz and 
from problem-solving groups at Cal Poly Pomona, 
Georgia Southern University, and Skidmore College. 
Figure 5 helps to visualize the solution. 

First, the symmetries of the building around its 
central vertical axis imply that all cross sections 
of the building are equiangular. We now follow 
the method from Missouri State. Consider the 
cross section at a height that is a fraction 0 < λ < 1  

THE JUNGLE GYM

Figure 3. Folding one 
vertex of a square onto 
a nonadjacent side.

Figure 4. Double-5 dominoes in a 7×8 rectangle 
and double-12 dominoes in a 16×16 rectangle.

FEBRUARY WRAP-UP

THE CAROUSEL—OLDIES, BUT GOODIES

In this section, we present an old problem 
that we like so much, we thought it deserved 
another go-round. Try this, but be careful—
old equipment can be dangerous. Answers 
appear at the end of the column.

Bi-thagorean Theorem? (C34). Art Kalish 
(SUNY College, Old Westbury) recommended 
this classic. Label an arbitrary triangle with 
sides a, b, and c opposite vertices A, B, and C, 
respectively. Show that ∠C is twice ∠B if and 
only if c2 = ab + b2.
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of the way from the top of the prism base to the 
height of the parapet. Because each of the nearly 
vertical faces of the tower is an isosceles triangle, 
by similar triangles half of the edges of the cross 
section have length 150λ and the other half have 
length 200(1 – λ). In the regular cross section, 
these are all equal, yielding λ = 4/7. This value 
means that the regular cross section occurs at a 
height of 184 + (4/7)(1368 – 185) = 861 feet.

Small Squiral (P415). Let square S0 have vertices 
A0 = (0,1), B0 = (–1,0), C0 = (0,–1), and D0 = (1,0). 
A squiral is a finite sequence of n squares 
S A B C Di i i i i= ( , , , )  with Ai+1 on side AiBi, Bi+1 on BiCi, 
and Ci+1 on CiDi, and such that each line BiAi has 
positive slope, except BnAn is vertical. 

The size of a squiral is the side length of the 
final square A Bn n.  What is the smallest possible 
size of any squiral?

The infimum of squiral sizes (not achieved) has 
the lovely expression 2e 8�� /  (where � �� 2  is the 
angle measure of a circle). We received insightful 
submissions from Lucas and Alex Perry (San 
Francisco University HS) and Randy K. Schwartz, 
and, for the first time for a Monkey Bars problem, 
complete solutions from Jesús Sistos together 
with Jesús Liceaga and the Eagle Problem Solvers 
(Georgia State University), from the CNU Problem 
Solving Seminar, and from the Missouri State 
University problem-solving group.

All submissions identified the key angle θ as 
shown in figure 6 (provided by the Perry brothers). 

Because s2, the side of the inner square, is the 
hypotenuse of a right triangle with angle θ at 
vertex E, some trigonometry tells us that 

s
s

2

1

1
�

�sin cos
.

� �

Thus, to find the smallest squiral, we seek 
a sequence of angles � �1, ,� n  that sums to 
� �� / 8  (the squares overall rotate an eighth of 
a turn) and that maximizes the product

sin cos .
i

n

i i
�
� �

1

� �

For a fixed n, this maximum occurs when each 
θi is equal to α / .n  Sistos proved this maximum 
by combining 
the arithmetic-
geometric mean 
and Jensen’s 
inequalities; the 
CNU Problem 
Seminar used 
Lagrange 
multipliers; and 
the Missouri State 
group found a 
contradiction 
presuming 
the maximum 
occurred with any 
θi  and θj distinct.

All groups noted that (sin( / ) cos( / ))� �n n n�  
is a strictly increasing sequence. Hence, there is 
no minimum squiral size, but the infimum is 2  
(the initial square side) divided by the limit of this 
sequence. It’s easier to find the logarithmic limit:

�
� �

�
��

�
� �

�
�� �

lim
ln(sin( / ) cos( / ))

/
lim

ln(sin cos )
.

n x

n n
n

x x
x0

Using L’Hôpital’s rule, we see the limit is � �1,  
for a minimum squiral size of 2 2 8/ / ./e e� ��

The Missouri State solvers generalized to a 
nested spiral of regular k-gons, for which the 
infimum size has the elegant form 2sin( ) tan� � �e�  
where now � �� / .2k

Coarse Squares (P416). Jim Propp 
recommended this problem connected with his 
article “The Square Root of Pi.” Call a positive 
whole number coarse if it has a prime factor 
larger than three. Determine the value of the sum

1
25

1
49

1
100

1
121

1
169

+ + + + +,

that is, the sum of the reciprocals of the squares 
of the coarse numbers.

Figure 5. A geometric schematic of One World Trade 
Center provided by the Cal Poly Pomona group.

Figure 6. Two generic 
consecutive squiral squares.
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SUBMISSION & CONTACT INFORMATION
The Playground features problems for students 
at the undergraduate and (challenging) high 
school levels. Problems and solutions should 
be submitted to MHproblems@maa.org and 
MHsolutions@maa.org, respectively (PDF format 
preferred). Paper submissions can be sent to Glen 
Whitney, UCLA Math Dept., 520 Portola Plaza 
MS 6363, Los Angeles, CA 90095. Please include 
your name, email address, and affiliation, and 
indicate if you are a student. If a problem has 
multiple parts, solutions for individual parts will 
be accepted. Unless otherwise stated, problems 
have been solved by their proposers.

The deadline for submitting solutions to 
problems in this issue is October 31, 2021.

The series sums to (p2 – 9)/6. Brian Beasley 
(Presbyterian College), Tom Edgar, Dmitry 
Fleischman, Christopher Havens (Prison 
Mathematics Project), and Randy Schwartz 
submitted solutions, along with problem-solving 
groups from Georgia Southern University and 
Missouri State University, and a partial solution 
from the Skidmore College problem solvers.  

Call a number “smooth” if it is not coarse, that 
is, if it is of the form 2a3b for natural numbers a 
and b. The requested sum S is the difference of 
the sum of reciprocals of all squares and the sum 
of reciprocals of smooth squares. The former was 
established by Euler to equal p2/6. The latter sum 
factors as the product of the sum of the negative 
even powers of two and the sum of the negative 
even powers of three:

2 3
1

1 2
1

1 3
92
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2
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2 2
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�
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� �k

k

k

k

/ 66,

so S = (p2 – 9)/6.

Taxicab for Squares (P417). In honor of 
Ramanujan’s birthday, Christopher Havens 
asked for the smallest positive integer n such 
that 1729n2 + 1 is a perfect square.

The requested number is slightly larger 
than a trillion. Computations of it arrived from 
Randy Schwartz and problem-solving groups 
at Georgia Southern University, Missouri State 
University, and Skidmore College.  

Note that if n is as requested, then for some m, 
m2 – 1729n2 = 1. Further, note that 

m
n

m n
n n m n n

� �
�

�
�

�1729
1729 1

1729

1
2 2( )

.

By a well-known theorem on the accuracy of 
continued fraction convergents, m / n must be a 
convergent of the continued fraction for 1729,  
which is 

[ ; , , , , , , , , , , , , , , ,

, , , , , , , , , , ,

41 1 1 2 1 1 2 1 2 1 8 1 1 27 5 6

5 27 1 1 8 1 2 1 2 1 1 22 1 1 82, , , , ]…

where the portion after the semicolon repeats 
infinitely thereafter. (Can you show that it is no 
accident that 82 2 41� �  and that the remainder 
of the period is a palindrome?)

With this information, one can test that the first 
suitable convergent is p29 / q29. (Further general 
theory allows you to determine the index 29 from the 
repeating period length without needing to check all 
of the intermediate convergents.) Hence, the smallest 
positive integer n such that 1729n2 + 1 is a perfect 
square is q29 = 1,072,885,712,316. A remarkable fact 
about such so-called Pell equations is that their least 
(positive) integer solution can be quite large, even 
when their coefficient (here 1729) is relatively small.

CAROUSEL SOLUTION

Erect an isosceles 
triangle BCD 
on side a of the 
given triangle 
and extending 
side b, as shown 
in figure 7. Then the 
following successive 
statements are 
equivalent:

• � � �C B2
• � � � �BCD B( / )� 2 2
• � � � � �CBD BDA B
• Triangle ADB is similar to triangle ABC
• AD AB AB AC/ /=
• ( ) / /a b c c b� �
• c ab b2 2� �

Thus, we have demonstrated that the given 
property of the angles of a triangle (∠C = 2 ∠B) 
is equivalent to the condition that a certain 
quadratic form (ab + b2 – c2) on the side 
lengths, with integer coefficients, takes on a 
zero value. Note that the Pythagorean theorem 
has a perfectly analogous statement, with 
angle condition ∠A + ∠B = τ /4 and quadratic 
form a2 + b2 – c2. 

The Law of Cosines yields two more such facts: 

� � � � � � �
� � � � � � �

C a b ab c

C a b ab c

�
�

/

/ .

6 0

3 0

2 2 2

2 2 2

If any Playground reader knows of or can 
discover any other theorems of this form, the 
editor would be very interested to hear.

Figure 7. An arbitrary 
triangle ABC with 
isosceles triangle 
erected on side a and 
extending side b.


