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In this section, we highlight problems 
that anyone can play with, regardless of 
mathematical background. But just because 
these problems are easy to approach doesn’t 
mean that they are easy to solve!

Uncommon Multiples? (P426). Here’s a more 
abstract question from David Seppala-Holtzman 
(St. Joseph’s College), author of the One World 
Octagon problem from the February issue. You 
are given natural numbers G and L such that L is 
a nontrivial multiple of G. How many unordered
pairs of numbers have greatest common divisor 
G and least common multiple L?

These open-ended problems don’t have a 
previously-known exact solution, so we intend 
for readers to fool around with them. The 
Playground will publish the best submissions 
received (proofs encouraged but not required).

Tile Trays (P427). The “Circus Tent Puzzle” on 
MathPickle.com inspired this problem. You are 
producing sets of regular polygonal tiles, all of 
the same unit side length. A k-gon will sell for 
3k – 7 dollars (so an equilateral triangle is $2, a 
square is $5, a regular pentagon $8, etc.). Each 
set of tiles comes with a tray that will fi t them all 
without overlap, in an edge-to-edge arrangement: 
any two tiles that share any portion of an edge 
must share an entire edge.

The longer the perimeter of the tray, the 
more diffi cult it is to make. Hence, you wish to 
minimize the perimeter of the tray; note that the 
tiles need not completely fi ll it.

For each n, what is the minimum perimeter of 
a tray for a set of tiles that will sell for exactly n
dollars? For example, an early interesting case is 
$13. There are three possible sets of tiles: a hexagon 
and a triangle, a pentagon and a square, or a 
square and four triangles. But the latter set allows 
the least perimeter, as illustrated in fi gure 1.

This section offers problems with connections 
to articles that appear in the magazine. Not 
all Zip Line problems require you to read the 
corresponding article, but doing so can never 
hurt, of course.

Candy Circle (P428). This problem follows up 
on one in Florentino and Higginbottom’s article 
“Three-Pile Candy Sharing” (p. 12). Three 
students start with piles of ±j j2 , 2 2, and +j k2 2
candies, respectively, for integers j > 1 and k > –j. 
In each round, all the students give each of the 
others half of their pile, and then receive (from 
an external supply) one additional candy if they 
happen to end up with an odd number of candies.

THE
PLAYGROUND

Welcome to the Playground! 
Playground rules are posted 
on page 33, except for the 

most important one: Have fun!

THE SANDBOX

THE MONKEY BARS

THE ZIP LINE

Figure 1. Three sets of tiles that sell for $13 with 
their minimal-perimeter trays in red.
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  Show that after a finite number of rounds, all 
students have the same number of candies, and 
determine how many rounds it will take to reach 
this state. Can you determine the final number of 
candies each student will have at the end?

Any type of problem may appear in the Jungle 
Gym—climb on! 

Exponential Harmony (P429). From Romania, 
the Playground received this problem by Dorin 
Marghidanu (Colegiul National ‘A.I. Cuza’). Given 
positive real numbers a, b, and c, let h be the 
reciprocal of their sum. Prove that 

+ + ≤ + +a b c a b c a b c a b ca b c h b c a h c a b h( ) ( ) ( ) .

Icosatwins (P418). This reverse-video version 
of Problem 1099 in The College Mathematics 
Journal came to us from Wenwen Du and Paul 
Peck of Glenville State College. You are going 
to color the triangular faces of an icosahedron 
blue and white so that every white triangle 
shares exactly one of its edges with another 
white triangle. What is the maximum number 
of white triangles that your icosahedron can 
have?

There can be at most 12 triangles colored 
white. The Missouri State problem-solving group 
submitted this solution, and the Georgia Southern 
University solvers sent a different proof.

Consider the five triangles surrounding any 
vertex. If four or more are white, then at least 
one white triangle will have two neighboring 
triangles shaded in white. Hence, there are at 
most three white triangles meeting at any vertex. 
But there are 12 vertices in the icosahedron, 
and each triangle touches three vertices, so there 
are at most × =12 3 / 3 12 white triangles, as 
desired. Figure 2 shows a coloring that achieves 
this upper bound (note the exterior unbounded 
region represents the twelfth white triangle).

The Missouri 
State group also 
notes that the 
centers of the 
blue triangles 
of the coloring 
in figure 2 
comprise the 
vertices of a 
cube (of edge 
length φ / 32 ).

Moreover, 
the centroids 
of the six white 
regions form 
an octahedron 
of unit edge 

length—if you find a compact proof of this fact, 
please submit it to the Playground.

OEIS Challenge (P419). You create a triangular 
diagram somewhat like the arithmetic triangle (also 
known as Halayudha’s or Pascal’s triangle), except 
that the number above and to the right tells you 
how many numbers up the diagonal to the left to 
add up, using 1s for any extra terms needed. 

2
2 2

2 3 2
2 4 5 2

2 5 9 8 2
2 6 14 20 13 2



To your surprise, you check and discover 
that this particular number triangle is not listed 
in the On-Line Encyclopedia of Integer Sequences 
(OEIS; which can be found at oeis.org).

Your challenge was to submit one interesting 
fact about this triangle to the Playground. It 
could be a closed form for some or all of the 
terms, or a computation of the row sums of the 
triangle, or a relationship between some  
entries of this triangle and another well-known  
sequence, etc. If the Playground reader 

THE JUNGLE GYM

THE CAROUSEL—OLDIES, BUT GOODIES

In this section, we present an old problem 
that we like so much, we thought it deserved 
another go-round. Try this, but be careful—
old equipment can be dangerous. Answers 
appear at the end of the column.

Conaxial Conundrum? (C35). A (right circular) 
cone can be viewed as a surface of revolution 
of a line called its generator. Classically, the 
intersection of a right circular cone with a plane 
that is anywhere between perpendicular to the 
cone’s axis and parallel to its generator yields an 
ellipse. At what point in its interior does the axis 
of revolution of the cone pierce such an ellipse? 
Hint: it is neither the ellipse’s centroid nor a focus.

APRIL WRAP-UP

Figure 2. Face-coloring of 
an icosahedron with 12 white 
triangles, each adjacent to 
exactly one other.
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community collects enough material of interest 
for this sequence to be accepted into the OEIS, 
we all win the Challenge!

Carl Libis (Columbia Southern University) sent 
a number of interesting observations without 
proof; presumably they can generally be verified 
by induction. First, to set notation: we write a(r,p) 
for an entry of the triangle, where r represents 
the row number from the top down and starting 
from 0, and p signifies the position within a row, 
numbered 0 to r from left to right. By convention 
a(r,p) = 1 for r < 0, p < 0, or p > r. The defining 
recursion for the triangle is then 

∑= − −
=

−

a r p a r i p i
i

a r p

( , ) ( , ),
1

( 1, )

with initial condition a(0,0) = 2.
It’s straightforward to see that a(r,1) = r + 1 

and that a(r,2) is one less than the rth triangular 
number. For higher fixed values of p, it’s 
convenient to define

S3(r,p) = a(r,p) + a(r,p–1) + a(r,p–2).

Carl finds that for p = 3, 4, or 5 and r > p, 

+ = − − −a r p S r p a r p( 1, ) ( , ) ( , 4) 1.3

However, this formula doesn’t directly generalize 
to larger p:

•	 For r > 6, 
	     a(r+1,6) = S3(r,6) – a(r,2) + 1;

•	 For r > 7, 
a(r+1,7) = S3(r,7) – a(r,3) + 2a(r,1) – 5.

The similarity of these additional two cases suggests 
that there might be some formula for an arbitrary 
entry in terms of just entries in the prior row.

In addition, Carl investigates the right-
descending columns cq(r) = a(r,r–q), noting:

•	 c1(r) = Hr–1, where H gives the sum recurrence 
(Hemachandra or Fibonacci numbers);

•	 c2(r) = 2c2(r – 1) + c1(r – 3) – 1; and
•	 c3(r) = 2c3(r – 1) + c2(r – 2) + c1(r – 4) – 2.

In fact, it appears numerically that in general, 
for q > 1, cq(r) is given by 

∑− + − − − + + −− +
=

−

c r c r q q c r iq q i
i

q

( 1) ( 1) 1 ( ).1 1
1

1

Whether these findings warrant inclusion in 
the OEIS remains to be seen, so if you make any 
further discoveries or find generalizations of the 
formulas for an entry in terms of the previous 
row, do submit them.

SET Another Problem (P420). This problem 
came from Hsu, Ostroff, and Van Meter’s article 
“Set with a Twist.” Given a group G with identity 
e, a 3SET in G is an ordered triple g g g, ,1 2 3  of 
three distinct elements of G such that g1g2g3 = e.

How many 3SETs are there in a) S4, b) S5, or c) 
S6? Here Sn is the usual symmetric group, or 
group of permutations, on n elements. 

Dmitry Fleischman and the Missouri State 
solvers sent solutions, along with partial answers 
from Wayne Nelson (Lovelock Correctional) and 
the Georgia Southern solvers. There are 522, 
14082, and 516402 3SETs in S4, S5, and S6, 
respectively.

Note that any ordered pair 〈g,h〉 from G 
participates in at most one 3SET, namely 
〈g,h,(gh)−1〉. So when G N| | ,=  we begin with the 
N2 ordered pairs and count 3SETs by inclusion-
exclusion.

There are three ways this triple could fail to be 
a 3SET: g = h, = −g gh( ) ,1  or = −h gh( ) .1  There are 
N pairs 〈g,h〉 that satisfy any one of these three 
equations. Any two or all three of them holding 
simultaneously is equivalent to g3 = e. Hence, if 
we let N3 be the number of elements whose cube 
is the identity, the number of 3SETs is 

− + − = − +N N N N N N N3 3 ( 3) 2 .2
3 3 3

For G = Sn,  N = n!. For n < 6, the only 
elements of order 1 or 3 are the identity and the 
three cycles, yielding 1 + n(n – 1)(n – 2) / 3 such 
elements. However, S6 contains additional elements 
of order 3: the products of two disjoint three-cycles, 
of which there are (in Sn) − ⋅ ⋅n n!/ (( 6)! 3 2).2  The 
numerical values above follow.

Fearsome Cyclocts (P421). This problem 
was from Arsalan Wares (Valdosta State 
University). The eight points A through H all 
lie on the unit circle. Vertical segment AB lies 
in the right half-plane with B above A, and has 
the same length as horizontal segment CD in 
the upper half-plane with C to the right of D. 
Similarly, vertical segment EF with E above F lies 
in the left half-plane, and has the same length as 
horizontal GH in the lower half-plane with G to 
the left of H. Any eight points satisfying the above 
conditions constitute the vertices of a special sort 
of possibly self-intersecting octagon ABCDEFGH 
that we will call a cyclocts. The interior of a 
cyclocts is defined by the “odd-crossing rule,” 
as shown in the example in figure 3. (Note that 
depending on the locations of the four segments, 
there may be as many as four points of self-
intersection.) Find the minimum-area and 
maximum-area cyclocts.
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CAROUSEL SOLUTION

There are exactly two spheres tangent to both 
the cone (in one of its circular cross-sections) and 
to the plane whose intersection with the cone 
produces the ellipse, one on each side of the plane. 
These are the so-called Dandelin spheres, shown 
in figure 4. As can also be seen from the figure 
by considering similar triangles, the intersection 
of the cone’s axis with the interior of the ellipse 
is the point that divides the segment between the 
ellipse’s foci in the same proportion as the ratio 
between the radii of the Dandelin spheres.

This is a bit of a trick question, however, in that 
this intersection point is not uniquely determined 
by the ellipse itself. Just as with a circle, the same 
ellipse can be generated by the intersection of 
its plane with some right circular cone of any 
apex angle α between 0 and τ / 2. For large α, 
the “upper” Dandelin sphere has small radius 
and the lower one has very large radius. On the 
other hand, as α tends toward 0 and the cone 
tends toward a cylinder, the radii of the two 
Dandelin spheres converge to the same value. 
Hence, the intersection of the cone axis and the 
ellipse can take on any point between a focus 
and the centroid of the ellipse, as the cone used 
to construct the ellipse varies.

Figure 4. Dandelin spheres of an ellipse, 
courtesy of Perhelion on Wikimedia.

SUBMISSION & CONTACT INFORMATION
The Playground features problems for students 
at the undergraduate and (challenging) high 
school levels. Problems and solutions should 
be submitted to MHproblems@maa.org and 
MHsolutions@maa.org, respectively (PDF format 
preferred). Paper submissions can be sent to 
Glen Whitney, UCLA Math Dept., 520 Portola 
Plaza MS 6363, Los Angeles, CA 90095. Please 
include your name, email address, and affiliation, 
and indicate if you are a student. If a problem 
has multiple parts, solutions for individual 
parts will be accepted. Unless otherwise stated, 
problems have been solved by their proposers.

The deadline for submitting solutions to 
problems in this issue is January 15, 2022.

Apparently, this cyclocts has so far been too 
fearsome, as the Playground has not received any 
submissions. We will hold this problem open until 
the due date for the problems proposed in this 
issue.

Figure 3. An example cyclocts. A point is in 
the interior if you must cross its edges an odd 
number of times to reach the circle.

10.1080/10724117.2021.1971424

SOLUTION TO NINES CLOCK PUZZLE
Challenge I has solutions for 2, 3, 4 and 9. 
Challenge II has extra solutions of 8, 9n, 16n, 
and 64n. We have checked that there are no 
further solutions up to 144. Sample solutions 
can be found at maa.org/mathhorizons/
supplemental.htm. If you find a solution to 
either challenge not listed here, email Brian 
Shelburne at (bshelburne@wittenberg.edu).

http://maa.org/mathhorizons/supplemental.htm
http://maa.org/mathhorizons/supplemental.htm
http://bshelburne@wittenberg.e

