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PROBLEMS AND SOLUTIONS

Edited by Daniel H. Ullman, Daniel J. Velleman, and Douglas B. West
with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, George Gilbert,
László Lipták, Rick Luttmann, Hosam Mahmoud, Frank B. Miles, Lenhard Ng, Rajesh
Pereira, Kenneth Stolarsky, Richard Stong, Stan Wagon, Lawrence Washington, and Li
Zhou.

Proposed problems should be submitted online at
americanmathematicalmonthly.submittable.com/submit.

Proposed solutions to the problems below should be submitted by December 31,
2021, via the same link. More detailed instructions are available online. Proposed
problems must not be under consideration concurrently at any other journal nor be
posted to the internet before the deadline date for solutions. An asterisk (*) after the
number of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

12265. Proposed by Ross Dempsey, student, Princeton University, Princeton, NJ. For a
fixed positive integer k, let a0 = a1 = 1 and an = an−1 + (k − n)2an−2 for n ≥ 2. Show
that ak = (k − 1)!.

12266. Proposed by Haoran Chen, Xi’an Jiaotong–Liverpool University, Suzhou, China.
A union of a finite number of squares from a grid is called a polyomino if its interior is
simply connected. Given a polyomino P and a subpolyomino Q, we write c(P,Q) for the
number of components that remain when Q is removed from P .
Let f (k) = maxP minQ c(P,Q), where the maximum is taken
over all polyominoes and the minimum is taken over all sub-
polyominoes Q of P of size k. For example, f (2) ≥ 3, because
any domino removed from the pentomino at right breaks the
pentomino into 3 pieces. Is f bounded?

12267. Proposed by Michel Bataille, Rouen, France. Let x, y, and z be nonnegative real
numbers such that x + y + z = 1. Prove

(1 − x)
√

x(1 − y)(1 − z) + (1 − y)
√

y(1 − z)(1 − x) + (1 − z)
√

z(1 − x)(1 − y)

≥ 4
√

xyz.

12268. Proposed by Samina Boxwala Kale, Nowrosjee Wadia College, Pune, India, Vas̆ek
Chvátal, Concordia University, Montreal, Canada, Donald E. Knuth, Stanford University,
Stanford, CA, and Douglas B. West, University of Illinois, Urbana, IL.
(a) Show that there is an easy way to decide whether the edges of a graph can each be
colored red or green so that at each vertex the number of incident edges with one color
differs from the number having the other color by at most 1.
(b) Show that it is NP-hard to decide whether the vertices of a graph can each be colored
red or green so that at each vertex the number of neighboring vertices with one color differs
from the number having the other color by at most 1.

http://dx.doi.org/doi.org/10.1080/00029890.2021.1930431
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12269. Proposed by Mehmet Şahin and Ali Can Güllü, Ankara, Turkey. Let ABC be an
acute triangle. Suppose that D, E, and F are points on sides BC, CA, and AB, respectively,
such that FD is perpendicular to BC, DE is perpendicular to CA, and EF is perpendicular
to AB. Prove

AF

AB
+ BD

BC
+ CE

CA
= 1.

12270. Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France. Let a0 = 1, and let
an+1 = an + e−an for n ≥ 0. Show that the sequence whose nth term is ean − n − (1/2) ln n

converges.

12271. Proposed by Steven Deckelman, University of Wisconsin–Stout, Menomonie, WI.
Let n be a positive integer. Evaluate∫ 2π

0

∣∣∣sin
(
(n − 1)θ − π

2n

)
cos(nθ)

∣∣∣ dθ.

SOLUTIONS

The Asymptotic Behavior of a Sum

12153 [2020, 85]. Proposed by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria. For a real number x whose fractional part is not 1/2, let 〈x〉
denote the nearest integer to x. For a positive integer n, let

an =
(

n∑
k=1

1〈√
k
〉
)

− 2
√

n.

(a) Prove that the sequence a1, a2, . . . is convergent, and find its limit L.
(b) Prove that the set {√n(an − L) : n ≥ 1} is a dense subset of [0, 1/4].

Composite solution by Jean-Pierre Grivaux, Paris, France, and Eugene A. Herman, Grin-
nell College, Grinnell, IA.

(a) The limit is −1. Let Ij = {n ∈ N : 〈√n〉 = j}. That is,

Ij = {n : j − 1/2 <
√

n < j + 1/2} = [(j − 1)j + 1, j (j + 1)].

Note that |Ij | = 2j and that these intervals partition N.
For k ∈ Ij , the summand in the expression for an is 1/j . Hence Ij contributes 2 to

the sum if all of its terms are included. The last interval contributes less when n does not
have the form (j + 1)j . It is the interval Ij such that 〈√n〉 = j . This interval contributes
n − j (j − 1) terms equal to 1/j , so it contributes n/j − j + 1 to the sum. Thus

an = 2(j − 1) + n

j
− j + 1 − 2

√
n = −1 + j + n

j
− 2

√
n.

Since j = 〈√n〉, we have

an + 1 =
(√

n − 〈√n〉)2

〈√n〉 <
(1/2)2

√
n − 1/2

→ 0

as n → ∞. Also an + 1 ≥ 0, so the sequence converges and L = −1.
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(b) We prove the density claim in a somewhat stronger form. We prove that in fact the
values of

√
n(an − L) for n ∈ Ij become dense in [0, 1/4] as j → ∞.

Let bn = √
n(an − L) = √

n(an + 1). By the computation of an + 1 above,

bn = (√
n − 〈√n〉)2

√
n

〈√n〉 .
Thus bn ≥ 0, with equality if and only if n is a perfect square (Ij has one perfect square).
We first show bn < 1/4.

Consider bn for n ∈ Ij , where 〈√n〉 has the constant value j . Let f be the cubic polyno-
mial defined by f (x) = (x − j)2x/j ; note that f (

√
n) = bn for n ∈ Ij . We have f ′′(x) >

0 for x > 2j/3, which holds when x = √
n for n ∈ Ij since

√
j (j − 1) + 1 > j − 1/2.

Hence in order to prove bn < 1/4 on Ij , it suffices to prove this inequality at both end-
points.

We show first that the value is larger at the upper endpoint, that is,(
j −

√
j 2 − j + 1

)2
√

j 2 − j + 1

j
<

(√
j 2 + j − j

)2
√

j 2 + j

j
.

Since j 2 − j + 1 < j 2 + j , it suffices to prove j −√
j 2 − j + 1 <

√
j 2 + j − j , which

we rewrite as 2j <
√

j (j − 1) + 1 + √
j (j + 1). Squaring both sides reduces the desired

inequality to 4j 2 < 2j 2 + 1 + 2
√

j 4 + j , which is true since j 2 <
√

j 4 + j .
To bound the value by 1/4 at the upper endpoint, where n = j (j + 1), the desired

inequality bn < 1/4 is(
j (j + 1) − 2j

√
j (j + 1) + j 2

)√
j (j + 1)/j < 1/4,

which simplifies to (2j + 1)
√

j (j + 1) < 2j (j + 1) + 1/4. After dividing by 2j + 1, it
suffices to show √

j (j + 1) < j + 1

2
− 1/8

j + 1/2
.

After squaring both sides, this reduces to the true inequality

j 2 + j < j 2 + j + 1

4
− 1

4
+ 1/64

(j + 1/2)2
.

To establish the density result, consider Ij for large j . An element n ∈ Ij has the form
j (j − 1) + r with 1 ≤ r ≤ 2j . When n = j 2 (that is, r = j ), we have bn = 0. For n =
j (j + 1) (that is, r = 2j ), we expand bn as a series in 1/j :

bn =
(√

j (j + 1) − j
)2√

j (j + 1)/j = j 2(
√

1 + 1/j − 1)2
√

1 + 1/j

= j 2
(
1 + 1

2j−1 − O(j−2) − 1
)2 (

1 + 1
2j−1 − O(j−2)

)
= j 2

(
1
4j−2 + O(j−3)

) (
1 + O(j−1)

) = 1
4 + O(j−1) → 1

4 .

Thus bj(j+1) → 1/4 as j → ∞.
Next consider the difference between bn+1 and bn. We have bn = (h(n))2√n/〈√n〉,

where h(n) = √
n − 〈√n〉. When {n, n + 1} ∈ Ij we compute

h(n + 1) − h(n) = √
j (j − 1) + r + 1 − j − (

√
j (j − 1) + r − j)

= √
j (j − 1) + r + 1 −√

j (j − 1) + r

= 1√
j (j − 1) + r + 1 + √

j (j − 1) + r
<

1

2
√

j (j − 1)
,
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which approaches 0 as j → ∞. Hence the gaps between values of (h(n))2 for n ∈ Ij

become arbitrarily small as j → ∞. Also the deviation of
√

n/〈√n〉 from 1 tends to 0.
Hence as j → ∞ the differences between successive values of bn for n ∈ [j 2, j 2 + j ]
become arbitrarily small, and so {bn : n ∈ N} is dense in [0, 1/4].

Editorial comment. We have seen that the values of h(n) increase through Ij , passing
through 0 at n = j 2. In fact, the negatives of the values of h(n) for n < j 2 interlace with the
values for n > j 2. That is, h(j 2 + s) ≤ −h(j 2 − s) ≤ h(j 2 + s + 1) for 0 ≤ s ≤ j − 1.

Also solved by K. F. Andersen (Canada), A. Berkane (Algeria), R. Chapman (UK), H. Chau, H. Chen, C. Chiser
(Romania), A. Deeb & H. Al-Assad (Syria), A. Dixit, G. Fera & G. Tescaro (Italy), O. Geupel (Germany),
N. Hodges (UK), W. Janous (Austria), P. Lalonde (Canada), J. H. Lindsey II, O. P. Lossers (Netherlands),
M. Omarjee (France), M. A. Prasad (India), C. Schacht, E. Schmeichel, A. Stadler (Switzerland), A. Stenger,
R. Stong, R. Tauraso (Italy), T. Wiandt, T. Wilde (UK), Florida State University Problem Solving Group, and
the proposer.

Schur’s Inequality and Five Triangle Radii

12154 [2020, 85]. Proposed by Martin Lukarevski, University “Goce Delcev,” Stip, North
Macedonia. Let ra , rb, and rc be the exradii of a triangle with circumradius R and inradius
r . Prove

ra

rb + rc

+ rb

rc + ra

+ rc

ra + rb

≥ 2 − r

R
.

Solution by Tamas Wiandt, Rochester Institute of Technology, NY. Let a, b, and c be the
lengths of the sides opposite vertices A, B, and C, let s be the semiperimeter, and let t be the
area of the triangle. It is well known that ra = t/(s − a), rb = t/(s − b), rc = t/(s − c),
r = t/s, R = abc/(4t), and t2 = s(s − a)(s − b)(s − c).

Now let x = s − a, y = s − b, and z = s − c. The triangle inequality implies x, y, z >

0, and we obtain a = y + z, b = x + z, c = x + y, and s = x + y + z. With these substi-
tutions, the desired inequality becomes

yz

x(y + z)
+ zx

y(z + x)
+ xy

z(x + y)
≥ 2 − 4s(s − a)(s − b)(s − c)

abcs

= 2 − 4xyz

(y + z)(x + z)(x + y)
.

After multiplication by the denominators, this turns into

x3y3 + y3z3 + x3z3 + 3x2y2z2 ≥ x3y2z + x2y3z + x3yz2 + x2yz3 + xy3z2 + xy2z3,

which is just Schur’s inequality applied to the numbers xy, yz, and xz. Because x, y, and
z are positive, the inequality turns into an identity only when xy = yz = xz, that is, when
x = y = z and a = b = c, which means the triangle is equilateral.

Also solved by A. Alt, F. R. Ataev (Uzbekistan), M. Bataille (France), E. Bojaxhiu (Albania) & E. Hysnelaj
(Australia), R. Chapman (UK), C. Curtis, P. De (India), M. Dincă (Romania), G. Fera (Italy), S. Gayen (India),
O. Geupel (Germany), N. Hodges (UK), E.-Y. Jang (Korea), W. Janous (Austria), M. Kaplan & M. Golden-
berg, B. Karaivanov (USA) & T. S. Vassilev (Canada), P. Khalili, K. T. L. Koo (China), O. Kouba (Syria),
S. S. Kumar, K.-W. Lau (China), J. H. Lindsey II, O. P. Lossers (Netherlands), D. J. Moore, C. R. Pransesachar
(India), V. Schindler (Germany), A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), M. Tetiva (Romania),
D. Văcaru (Romania), M. Vowe (Switzerland), M. R. Yegan (Iran), T. Zvonaru (Romania), Davis Problem
Solving Group, and the proposer.
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The Area Under a Tractrix

12155 [2020, 85]. Proposed by Albert Stadler, Herrliberg, Switzerland. Let f : [0,∞) →
[0, 1] be the function that satisfies f (0) = 1, is differentiable on (0,∞), and has the fol-
lowing property: If A is a point on the graph of f and B is the x-intercept of the line
tangent to the graph of f at A, then AB = 1.
(a) Prove

∫∞
0 f (x) dx = π/4.

(b) For n ∈ N, prove that
∫∞

0 x2nf (x) dx is a rational polynomial of π .

Solution to part (a) by Kenneth F. Andersen, Alberta, Canada. The hypothesis applied
when A = (0, 1) indicates that f is continuous from the right at 0. We first show that
f is a strictly decreasing map from [0,∞) onto (0, 1]. The hypothesis requires that for
each x > 0, the tangent line at (x, f (x)) has a unique x-intercept. Thus, we must have
f ′(x) �= 0 for all x > 0. The Darboux (intermediate value) property of f ′ then shows that
f ′ is of fixed sign on (0,∞). Since f (0) = 1 and f (1) ≤ 1, the mean value theorem shows
that there is some x ∈ (0, 1) satisfying

0 ≥ f (1) − f (0) = f ′(x),

which shows that the fixed sign of f ′ must be negative. Hence, the hypothesis AB = 1
yields

f ′(x) = − f (x)√
1 − f (x)2

(1)

when x > 0. Since f ′ is negative, f strictly decreases to m = limx→∞ f (x). If we suppose,
to draw a contradiction, that m > 0, then (1) shows that f ′(x) ≤ −m/

√
1 − m2 < 0 for all

x > 0. It follows that for t > 0,

0 ≤ f (t) = f (0) +
∫ t

0
f ′(x) dx ≤ 1 − m√

1 − m2
t,

which is impossible, since the right-hand side tends to −∞ as t → ∞. Thus m = 0, so f

is a bijection from [0,∞) to (0, 1].
The inverse function g : (0, 1] → [0,∞) is continuous and satisfies g(1) = 0,

limy→0+ g(y) = ∞, and

g′(y) = −
√

1 − y2

y
(2)

when 0 < y < 1. Using the substitution x = g(y), we obtain∫ ∞

0
f (x) dx = −

∫ 1

0
f (g(y))g′(y) dy =

∫ 1

0

√
1 − y2 dy = π

4
,

as claimed.

Composite solution to part (b) by O. P. Lossers, Eindhoven University of Technology, and
the Davis Problem Solving Group, Davis, CA. Integrating (2) yields

g(y) = −
√

1 − y2 + log
1 +√

1 − y2

y
= −

√
1 − y2 + sech−1 y.

Thus, again using the substitution x = g(y), we obtain∫ ∞

0
x2nf (x) dx =

∫ 1

0

(
−
√

1 − y2 + sech−1 y
)2n√

1 − y2 dy.
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Next, we use the substitution t = sech−1 y. We have y = sech t , 1 − y2 = tanh2 t , and
dy = − sech t tanh t dt , so∫ ∞

0
x2nf (x) dx =

∫ ∞

0
(− tanh t + t)2n sech t tanh2 t dt.

Expanding (− tanh t + t)2n and using the identity tanh2 t = 1 − sech2 t again, we see that
the last integral is a rational linear combination of integrals of the forms

I (i, j) =
∫ ∞

0
t2i sech2j+1 t dt and J (i, j) =

∫ ∞

0
t2i+1 sech2j+1 t tanh t dt

for i, j ≥ 0.
Integration by parts yields

J (i, j) = −
∫ ∞

0
t2i+1 sech2j t d(sech t)

= (2i + 1)

∫ ∞

0
t2i sech2j+1 t dt − 2j

∫ ∞

0
t2i+1 sech2j+1 t tanh t dt

= (2i + 1)I (i, j) − 2jJ (i, j),

so

J (i, j) = 2i + 1

2j + 1
I (i, j). (3)

Similarly, for i, j ≥ 1,

I (i, j) =
∫ ∞

0
t2i sech2j−1 t d(tanh t)

= −2i

∫ ∞

0
t2i−1 sech2j−1 t tanh t dt + (2j − 1)

∫ ∞

0
t2i sech2j−1 t tanh2 t dt

= −2i

∫ ∞

0
t2i−1 sech2j−1 t tanh t dt + (2j − 1)

∫ ∞

0
t2i sech2j−1 t (1 − sech2 t) dt

= −2iJ (i − 1, j − 1) + (2j − 1)I (i, j − 1) − (2j − 1)I (i, j),

so

I (i, j) = − i

j
J (i − 1, j − 1) + 2j − 1

2j
I (i, j − 1). (4)

Combining (3) and (4), we conclude that
∫∞

0 x2nf (x) dx is equal to a rational linear com-
bination of integrals of the forms I (i, 0) and I (0, j).

According to equation 3.523.4 in Gradshteyn, I. S., Ryzhik, I. S. (2014), Table of Inte-
grals, Series, and Products, 8th ed. Waltham, MA: Academic Press,

I (i, 0) =
∫ ∞

0
t2i sech t dt =

(π

2

)2i+1 |E2i |,
where the E2i are the Euler numbers, which are integers. Also, using the substitutions
u = sinh t and u = tan θ and then recognizing a well-known Wallis integral, we find that

I (0, j) =
∫ ∞

0
sech2j+1 t dt =

∫ ∞

0

cosh t dt

cosh2j+2 t
=
∫ ∞

0

cosh t dt

(1 + sinh2 t)j+1

=
∫ ∞

0

du

(1 + u2)j+1
=
∫ π/2

0

sec2 θ dθ

sec2j+2 θ
=
∫ π/2

0
cos2j θ dθ =

(
2j

j

)
π

22j+1
.
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The desired result follows.

Editorial comment. The graph of f is known as a tractrix. It is the path of an object that
begins at the point (0, 1) and is dragged by a rope of length 1 attached to a point moving
along the positive x-axis.

The solution to part (b) gives an alternative solution to part (a):∫ ∞

0
f (x) dx =

∫ ∞

0
sech t tanh2 t dt =

∫ ∞

0
sech t (1 − sech2 t) dt

= I (0, 0) − I (0, 1) = π

2
− π

4
= π

4
.

Yet another approach to part (a) was suggested by the Davis Problem Solving Group:
The value π/4 for the area can be seen directly geometrically with the differential geo-
metric observation that as A moves from (0, 1) to ∞, the tangent segments AB, when
translated so that A is at the origin, rotate 90◦, sweeping out a quarter of a unit circle.
This is an application of Mamikon’s sweeping tangent theorem; see Apostol, T. M., Mnat-
sakanian, M. A. (2012), New Horizons in Geometry, Dolciani Mathematical Expositions
No. 47, Washington, DC: Mathematical Association of America. For a dynamic illustration
of this proof, see demonstrations.wolfram.com/AreaUnderTheTractrix.

Also solved by R. Chapman (UK), G. Fera & G. Tescaro (Italy), N. Hodges (UK), O. Kouba (Syria), B. Lai
& R. Wang (China), R. Stong, T. Wilde (UK), and the proposer. Part (a) also solved by A. Dixit (Canada)
& S. Pathak (USA), E. A. Herman, J. H. Lindsey II, E. I. Verriest, M. Vowe (Switzerland), Missouri State
University Problem Solving Group.

A Symmetric Identity

12156 [2020, 85]. Proposed by Hideyuki Ohtsuka, Saitama, Japan. For positive integers m

and n and nonnegative integers r and s, prove

∑
0≤j1≤···≤jm≤r

(
n+s

n

)(
n+j1

n

)(
s+j1

s

)
∏m

i=1(n + ji)
=

∑
0≤j1≤···≤jm≤s

(
n+r

n

)(
n+j1

n

)(
r+j1

r

)
∏m

i=1(n + ji)
.

Solution by Roberto Tauraso, Università di Roma “Tor Vergata,” Rome, Italy. We first
prove by induction on m that, for every nonnegative integer k,

∑
0≤j1≤···≤jm≤s

(
n+j1

n

)(
j1
k

)
∏m

i=1(n + ji)
=
(
n+s

n

)(
s

k

)
(n + k)m

.

Let Fs(m, n, k) be the left side of this identity.
When j1 > k,(

n + j1 − 1

n

)(
j1 − 1

k

)
= j1

n + j1

(
n + j1

n

)
j1 − k

j1

(
j1

k

)
= j1 − k

n + j1

(
n + j1

n

)(
j1

k

)
.

The left and right ends of this display are also equal when j1 ≤ k, since both are 0. Thus
for the base case m = 1, we obtain the telescoping sum

Fs(1, n, k) =
∑

0≤j1≤s

(
n+j1

n

)(
j1
k

)
n + j1

=
∑

0≤j1≤s

(
n+j1

n

)(
j1
k

)
n + k

· (n + j1) − (j1 − k)

n + j1

=
∑

0≤j1≤s

(
n+j1

n

)(
j1
k

)− (
n+j1−1

n

)(
j1−1

k

)
n + k

=
(
n+s

n

)(
s

k

)
n + k

.
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Now consider m ≥ 2. For 0 ≤ t ≤ s, all terms in the difference

Ft(m, n, k) − Ft−1(m, n, k)

cancel except those where jm = t . Note that F−1(m, n, k) here is an empty sum and is
therefore 0. Thus in the computation below, we begin by grouping the terms according to
the value of jm, taken as t . With t then fixed within each term, we can factor out n + t

from the denominator of the summand, allowing us to reduce m and apply the induction
hypothesis. The computation then completes the proof of the claim:

Fs(m, n, k) =
s∑

t=0

(
Ft(m, n, k) − Ft−1(m, n, k)

) =
s∑

t=0

Ft(m − 1, n, k)

n + t

=
s∑

t=0

1

n + t
·
(
n+t

n

)(
t

k

)
(n + k)m−1

= Fs(1, n, k)

(n + k)m−1
=
(
n+s

n

)(
s

k

)
(n + k)m

.

Letting R(m, n, r, s) be the right side of the desired identity, it remains to show
R(m, n, s, r) = R(m, n, r, s). By Vandermonde’s identity,(

r + j1

r

)
=

r∑
k=0

(
r

r − k

)(
j1

k

)
=

r∑
k=0

(
r

k

)(
j1

k

)
.

Using the identity for Fs(m, n, k), we obtain

R(m, n, r, s) =
∑

0≤j1≤···≤jm≤s

(
n+r

n

)(
n+j1

n

)∑r
k=0

(
r

k

)(
j1
k

)
∏m

i=1(n + ji)

=
(

n + r

n

) r∑
k=0

(
r

k

) ∑
0≤j1≤···≤jm≤s

(
n+j1

n

)(
j1
k

)
∏m

i=1(n + ji)

=
(

n + r

n

) r∑
k=0

(
r

k

) (n+s

n

)(
s

k

)
(n + k)m

=
(

n + r

n

)(
n + s

n

) min(r,s)∑
k=0

(
r

k

)(
s

k

)
(n + k)m

.

The resulting formula is symmetric in r and s, which completes the proof.

Also solved by R. Stong and the proposer.

Sums and Differences of a Cube and a Prime

12157 [2020, 85]. Proposed by Nick MacKinnon, Winchester College, Winchester, UK.
Show that there are infinitely many positive integers that are neither the sum of a cube and
a prime nor the difference of a cube and a prime (in either order).

Solution I by Joel Schlosberg, Bayside, NY. Such an integer is given by m3 for any positive
integer m congruent to 8 modulo 91. For such m,

m3 − (m − 1)3 = 3m2 − 3m + 1 ≡ 3 · 82 − 3 · 8 + 1 ≡ 0 (mod 13)

and

|m3 − (m + 1)3| = 3m2 + 3m + 1 ≡ 3 · 82 + 3 · 8 + 1 ≡ 0 (mod 7),

which show that |m3 − n3| is not prime when n = m ± 1. Also,

m3 ± n3 = (m ± n)(m2 ∓ mn + n2)
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for any positive integer n, which shows that |m3 − n3| is not prime when |m − n| > 1.
Therefore, |m3 ± n3| is never prime, and m3 has the desired property.

Solution II by Li Zhou, Polk State College, Winter Haven, FL. We prove a broad general-
ization: Let P be the set of primes, and for any k ≥ 3 let Sk = {mi : m ≥ 0 and 3 ≤ i ≤ k}.
We show that (P − Sk) ∪ (P + Sk) ∪ (Sk − P) avoids infinitely many positive integers.

Let (p1, p2, p3, . . .) be the sequence of odd primes. Every element of Sk can be
expressed as mi where i ∈ {4, p1, p2, . . . , ps}, where ps is the largest prime less than
or equal to k. By the Chinese remainder theorem, there exists u such that u ≡ 2 (mod 8)

and u ≡ 0 (mod p1 · · · ps). For 1 ≤ i ≤ s, let

fi(x) =
pi∑

j=1

xpi−j (x − 1)j−1 and gi(x) =
pi∑

j=1

xpi−j (x + 1)j−1.

Let qi be a prime factor of fi(2u/pi ) and ri be a prime factor of gi(2u/pi ). Let v = 8p1 · · ·ps

and a = 2unv with n ≥ 2 and n ≡ 1 (mod q1 · · · qsr1 · · · rs). We show that a is not an
element of (P − Sk) ∪ (P + Sk) ∪ (Sk − P).

First, with b = (a/4)1/4, we have

a + m4 = 4b4 + m4 = (2b2 + 2bm + m2)(b2 + (b − m)2);
thus a + m4 is not prime.

Next, let c = a1/2, so a − m4 = (c − m2)(c + m2). If a − m4 is prime, then c − m2 = 1.
Letting d = (2c)1/2, we have c + m2 = 2c − 1 = (d − 1)(d + 1). Hence a − m4 is not
prime.

Next, consider m4 − a = (m2 − c)(m2 + c). If m4 − a is prime, then m2 − c = 1. With
e = (c/2)1/4, we have

m2 + c = 2c + 1 = (2e2 + 2e + 1)(2e2 − 2e + 1);
hence m4 − a is not prime.

Now take any pi from {p1, . . . , ps}. Since a + mpi is greater than its factor a1/pi + m,
it cannot be prime. Next, if a − mpi is prime, then its factor a1/pi − m is 1, and its other
factor becomes

fi(2
u/pi nv/pi ) ≡ fi(2

u/pi ) ≡ 0 (mod qi),

which cannot be prime. Similarly, if mpi − a is prime, then its factor m − a1/pi is 1 and its
other factor becomes

gi(2
u/pi nv/pi ) ≡ gi(2

u/pi ) ≡ 0 (mod ri),

which cannot be prime. Therefore all such 2unv form an infinite set with the desired prop-
erty.

Editorial comment. Carl Pomerance and David Stone remarked that if Bunyakovsky’s con-
jecture holds, then for any noncube N , the polynomial x3 − N assumes infinitely many
prime values, and therefore a noncube N can always be written as a cube minus a prime.
Conjecturally, then, the only solutions to the problem are values of m3 for which both
3m2 − 3m + 1 and 3m2 + 3m + 1 are composite.

Also solved by H. Al-Assad (Syria), A. Avagyan (Armenia), R. Chapman (UK), J. Christopher, C. Curtis,
D. Fleischman, O. Geupel (Germany), N. Hodges (UK), O. Kouba (Kyria), S. S. Kumar O. P. Lossers (Nether-
lands), C. Pomerance & D. Stone , M. A. Prasad (India) C. Schacht, A. Stadler (Switzerland), A. Stenger,
R. Stong, T. Wilde (UK), The Missouri State University Problem Solving Group, and the proposer.
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