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PROBLEMS AND SOLUTIONS
EDITORS

Greg Oman Charles N. Curtis
CMJ Problems CMJ Solutions
Department of Mathematics Mathematics Department
University of Colorado, Colorado Springs Missouri Southern State University
1425 Austin Bluffs Parkway 3950 E Newman Road
Colorado Springs, CO 80918 Joplin, MO 64801
email: cmjproblems@maa.org email: cmjsolutions@maa.org

This section contains problems intended to challenge students and teachers of college mathematics.
We urge you to participate actively both by submitting solutions and by proposing problems that are
new and interesting. To promote variety, the editors welcome problem proposals that span the entire
undergraduate curriculum.

Proposed problems should be sent to Greg Oman, either by email (preferred) as a pdf, TEX, or
Word attachment or by mail to the address provided above. Whenever possible, a proposed problem
should be accompanied by a solution, appropriate references, and any other material that would be
helpful to the editors. Proposers should submit problems only if the proposed problem is not under
consideration by another journal.

Solutions to the problems in this issue should be sent to Chip Curtis, either by email as a pdf,
TEX, or Word attachment (preferred) or by mail to the address provided above, no later than September
15, 2022. Sending both pdf and TEXfiles is ideal.

PROBLEMS

1221. Proposed by Gregory Dresden, Washington and Lee University, Lexington, VA.

Shown below (from left to right) are the graphs of r = sin 4θ/3 and r = sin 6θ/5,
where every other adjacent region (starting from the outside) is shaded black. Find the
total shaded area for any such graph r = sin(k + 1)θ/k, where k > 0 is an odd integer
and θ ranges from 0 to 2kπ .

doi.org/10.1080/07468342.2022.2026088
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1222. Proposed by Kent Holing, Trondheim, Norway.

Consider the parabola f (x, y) = Ax2 + 2Bxy + Cy2 + 2Dx + 2Ey + F = 0 with
real coefficients, B �= 0 and A, C > 0.

1. Show that the parabola is non-degenerate if and only if β = BE − CD �= 0.
2. Show that in the degenerate case, the parabola can be given by the formula

f (x, y) = Ax + By + D ± √
α1 = 0 for α1 = D2 − AF or (equivalently) by

f (x, y) = Bx + Cy + E ± √
α2 = 0 for α2 = E2 − CF and α1,2 ≥ 0.

3. When β �= 0, show that (A + C)(BxT + CyT ) + BD + CE = 0 for the coordi-
nates xT and yT of the vertex T .

4. Using 3, show that xT = − α2
2β

+ At for t = β

2C(A+C)2 .

5. Show that the coordinates of the focus F of the parabola are xF = xT + Ct and
yF = yT − Bt .

1223. Don Redmond, Southern Illinois University, Carbondale, IL.

Let h be a positive integer and define the nth rectangular number of order h, denoted by
Rh(n), as Rh(n) = n(n + h). Determine all positive integers h for which the equation
Rh(n) = m2 has a solution for some positive integers n and m.

1224. Proposed by George Stoica, Saint John, New Brunswick, Canada.

Let G be a finite group, and suppose that for any subgroups H and K of G, we have
|H ∩ K| = gcd(|H |, |K|). Prove that G is cyclic.

1225. Proposed by Greg Oman, University of Colorado at Colorado Springs, Colorado
Springs, CO.

All rings R throughout are commutative with 1 �= 0 and all subrings S of R are unital
(that is, 1 ∈ S). Recall that a ring R is chained provided that for any ideals I and J of
R, either I ⊆ J or J ⊆ I .

1. Give an example of a ring R which is not a field with the property that every
subring of R is chained.

2. Suppose now that R is reduced, that is, R has no nonzero nilpotents. Prove that
if every subring of R is chained, then R is a field.
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SOLUTIONS

Polynomials of degree n tangent to a circle at n − 1 points

1196. Proposed by Ferenc Beleznay, Mathleaks, Budapest, Hungary, and Daniel
Hwang, Wuhan Britain-China School, Wuhan, China.

Prove or disprove: for every positive integer n, there exists a polynomial of degree
n + 1 with real coefficients whose graph is tangent to some circle at n points.

Solution by Mark Wildon, Royal Holloway, Egham, UK.

Such polynomials exist. Shifting n, we shall prove that for each n ∈ N with n ≥ 3
there exists a polynomial Pn of degree n with coefficients in the integers such that the
graph of Pn(x) is tangent to the unit circle at exactly n − 1 points in the open interval
(−1, 1). For n = 2 we may simply take P2(x) = 1, which is tangent to the unit circle
at 0 and has degree 0.

To define the Pn for n ≥ 3, we need the Chebyshev polynomials of the second kind.
Recall that, in the usual notation, Um is the unique polynomial with real coefficients of
degree m such that (sin θ)Um(cos θ) = sin(m + 1)θ . For instance U0(x) = 1, U1(x) =
2x, and since sin 3θ = − sin3 θ + 3 sin θ cos2 θ = sin θ(− sin2 θ + 3 cos2 θ) = sin θ(−1 +
4 cos2 θ) we have U2(x) = 4x2 − 1. In fact each Un has integer coefficients. For each
n ∈ N with n ≥ 4, define

Pn(x) = x2Un−2(x) − 2xUn−3 + Un−4.

As shown in [1, Theorem 5], the defining property of Um and the relation 2 cos θ sin rθ =
sin(r + 1)θ + sin(r − 1)θ imply that if n ≥ 4 then

(sin θ)Pn(cos θ)

= (cos2 θ sin θ)Un−2(cos θ) − 2(cos θ sin θ)Un−3(cos θ) + (sin θ)Un−4(cos θ)

= cos2 θ sin(n − 1)θ − 2 cos θ sin(n − 2)θ + sin(n − 3)θ

= (1 − sin2 θ) sin(n − 1)θ − sin(n − 1)θ − sin(n − 3)θ + sin(n − 3)θ

= − sin2 θ sin(n − 1)θ.

Hence, Pn(cos θ) = − sin θ sin(n − 1)θ for each such n. Setting P3(x) = 2x3 − 2x

we have P3(cos θ) = 2 cos3 θ − 2 cos θ = 2(cos2 θ − 1) cos θ = −2 sin2 θ cos θ =
− sin θ sin 2θ . Therefore,

Pn(cos θ) = − sin θ sin(n − 1)θ if n ≥ 3. (�)

Since each Um has integer coefficients, so does each Pn.
Observe that, by (�),

(cos θ)2 + Pn(cos θ)2 = cos2 θ + sin2 θ sin2(n − 1)θ ≤ cos2 θ + sin2 θ = 1.

Hence, the graph of Pn(x) for −1 ≤ x ≤ 1 lies inside the closed unit disc. Moreover,
we have (cos θ)2 + Pn(cos θ)2 = 1 if and only if sin2(n − 1)θ = 1, so if and only if
θ = (2k−1)π

n−1 for some k ∈ N. Thus if x = cos (2k−1)π

n−1 and x ∈ (−1, 1), the graph of
Pn(x) is tangent to the unit circle.
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To get distinct values of cos θ , we may assume that θ ∈ [0, π]. If n = 2m is even
then there are 2m − 1 distinct tangent points, obtained by taking k = 1, . . . , m −
1, m, m + 1, . . . 2m − 1 to get x-coordinates

cos
π

2m − 1
, . . . , cos

(2m − 3)π

2m − 1
, cos

(2m − 1)π

2m − 1
= −1, − cos

2π

2m − 1
,

. . . , − cos
(2m − 2)π

2m − 1
.

If n = 2m + 1 is odd, then there are 2m distinct tangent points, obtained by taking
k = 1, . . . , m − 1, m to get x coordinates

cos
π

2m
, . . . , cos

(2m − 3)π

2m
, cos

(2m − 1)π

2m

and then k = m + 1, . . . , 2m to get x coordinates

− cos
π

2m
, . . . , − cos

(2m − 3)π

2m
, − cos

(2m − 1)π

2m
.

This completes the proof.

Remark. We remark that since Pn(1) = Pn(cos 0) = 0 and Pn(−1) = Pn(cos π) = 0
by (�), the graph of Pn(x) meets the graph of the unit circle at x = ±1; of course since
the unit circle has a vertical asymptote at these points, the graph is not tangent. Thus,
Pn is tangent to the unit circle at n − 1 points and has two further intersection points.
Since tangent points have multiplicity (at least) 2, this meets the bound in Bezout’s
Theorem, that the intersection multiplicity between the algebraic curves y = Pn(x)

and x2 + y2 = 1 of degrees n and 2, respectively, is 2n, and shows that each tangent
point has degree exactly 2.

References

[1] Janjić, M. (2008). On a class of polynomials with integer coefficients. J. Integer Seq. 11(5): Article 08.5.2, 9.

Also solved by the proposer. We received one incomplete solution.
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Matrices with presistently unequal rows

1197. Proposed by Valery Karachik and Leonid Menikhes, South Ural State University,
Chelyabinsk, Russia

Let A be an arbitrary n × m matrix that has no equal rows. Find a necessary sufficient
condition relating n and m so that there exists a column of A, after removal of which,
all rows remain different.

Solution by Eugene Herman, Grinnell College, Grinnell, Iowa.

The given property holds in a trivial sense when n = 1 or m = 1. In both cases, after
a column has been removed there do not exist two rows that are equal. Otherwise, the
necessary and sufficient condition is 2 ≤ n ≤ m. Suppose first that m + 1 = n ≥ 2.
Let A = [aij ], where aij = 0 when j ≥ i and aij = 1 when j < i. If column j of A

is removed then rows j and j + 1 are equal; hence the given property fails to hold.
If n ≥ m + 2, construct the first m + 1 rows of A as before and fill in the rest of the
matrix so all rows are different.

Suppose 2 ≤ n ≤ m and suppose the given property does not hold. Thus, for each
j ∈ {1, 2, . . . , m}, there exists a pair of rows Pj = {r, s} such that r and s are unequal
but become equal when the j th entry is removed from each. We create an undirected
graph as follows. Each vertex corresponds to a row, and so the number of vertices is
n. The edges correspond to the sets Pj ; specifically, (r, s) is an edge if and only if
{r, s} = Pj for some j . Hence the number of edges is m. No vertex is joined to it-
self by an edge and no two vertices are joined by more than one edge. We show that
the graph contains no cycles. Suppose (r1, . . . , rk) is a cycle; that is, r1, . . . , rk are
distinct vertices and (r1, r2), . . . , (rk−1, rk), (rk, r1) are edges. The edges correspond
to different columns, which we may assume are columns 1 through k (by permut-
ing columns, if necessary). Let r1 = (a1, a2, . . . , am). Thus, r2 = (b1, a2, a3, . . . , am)

where b1 �= a1 and r3 = (b1, b2, a3, . . . , am) where b2 �= a2, and so on until rk =
(b1, b2, . . . , bk−1, ak, . . . , an) where bk−1 �= ak−1. Then (rk, r1) cannot be an edge since
rk and r1 differ in in k − 1 entries and k − 1 > 1. Our graph is therefore a tree. In a
tree, the number of vertices is always larger than the number of edges, and so m < n.
This contradiction establishes our necessary and sufficient condition.

Also solved by the proposer.
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The cardinality of a set of maximal ideals

1198. Proposed by Alan Loper, The Ohio State University, Newark OH, and Greg
Oman, The University of Colorado, Colorado Springs, CO.

Let n be a nonnegative integer, and consider the ring R := Q[X0, . . . , Xn] of polyno-
mials (via usual polynomial addition and multiplication) in the (commuting) variables
X0, . . . Xn with coefficients in Q. It is well known that R is a Noetherian ring, and so
every ideal of R is finitely generated. Since R is countable, and there are but countably
many finite subsets of a countable set, we deduce that R has but countably many ide-
als and thus, in particular, countably many maximal ideals. Next, let X0, X1, X2, . . .

be a countably infinite collection of indeterminates. Observe that (to within iso-
morphism) Q[X0] ⊆ Q[X0, X1] ⊆ Q[X0, X1, X2] ⊆ · · · . Let Q[X0, X1, X2, . . .] be
the union of the this increasing chain. How many maximal ideals does the ring
Q[X0, X1, X2, . . .] have? (More precisely, what is the cardinality of the set of maxi-
mal ideals of Q[X0, X1, X2, . . .]?)

Solution by Kenneth Schilling, University of Michigan-Flint, Flint, Michigan.

Since Q [X0, X1, X2....] has countably many elements, it has at most 2ℵ0 maximal
ideals. We shall exhibit 2ℵ0 maximal ideals, proving that this is the exact cardinality.

Let p0(t) = t and p1(t) = t − 1. For each infinite sequence α : N → {0, 1}, let Iα

be the ideal of Q [X0, X1, X2....] generated by the set of polynomials

{pα(k)(Xk) : k = 1, 2, 3, ...}.
Since pα(k)(α(k)) = 0, for any q (X1, X2, ..., Xn) ∈ Iα,

q (α(0), α(1), ..., α(n)) = 0.

It follows that Iα is a proper ideal of Q [X0, X1, X2....], and so is contained in a maxi-
mal ideal Mα.

Now consider any pair α, β of distinct infinite sequences from {0, 1}. For some k,
{α(k), β(k)} = {0, 1}, so {pα(k)(Xk), pβ(k)(Xk)} = {Xk, Xk − 1}. Therefore the ideal
generated by Iα ∪ Iβ is the whole ring Q [X0, X1, X2....]. It follows that the union
Mα ∪ Mβ of maximal ideals must also generate the whole ring, and so, in particular,
Mα �= Mβ .

We conclude that the set of ideals Mα over all infinite sequences α : N → {0, 1} is
of cardinality 2ℵ0 , and the proof is complete.

Also solved by Paul Budney, Sunderland, MA; and the proposer. We received one incomplete solution.
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An oscillating function with prescribed zeros

1199. Proposed by Corey Shanbrom, Sacramento State University, Sacramento, CA.

Find a smooth, oscillating function whose periods form a bi-infinite geometric se-
quence. More precisely, given a positive λ �= 1, find a smooth function f on an open
half-line whose root set R is given by

R =
{
· · · − 1

λ3
− 1

λ2
− 1

λ
. − 1

λ2
− 1

λ
, −1

λ
, 0,

1, 1 + λ, 1 + λ + λ2, 1 + λ + λ2 + λ3, · · · } .

Editor’s note: The problem statement in the March 2021 issue omitted one of the zeros.
The functions defined in the submitted solutions included this value in their root set.

Solution by Albert Natian, Los Angeles Valley College, Valley Glen, California..

Answer: f (x) = sin
(

π ln[(λ−1)x+1]
ln λ

)
defined on

(
[1 − λ]−1 , ∞)

if λ > 1 and defined
on

(−∞, [1 − λ]−1
)

if λ < 1.

Justification It’s clear that sin θ = 0 ⇐⇒ θ = nπ, n ∈ Z. So

f (x) = 0 ⇐⇒ sin

(
π ln [(λ − 1) x + 1]

ln λ

)
= 0

⇐⇒ π ln [(λ − 1) x + 1]

ln λ
= nπ, n ∈ Z

⇐⇒ ln [(λ − 1) x + 1] = n ln λ, n ∈ Z

⇐⇒ ln [(λ − 1) x + 1] = ln λn, n ∈ Z

⇐⇒ (λ − 1) x + 1 = λn, n ∈ Z

⇐⇒ x = λn − 1

λ − 1
if n ≥ 0, x = −1

λ
·
(

1
λ

)−n − 1(
1
λ

) − 1
if n < 0, n ∈ Z

⇐⇒ x =
n−1∑
j=0

λj if n ≥ 0, x = −
−n∑
j=1

(
1

λ

)j

if n < 0, n ∈ Z.

Also solved by Albert Stadler, Herrliberg, Switzerland; and the proposer.
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A recurrence satisfied by a sequence with a given generating function

1200. Proposed by Russ Gordon, Whitman College, Walla Walla, Washington, and
George Stoica, St. John, New Brunswick, Canada

Let c be an arbitrary real number. Prove that the sequence (an)n≥0 defined by

∞∑
n=0

anx
n = 1

1 − cx + cx2 − x3

satisfies an(an − 1) = an+1an−1 for all n ≥ 1.

Solution 1 by Michel Bataille, Rouen, France.

Since 1 − cx + cx2 − x3 = (1 − x)(1 + (1 − c)x + x2), the sequence (an) is the
unique sequence satisfying

(1 + (1 − c)x + x2) ·
∞∑

n=0

anx
n = 1

1 − x
=

∞∑
n=0

xn.

Multiplying out on the left, we obtain a0 = 1, a1 + (1 − c)a0 = 1 and for n ≥ 2

an + an−1(1 − c) + an−2 = 1. (1)

Now, we prove that an(an − 1) = an+1an−1 for all n ≥ 1 by induction.
Since a1(a1 − 1) = c(c − 1) and (using (1)), a2a0 = a2 = 1 − a1(1 − c) − a0 = c(c −
1), the relation holds for n = 1.
Assume that an(an − 1) = an+1an−1 for some integer n ≥ 1. Then, we have

anan+2 = an(1 − an − (1 − c)an+1) (using (1))

= an(1 − an) − anan+1(1 − c)

= −an+1an−1 − anan+1(1 − c) (by assumption)

= −an+1(an−1 + an(1 − c))

= −an+1(1 − an+1) (using (1)),

hence an+1(an+1 − 1) = anan+2. This completes the induction step and the proof.

Solution 2 by Kee-Wai Lau, Hong Kong, China.

Denote the recurrence relation an (an − 1) = an+1an−1 by *.

• If c = −1, then

∞∑
n=0

anx
n = 1

4(1 − x)
+ 1

4(1 + x)
+ 1

2(1 + x)2
,

so that an = 1
4 [1 + (−1)n(2n + 3)], and * holds.

• If c = 3, then

∞∑
n=0

anx
n = 1

(1 − x)3
,

so that an = (n+1)(n+2)

2 , and * again holds.

VOL. 53, NO. 2, MARCH 2022 THE COLLEGE MATHEMATICS JOURNAL 159



In what follows, we assume that c �= −1, 3. Let α = c−1+√
(c−3)(c+1)

2 , so that

α �= −1, 0, 1. We have c = 1 + α + α2

α
, and

1

1 − cx + cx2 − x3
= α

(1 − x)(α − x)(1 − αx)

= α

(1 − α)2

(
1

(1 + α)(α − x)
+ α2

(1 + α)(1 − αx)
− 1

1 − x

)
.

Hence

an = α

(1 − α)2

(
1

(1 + α)αn+1
+ αn+2

1 + α
− 1

)
=

(
1 − αn+1

) (
1 − αn+2

)
(1 + α) (1 − α)2 αn

,

and it is easy to check that * holds in this case as well.

Solution 3 by Graham Lord, Princeton, New Jersey.

That a0 = 1 is immediate from the substitution x = 0 in the equation. The lat-
ter’s first and second derivatives at 0 show a1 = c and a2 = c(c − 1), respectively.
Note, c − 1 = a2+a0−1

a1
and a1(a1 − 1) = a2a0. For convenience, set a−1 = 0, so

a0(a0 − 1) = a1a−1.

The equation’s RHS denominator, 1 − cx + cx2 − x3 factors into (1 − x) and (1 −
(c − 1)x + x2). So multiplication of the equation through by the latter factor gives:
1 + ∑∞

n=1(an − (c − 1)an−1 + an−2)x
n = 1

1−x
= 1 + x + x2 + ... .

Hence for all n ≥ 1, as the coefficients of xn on both sides of this last equation
are equal: (an − (c − 1)an−1 + an−2) = 1. Equivalently: c − 1 = an+an−2−1

an−1
. That is,

for any n ≥ 1 the ratio, an+an−2−1
an−1

is constant, independent of n, and equal to c − 1.

In particular: an+an−2−1
an−1

= an+1+an−1−1
an

. The latter simplified is the sought after identity
an(an − 1) = an+1an−1.

Also solved by Ulrich Abel and Vitaliy Kushnirevych, Technische Hochschule, Mittelhessen, Germany;

Paul Bracken, U. of Texas, Edinburg; Brian Bradie, Christopher Newport U.; Kyle Calderhead, Malone

U.; Hongwei Chen, Christopher Newport U.; FAU Problem Solving Group, Florida Atlantic U.; Geuseppe

Fera, Vicenza, Italy; Dmitry Fleischman, Santa Monica, CA; Michael Goldenberg, Baltimore Polytechnic

Inst. and Mark Kaplan, U. of Maryland Global Campus (jointly); G. C. Greubel, Newport News, VA; GWstat

Problem Solving Group, The George Washington U.; Eugene Herman, Grinnell C.; Walther Janous, Ursu-

linengymnasium, Innsbruck, Austria; Omran Kouba, Higher Inst. for Applied Sci. and Tech., Damascus, Syria.

Northwestern U. Math Problem Solving Group; Carlos Shine, São Paulo, Brazil; Albert Stadler,

Herrliberg, Switzerland; Enrique Treviño, Lake Forest C.; Michael Vowe, Therwil, Switzerland; and the pro-

poser.
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