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PROBLEMS AND SOLUTIONS

Edited by Daniel H. Ullman, Daniel J. Velleman,
Stan Wagon, and Douglas B. West

with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, George Gilbert,
László Lipták, Rick Luttmann, Hosam Mahmoud, Frank B. Miles, Lenhard Ng, Rajesh
Pereira, Kenneth Stolarsky, Richard Stong, Lawrence Washington, and Li Zhou.

Proposed problems, solutions, and classics should be submitted online at
americanmathematicalmonthly.submittable.com/submit.

Proposed solutions to the problems below must be submitted by October 31, 2022.
More detailed instructions are available online. Proposed problems must not be
under consideration concurrently at any other journal nor be posted to the internet
before the deadline date for solutions. An asterisk (*) after the number of a problem
or a part of a problem indicates that no solution is currently available.

PROBLEMS

12328. Proposed by Peter Koymans and Jeffrey Lagarias, University of Michigan, Ann
Arbor, MI. An integer binary quadratic form is a function f : Z2 → Z defined by
f (m, n) = am2 + bmn + cn2 for some a, b, c ∈ Z. The value set V(f) of such a form
is defined to be

{
f (m, n) : (m, n) ∈ Z

2
}
.

(a) Prove that if f1(m, n) = m2 − mn − 3n2 and f2(m, n) = m2 − 13n2, then
V (f1) = V (f2).
(b) Prove that if f1(m, n) = m2 − mn − 4n2 and f2(m, n) = m2 − 17n2, then
V (f2) ⊆ V (f1) but V (f1) �= V (f2).

12329. Proposed by Leonard Giugiuc, Drobeta-Turnu Severin, Romania. Let n be a pos-
itive integer with n ≥ 3. For each positive integer m with m ≥ 2, find all real values λm

such that there are m distinct unit vectors v1, . . . , vm in R
n satisfying vi · vj = λm for all

i, j with 1 ≤ i < j ≤ m.

12330. Proposed by Oleh Faynshteyn, Leipzig, Germany. In the acute and scalene
triangle ABC, let G be the centroid, H be the orthocenter, D, E, and F be the
feet of the altitudes from A, B, and C, respectively, and K , L, and M be the midpoints
of BC, CA, and AB, respectively. Let
P be the intersection of DG and KH ,
let Q be the intersection of EG and
LH , and let R be the intersection of
FG and MH .
(a) Prove that AP , BQ, and CR are
concurrent.
(b) Let X, Y , and Z be the points
where GH intersects AP , BQ, and
CR. Prove

HX

XG
+ HY

YG
+ HZ

ZG
= 3.

http://dx.doi.org/doi.org/10.1080/00029890.2022.2051930
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12331. Proposed by WeChat Group on Matrix Analysis, Nova Southeastern University,
Fort Lauderdale, FL. Let A and B be complex m-by-n matrices, and let C be a complex
n-by-m matrix. Prove that if there are nonzero scalars x and y such that ACB = xA + yB,
then ACB = BCA.

12332. Proposed by Finbarr Holland, University College, Cork, Ireland. Prove∫ ∞

0

tanh2 x

x2
dx = 14 ζ(3)

π2
,

where ζ(3) is Apéry’s constant
∑∞

k=1 1/k3.

12333. Proposed by Moshe Rosenfeld, University of Washington, Seattle, WA, and Tacoma
Institute of Technology, Tacoma, WA. Let G be the multigraph obtained by replacing each
edge of the complete graph K12 by five edges. Show that the 330 edges of G can be parti-
tioned into 11 sets such that each set forms a graph isomorphic to the icosahedron.

12334. Proposed by Florin Stanescu, Şerban Cioculescu School, Găeşti, Romania. Let
f be a real-valued function on [0, 1] with a continuous second derivative. Assume that
f (0) = 0, f ′(0) = 1, f ′′(0) �= 0, and 0 < f ′(x) < 1 for all x ∈ (0, 1]. Let x1, x2, . . . be a
sequence with 0 < x1 ≤ 1 and with

xn = f

(
x1 + x2 + · · · + xn−1

n − 1

)

for n ≥ 2. Prove lim
n→∞ xn ln n = −2/f ′′(0).

SOLUTIONS

Dominated Convergence of an Integral

12207 [2020, 753]. Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical Univer-
sity of Cluj-Napoca, Cluj-Napoca, Romania. Let f : [0, 1] → R be a continuous function
satisfying

∫ 1
0 f (x) dx = 1. Evaluate

lim
n→∞

n

ln n

∫ 1

0
xnf (xn) ln(1 − x) dx.

Solution by Roberto Tauraso, Università di Roma “Tor Vergata,” Rome, Italy. Substituting
t = xn, we get

n

ln n

∫ 1

0
xnf (xn) ln(1 − x) dx = −

∫ 1

0
f (t)un(t) dt,

where

un(t) = − t1/n ln(1 − t1/n)

ln n
.

For fixed t ∈ (0, 1), letting y = 1/n and applying L’Hôpital’s rule twice yields

lim
n→∞ un(t) = lim

y→0+
ln(1 − ty)

ln y
= lim

y→0+
ty ln t/(ty − 1)

1/y
= lim

y→0+
y ln t

ty − 1
= lim

y→0+
ln t

ty ln t
= 1.

Moreover, by Bernoulli’s inequality, for n ≥ 3 we have

0 ≤ un(t) ≤ − ln(1 − t1/n)

ln n
≤ − ln((1 − t)/n)

ln n
= 1 − ln(1 − t)

ln n
≤ 1 − ln(1 − t).
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Since f is bounded and
∫ 1

0 (1 − ln(1 − t)) dt = 2 < ∞, the dominated convergence
theorem applies, and we conclude that

lim
n→∞

n

ln n

∫ 1

0
xnf (xn) ln(1 − x) dx = − lim

n→∞

∫ 1

0
f (t)un(t) dt = −

∫ 1

0
f (t) dt = −1.

Also solved by U. Abel & V. Kushnirevych (Germany), K. F. Andersen (Canada), C. Antoni (Italy),
R. Boukharfane (Saudi Arabia), N. Caro (Brazil), R. Gordon, N. Grivaux (France), L. Han (USA) & X. Tang
(China), E. A. Herman, N. Hodges (UK), F. Holland (Ireland), E. J. Ionaşcu, Y. Jinhai, O. Kouba (Syria),
O. P. Lossers (Netherlands), M. Omarjee (France), A. Stadler (Switzerland), R. Stong, T. Wilde (UK), Y. Xiang
(China), and the proposer.

Three Wise Women

12208 [2020, 753]. Proposed by Gregory Galperin, Eastern Illinois University, Charleston,
IL, and Yury J. Ionin, Central Michigan University, Mount Pleasant, MI. (In memory of
John Horton Conway, 1937–2020.) Three wise women, Alice, Beth, and Cecily, sit around
a table. A card with a positive integer on it is attached to each woman’s forehead, so she
can see the other two numbers but not her own. The women know that one of the three
integers is equal to the sum of the other two. The same question, “Can you determine the
number on your forehead?”, is addressed to the wise women in the following order: Alice,
Beth, Cecily, Alice, Beth, Cecily, . . . . The answer is either “No” or “Yes, the number is

,” and the other wise women hear the answer. The questioning ends as soon as the posi-
tive answer is obtained. (Assume that the women are logical and honest, they all know this,
they all know that they all know this, and so on.)
(a) Prove that whichever numbers are assigned to the wise women, an affirmative answer
is obtained eventually.
(b) Suppose that Alice’s second answer is “Yes, the number is 50.” Determine the numbers
assigned to Beth and Cecily.
(c) Suppose the numbers assigned to Alice, Beth, and Cecily are 1492, 1776, and 284,
respectively. Determine who will give the affirmative answer and how many negative
answers she will give before that.
Solution by Mark D. Meyerson, US Naval Academy, Annapolis, MD. We describe each
assignment of numbers with a triple (a, b, c) giving Alice’s, Beth’s, and Cicely’s positive
numbers in that order. Note that one of the entries must be the sum of the other two.

We claim that for all triples, if a woman says “Yes” on some turn, then her number
must be the largest. Suppose not, and choose a counterexample (a, b, c) for which the
“Yes” answer occurs as early as possible. Suppose, for example, Alice says “Yes” on turn
n, but Beth has the largest number, so b = a + c. (Other cases are similar.) Alice, seeing
the numbers a + c and c, knows from the beginning that her number must be either a or
a + 2c. To say “Yes” on turn n, she must be able to rule out the triple (a + 2c, a + c, c)

for the first time on that turn, and this will happen only if either Cicely or Beth would have
said “Yes” on turn n − 1 or n − 2 on that triple. But this is ruled out by the minimality of
n, since neither Beth nor Cicely has the largest number in that triple.

Let f be the function that assigns to a triple the number of the turn on which the answer
“Yes” occurs. Part (a) asks us to show that f is defined for every triple. If the triple has the
form (2x, x, x), for some positive integer x, then Alice will say “Yes” on her first turn, so
f (2x, x, x) = 1. If it has the form (x, 2x, x), then Alice will think she could have either
x or 3x, so she will say “No,” and then Beth will say “Yes.” Therefore f (x, 2x, x) = 2.
Similarly, for triples of the form (x, x, 2x), Cicely will say “Yes” on her first turn, and
f (x, x, 2x) = 3.

Now consider triples in which the numbers are distinct. If some triple never yields an
affirmative answer, then let (a, b, c) be such a triple whose largest element is as small as
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possible. If c = a + b, then (a, b, |a − b|) has a smaller largest element, so f (a, b, |a − b|)
is defined. If f (a, b, |a − b|) = n, then on turn n + 1 or n + 2, depending on which of a

or b is larger, Cecily can eliminate the triple (a, b, |a − b|), since Alice or Beth would pre-
viously have said “Yes.” Cecily then answers “Yes” with a + b on her turn. The argument
is similar when a or b is the largest entry in (a, b, c). This completes the solution to (a).

(b) Using the reasoning from part (a), we can now determine, for every n, the triples
(a, b, c) for which f (a, b, c) = n. If f (a, b, c) = 1, then (a, b, c) must have the form
(2x, x, x), for some positive integer x. For f (a, b, c) = 2, we must have b = a + c. If
a = c then (a, b, c) has the form (x, 2x, x). If not, then f (a, |a − c|, c) must be 1, so
(a, |a − c|, c) has the form (2x, x, x), and therefore (a, b, c) = (2x, 3x, x). Thus, the
triples (a, b, c) such that f (a, b, c) = 2 are those of the form (x, 2x, x) or (2x, 3x, x). If
f (a, b, c) = 3, then c = a + b, and either (a, b, c) has the form (x, x, 2x) or f (a, b, |a −
b|) is either 1 or 2, in which case (a, b, c) has the form (2x, x, 3x), (x, 2x, 3x), or
(2x, 3x, 5x). A similar argument shows that the triples (a, b, c) with f (a, b, c) = 4
are those of the form (3x, 2x, x), (4x, 3x, x), (3x, x, 2x), (4x, x, 3x), (5x, 2x, 3x), or
(8x, 3x, 5x). Since 50 is not divisible by any number in {3, 4, 8}, the only way Alice will
say “Yes, my number is 50” on her second turn (n = 4) is for x to be 10 in the fifth triple,
so Beth has 20 and Cecily has 30.

(c) Working from (1492, 1776, 284) to determine the turn on which that
triple will be resolved, we iteratively replace the biggest number by the dif-
ference of the other two to undo the decision process. The successive triples
after (1492, 1776, 284) are these: (1492, 1208, 284), (924, 1208, 284), (924, 640, 284),
(356, 640, 284), (356, 72, 284), (212, 72, 284), (212, 72, 140), (68, 72, 140), (68, 72, 4),
(68, 64, 4), (60, 64, 4), (60, 56, 4), (52, 56, 4), (52, 48, 4), (44, 48, 4), (44, 40, 4),
(36, 40, 4), (36, 32, 4), (28, 32, 4), (28, 24, 4), (20, 24, 4), (20, 16, 4), (12, 16, 4),
(12, 8, 4), (4, 8, 4). The last triple would be resolved by Beth on turn 2, the one before it
by Alice on turn 4. Working backward, Yes comes on the following turns for these triples:

2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 34, 35, 37, 38.

Since 38 = 3 · 12 + 2, the affirmative answer is by Beth after giving 12 negative answers.
(Tracking only the two smaller entries in each triple, the decision process parallels the
Euclidean algorithm.)

Also solved by E. Curtin, J. Boswell & C. Curtis, N. Hodges (UK), E. J. Ionaşcu, G. Lavau (France),
O. P. Lossers (Netherlands), K. Schilling, E. Schmeichel, R. Stong, F. A. Velandia & J. F. Gonzalez (Colombia),
T. Wilde (UK), Eagle Problem Solvers, The Zurich Logic Coffee (Switzerland), and the proposer.

Asymptotics of a Recursively Defined Sequence

12210 [2020, 852]. Proposed by Paul Bracken, University of Texas Rio Grande Valley,
Edinburg, TX. Let x1 = 1, and let

xn+1 =
(√

xn + 1√
xn

)2

when n ≥ 1. For n ∈ N, let an = 2n + (1/2) log n − xn. Show that the sequence a1, a2, . . .

converges.
Solution by Peter W. Lindstrom, Saint Anselm College, Manchester, NH. By the recurrence
for xn, we have xn+1 = xn + 2 + 1/xn > xn + 2, and therefore by induction xn ≥ 2n when
n > 1.

Let zk = xk − 2k. Since zk+1 − zk = xk+1 − xk − 2 = 1/xk , we have

zn = z1 +
n−1∑
k=1

(zk+1 − zk) = −1 +
n−1∑
k=1

1

xk
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for n > 1. Thus

0 ≤ 1

2k
− 1

xk

= zk

2kxk

=
∑k−1

j=1 1/xj − 1

2kxk

≤
∑k−1

j=2 1/xj

(2k)2
≤ (1/2)

∑k−1
j=2 1/j

4k2
<

log k

8k2

for k > 2. Since
∑∞

k=1 log k/(8k2) is convergent, so is
∑∞

k=1(1/(2k) − 1/xk). Let

ζ =
∞∑

k=1

(
1

2k
− 1

xk

)
.

For n > 1,

an = 2n + log n

2
− xn = −zn + log n

2
= 1 −

n−1∑
k=1

1

xk

+ log n

2

= 1 − 1

2

(
n∑

k=1

1

k
− log n

)
+

n−1∑
k=1

(
1

2k
− 1

xk

)
+ 1

2n
.

Thus limn→∞ an = 1 − γ /2 + ζ , where γ is the Euler–Mascheroni constant.

Also solved by G. Aggarwal (India), K. F. Andersen (Canada), M. Bataille (France), R. Boukharfane (Saudi
Arabia), H. Chen, C. Chiser (Romania), Ó. Ciaurri (Spain), C. Degenkolb, A. Dixit (India) & S. Pathak (USA),
G. Fera (Italy), J. Freeman (Netherlands), R. Gordon, J.-P. Grivaux (France), L. Han, R. Hang, D. Hen-
derson, E. A. Herman, N. Hodges (UK), Y. Jinhai (China), O. Kouba (Syria), Z. Lin (China), J. H. Lind-
sey II, O. P. Lossers (Netherlands), S. Omar (Morocco), M. Omarjee (France), P. Palmieri & C. Antoni (Italy),
A. Pathak (India), R. K. Schwartz, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), D. Terr, D. B. Tyler,
E. I. Verriest, J. Vukmirović (Serbia), T. Wiandt, L. Wimmer (Germany), L. Zhou, and the proposer.

A Truncated Tetrahedron

12211 [2020, 852]. Proposed by Leonard Giugiuc, Drobeta Turnu Severin, Romania. On
each of the six edges of a tetrahedron, identify the point that is coplanar with the incenter
of the tetrahedron and with the two vertices incident to the opposite edge. Prove that the
volume of the octahedron formed by these six points is no more than half the volume of
the tetrahedron, and determine the conditions for equality.
Solution by Elton Bojaxhiu, Tirana, Albania, and Enkel Hysnelaj, Sydney, Australia. Let
A, B, C, and D be the vertices of the tetrahedron, and let w, x, y, and z denote the areas
of �ABC, �ABD, �ACD, and �BCD, respectively.

Let pAB be the plane passing through C, D, and the incenter of the tetrahedron, and let
PAB denote the intersection of pAB with AB. Let hA and hB be the altitudes from A and B,
respectively, to the line CD, and let dA and dB be the distances from A and B, respectively,
to the plane pAB . Since pAB bisects the angle between the planes containing �ACD and
�BCD, we have

APAB

BPAB

= dA

dB

= hA

hB

= y

z
.

Similarly, if PAC , PAD , PBC , PBD , and PCD are the vertices of the octahedron that lie on
the other edges of the tetrahedron, then we have

APAC

CPAC

= x

z
,

APAD

DPAD

= w

z
,

BPBC

CPBC

= x

y
,

BPBD

DPBD

= w

y
, and

CPCD

DPCD

= w

x
.

The octahedron is constructed from the tetrahedron ABCD by removing the four
smaller tetrahedra APABPACPAD , BPABPBCPBD , CPACPBCPCD , and DPADPBDPCD . If
t is the volume of the tetrahedron ABCD and tA is the volume of APABPACPAD , then

tA

t
= APAD

AD
· APAC

AC
· APAB

AB
= w

w + z
· x

x + z
· y

y + z
.
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Combining this with similar formulas for the other small tetrahedra, we see that it suffices
to show

wxy

(w + z)(x + z)(y + z)
+ wxz

(w + y)(x + y)(z + y)

+ wyz

(w + x)(y + x)(z + x)
+ xyz

(x + w)(y + w)(z + w)
≥ 1

2
. (∗)

Let a, b, c, and d denote the elementary symmetric polynomials in w, x, y, and z:

a = w + x + y + z,

b = wx + wy + wz + xy + xz + yz,

c = wxy + wxz + wyz + xyz,

d = wxyz.

By multiplying out and rearranging, we find that (∗) is equivalent to

abc − 5a2d ≥ c2.

From Newton’s inequalities for the elementary symmetric polynomials, we have
(a/4)(c/4) ≤ (b/6)2 and (b/6)d ≤ (c/4)2. Consequently,

b ≥ 3
√

ac

2
and d ≤ 3c2

8b
≤ 3c2

12
√

ac
= c3/2

4
√

a
.

Also, by Maclaurin’s inequality, a/4 ≥ 3
√

c/4, so a3/2 ≥ 4
√

c. Therefore

abc − 5a2d ≥ ac · 3
√

ac

2
− 5a2 · c3/2

4
√

a
= a3/2c3/2

4
≥ 4

√
c · c3/2

4
= c2,

as required.
Equality holds if and only if w = x = y = z; that is, all faces of the tetrahedron have

the same area. It is well known that this is true precisely when the tetrahedron is isosceles,
which means that each pair of opposite edges have the same length.

Editorial comment. There are several other ways to establish (∗), as indicated by multiple
solvers. For instance, one could cite Muirhead’s inequality; alternatively, assume without
loss of generality that w ≤ x ≤ y ≤ z, write x = w + s, y = w + s + t , and z = w + s +
t + u for s, t, u ≥ 0, and note that expanding and rearranging (∗) yields f (w, s, t, u) ≥ 0,
where f is a polynomial with all nonnegative coefficients.

Also solved by C. Curtis, G. Fera (Italy), O. P. Lossers (Netherlands), A. Stadler (Switzerland), R. Stong,
J. Vukmirović, and the proposer.

An Application of Farkas’s Lemma

12212 [2020, 852]. Proposed by George Stoica, Saint John, NB, Canada. Let x1, . . . , xm

and y1, . . . , ym be two lists of m vectors in R
n, and suppose

〈xi − xj , yi − yj 〉 ≥ 0

for all i and j in {1, . . . , m}. Prove that there exists a vector y in R
n such that

〈xi, yi〉 ≥ 〈xi, y〉
for all i in {1, . . . , m}.
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Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, Netherlands.
The following is a variant of Farkas’s lemma (see for example Corollary 7.1(e) in
A. J. Schrijver, Theory of Linear and Integer Programming, John Wiley and Sons, Chich-
ester, UK, 1986).

If A is a p-by-q matrix, and b ∈ R
p, then exactly one of the following two assertions

is true:

(1) The system Au ≤ b has a solution u ∈ R
q .

(2) The system vT A = 0 has a solution v ∈ R
p with v ≥ 0 and vT b < 0.

Let X and Y be the n-by-m matrices that have the vectors xi and yi , respectively, for their
columns. Let A = XT Y ; in particular, the (i, j)-entry of A is 〈xi, yj 〉. Let b be the vector
consisting of the main diagonal entries of A. If some vector u satisfies Au ≤ b, then the
vector y defined by

y = Yu =
m∑

j=1

ujyj

has the desired property, because

〈xi, y〉 =
∑

j

uj 〈xi, yj 〉 =
∑

j

ujai,j = (Au)i ≤ bi = 〈xi, yi〉.

If there is no such vector u, then by the variant of Farkas’s lemma there exists v ∈ R
m

such that vT A = 0 with v ≥ 0 and vT b < 0. The condition 〈xi − xj , yi − yj 〉 ≥ 0 expands
to the condition aii − aij − aji + ajj ≥ 0 on the entries of A. Hence,

0 ≤
∑
i,j

vivj (aii − aij − aji + ajj )

=
∑

j

vj

∑
i

viaii −
∑

j

vj

∑
i

viaij −
∑

i

vi

∑
j

vj aji +
∑

i

vi

∑
j

vjajj

=
∑

j

vj v
T b −

∑
j

vj 0 −
∑

i

vi0 +
∑

i

viv
T b = 2vT b

∑
i

vi < 0,

which is a contradiction.

Also solved by R. Stong and the proposer.

A Sum of Tails of the Zeta Function

12215 [2020, 853]. Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical Univer-
sity of Cluj-Napoca, Cluj-Napoca, Romania. Calculate

∞∑
n=1

((
1

n2
+ 1

(n + 2)2
+ 1

(n + 4)2
+ · · ·

)
− 1

2n

)
.

Solution by Gaurav Aggarwal, student, Guru Nanak Dev University, Amritsar, India. The
sum equals π2/16 + 1/2. Let

SN =
N∑

n=1

((
1

n2
+ 1

(n + 2)2
+ 1

(n + 4)2
+ · · ·

)
− 1

2n

)
.
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The term (
1

n2
+ 1

(n + 2)2
+ 1

(n + 4)2
+ · · ·

)
− 1

2n

clearly approaches 0 as n approaches infinity, since the part in parentheses is bounded by∑∞
k=n 1/k2, which itself goes to 0. Therefore, it suffices to prove

lim
N→∞ S2N = π2/16 + 1/2.

We compute

S2N =
N∑

i=1

i

(
1

(2i − 1)2
+ 1

(2i)2

)
+ N

∞∑
i=2N+1

1

i2
−

2N∑
i=1

1

2i

=
N∑

i=1

(
i

(2i − 1)2
+ i

(2i)2
− 1

2(2i − 1)
− 1

2(2i)

)
+ N

∞∑
i=2N+1

1

i2

=
N∑

i=1

1

2(2i − 1)2
+ N

∞∑
i=2N+1

1

i2
.

Noting that ζ(2) = π2/6, where ζ is the Riemann zeta function, we have

lim
N→∞

N∑
i=1

1

2(2i − 1)2
= 1

2

(
1 − 1

22

)
ζ(2) = π2

16
.

We use telescoping series again and the squeeze theorem to show that the remaining term
tends to 1/2:

N

2N + 1
= N

∞∑
i=2N+1

(
1

i
− 1

i + 1

)
= N

∞∑
i=2N+1

1

i(i + 1)
< N

∞∑
i=2N+1

1

i2

< N

∞∑
i=2N+1

1

(i − 1)i
= N

∞∑
i=2N+1

(
1

i − 1
− 1

i

)
= N

2N
= 1

2
.

Hence lim
N→∞ SN = lim

N→∞ S2N = π2/16 + 1/2.

Also solved by U. Abel & V. Kushnirevych (Germany), K. F. Andersen (Canada), M. Bataille (France),
A. Berkane (Algeria), R. Boukharfane (Saudi Arabia), K. N. Boyadzhiev, P. Bracken, B. Bradie, V. Brunetti
& A. Aurigemma & G. Bramanti & J. D’Aurizio & D. B. Malesani (Italy), B. S. Burdick, H. Chen, C. Curtis,
T. Dickens, G. Fera (Italy), M. L. Glasser, H. Grandmontagne (France), J.-P. Grivaux (France), J. A. Grzesik,
E. A. Herman, N. Hodges (UK), F. Holland (Ireland), Y. Jinhai (China), O. Kouba (Syria), K.-W. Lau (China),
G. Lavau (France), O. P. Lossers (Netherlands), R. Molinari, A. Natian, M. Omarjee (France), P. Palmieri
(Italy), K. Schilling, A. Stadler (Switzerland), S. M. Stewart (Australia), R. Stong, R. Tauraso (Italy), D. Terr,
D. B. Tyler, J. Vukmirović (Serbia), T. Wiandt, Y. Xiang (China), FAU Problem Solving Group, Missouri State
Problem Solving Group, and the proposer.

Rotating an Icosahedron

12216 [2020, 944]. Proposed by Zachary Franco, Houston, TX. A regular icosahedron with
volume 1 is rotated about an axis connecting opposite vertices. What is the volume of the
resulting solid?
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Solution by Albert Stadler, Herrliberg, Switzerland. It is known (see for example
en.wikipedia.org/wiki/Regular icosahedron) that if the edge length of a regular icosahe-
dron is a, then the radius of the circumscribed sphere is

R = a

4

√
10 + 2

√
5,

while the volume is

V = 5

12
(3 + √

5)a3.

We place the icosahedron in R
3 in such a way that its 12 vertices have the following

coordinates:

P1 : (0, 0, R),

P2–P6 :
R√

5

(
2 cos

(
2kπ

5

)
, 2 sin

(
2kπ

5

)
, 1

)
, k ∈ {0, . . . , 4},

P7–P11 :
R√

5

(
2 cos

(
(2k + 1)π

5

)
, 2 sin

(
(2k + 1)π

5

)
,−1

)
, k ∈ {0, . . . , 4},

P12 : (0, 0,−R).

The segment connecting the two points P2 and P7 is given by

s(t) = R√
5

[
t
(

2, 0, 1
)

+ (1 − t)
(

2 cos
(π

5

)
, 2 sin

(π

5

)
,−1

)]
, 0 ≤ t ≤ 1.

This segment generates the boundary of the middle part of the solid formed when the
icosahedron is rotated about the z-axis. The other two parts are cones whose boundaries
are generated by rotating the segment connecting P1 and P2 and the segment connecting
P7 and P12.

The distance of s(t) from the z-axis equals

R√
5

∥∥∥t (2, 0, 0
)

+ (1 − t)
(

2 cos
(π

5

)
, 2 sin

(π

5

)
, 0
)∥∥∥ = R

√
4 − 2(3 − √

5)t (1 − t)

5
.

Therefore, the volume of the rotated icosahedron equals

Vrot = 2

3
π

(
R − R√

5

)(
2R√

5

)2

+ πR2 2R√
5

∫ 1

0

(
4 − 2(3 − √

5)t (1 − t)

5

)
dt.

The first term in this formula is the volume of the two cones, and the second is the volume
of the middle part. Evaluating the integral and simplifying we obtain

Vrot = 2

15
(5 + √

5)πR3 =
√

2

240

(
5 + √

5
)5/2

πa3.

If the volume of the icosahedron is 1, then a is determined by

a3 = 12

5(3 + √
5)

.

Substituting this into our formula for Vrot gives a volume of

Vrot = π

5

√
5 + √

5

2
≈ 1.19513.
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Also solved by F. Chamizo (Spain), C. Curtis & J. Boswell, G. Fera (Italy), O. Geupel (Germany), J.-P. Grivaux
(France), N. Hodges (UK), M. J. Knight, G. Lavau (France), O. P. Lossers (Netherlands), M. D. Meyerson,
R. Stong, D. Terr, T. Wiandt, L. Zhou, Davis Problem Solving Group, Eagle Problem Solvers, and the proposer.

CLASSICS

We solicit contributions of classics from readers, who should include the problem state-
ment, solution, and references with their submission. The solution to the classic problem
published in one issue will appear in the subsequent issue.

C6. Due to R. E. Machol and L. J. Savage, contributed by David Aldous, University of
California, Berkeley, CA. Consider four random points on the surface of a sphere, chosen
uniformly and independently. Prove that the probability that the tetrahedron determined by
the points contains the center of the sphere is 1/8.

The Affine Hull of Four Points in Space

C5. Contributed by the editors. Given a set S in R
n, let L(S) be the set of all points lying

on some line determined by two points in S. For example, if S is the set of vertices of an
equilateral triangle in R

2, then L(S) is the union of the three lines that extend the sides of
the triangle, and L(L(S)) is all of R2. If S is the set of vertices of a regular tetrahedron,
then what is L(L(S))?

Solution. There are precisely four points that are not in L(L(S)). Inscribe the tetrahedron
in a cube with the vertices of the tetrahedron at four of the corners of the cube. The four
other corners of the cube are the missing points.

To see that these points are missed, observe that L(S) consists of all the points on the
extended edges of the tetrahedron. A line through points on adjacent extended edges lies
in the plane of a tetrahedral face and so misses the unused corners. Also, a line connecting
one such corner to a nearby extended edge of the tetrahedron lies in the plane of a face of
the cube and so misses any of the skew edges.

We now show that all other points in R
3 are included. Let P1 be the plane containing

the top face of the cube and let P2 be the plane containing the bottom face. Let l1 and l2
be the tetrahedral edges lying in P1 and P2, respectively. Notice that P1 is the unique plane
containing l1 that is parallel to l2, and similarly for P2. Suppose that Q is a point that does
not lie on either P1 or P2. Let P be the plane containing Q and l1. Since Q does not lie
on P1, P is not equal to P1, so it is not parallel to l2. Therefore it intersects l2, say at R.
The line QR lies in the plane P , which contains l1. Since Q does not lie on P2, QR is not
parallel to l1. Therefore QR must intersect l1, say at T . But now Q, R, and T are collinear,
so Q is in L(L(S)).

This argument shows that L(L(S)) contains all points that do not lie in either the plane
of the top of the cube or the plane of the bottom. Similarly, it contains all points that do
not lie on either the plane of the left side or the right side, and all points that do not lie on
either the plane of the front or back. This means that the only points that can be missed are
the corners of the cube.

Editorial comment. The problem was proposed by Victor Klee as Problem 1413 in
Math. Mag. 66 (1993) 56, with solution in Math. Mag. 67 (1993) 68–69. See also V. Klee
(1963), The generation of affine hulls, Acta Scient. Math. (Szeged) 24, 60–81.
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