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PROBLEMS AND SOLUTIONS

Edited by Daniel H. Ullman, Daniel J. Velleman,

Stan Wagon, and Douglas B. West

with the collaboration of Paul Bracken, Ezra A. Brown, Hongwei Chen, Zachary Franco,

George Gilbert, László Lipták, Rick Luttmann, HosamMahmoud, Frank B.Miles, Lenhard

Ng, Rajesh Pereira, Kenneth Stolarsky, Richard Stong, LawrenceWashington, and Li Zhou.

Proposed problems, solutions, and classics should be submitted online at

americanmathematicalmonthly.submittable.com/submit.

Proposed problems must not be under consideration concurrently at any other jour-

nal, nor should they be posted to the internet before the deadline date for solutions.

Proposed solutions to the problems below must be submitted by February 28, 2023.

Proposed classics should include the problem statement, solution, and references.

More detailed instructions are available online. An asterisk (*) after the number of

a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

12342. Proposed by George Stoica, Saint John, NB, Canada. Let v1, . . . , vn be unit vectors

in R
d . Prove that if u maximizes

∏n
i=1 |vi · u| over all unit vectors u ∈ R

d , then for all i,

|vi · u| ≥ sin(π/(2n)).

12343. Proposed by Tran Quang Hung, Hanoi, Vietnam. LetABCD be a convex quadrilat-

eral withAB = a, BC = b, CD = c,DA = d,AC = e, and BD = f . Prove thatABCD

is a cyclic quadrilateral (i.e., the four vertices lie on a circle) if and only if

f 2 − e2

ac + bd
=



a2 − c2
 

b2 − d2


(ab + cd)(ad + bc)
.

12344. Proposed by Brian Bradie, Christopher Newport University, Newport News, VA.

Evaluate
 1

−1

arccos x

x2 + x + 1
dx.

12345. Proposed by Donald E. Knuth, Stanford University, Stanford, CA. Fix a probability

p with 0 < p < 1, and consider a random directed graph on vertices {1, . . . , n}where each

arc ij for 1 ≤ i < j ≤ n is independently present with probability p. (For j ≤ i there is no

arc ij .) A source vertex is one with no predecessors; a sink vertex is one with no successors.

Let Sn be the number of sources and let Tn be the number of sinks. Find an exact formula

for the correlation coefcient between Sn and Tn, and determine its asymptotic behavior as

n approaches innity.

12346. Proposed by Nguyen Quang Minh, Hwa Chong Institution, Bukit Timah, Singapore.

Prove that there are innitely many integers A such that, for every nonzero integer x and

distinct positive odd integers m and n, the integer xm + Axn is not a perfect square.
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12347. Proposed by Marian Tetiva, Gheorghe Roşca Codreanu National College, Bı̂rlad,

Romania. Let a and b be real numbers with 0 < a < 1 < b. Find all continuous functions

f : R → R such that f (0) = 0 and f (f (x))− (a + b)f (x)+ abx = 0 for all x ∈ R.

12348. Proposed by Erik Vigren, Uppsala, Sweden, and Hans Rullgård, Kungälv, Sweden.

We have n people in a circle, numbered from 1 to n clockwise. They are removed one at a

time as follows, until just one remains. At each step, remove the nth person among those

remaining, where the count starts at the lowest-numbered person remaining and procedes

clockwise. LetW(n) be the number of the last person remaining. For example, with n = 5,

we remove in order the people numbered 5, 1, 3, and 2, and so W(5) = 4. (This is a

variation of the classic Josephus problem.)

(a)What isW(1012)?

(b) For n ≥ 5, show thatW(n) = n− 4 if and only if n/2 is a Sophie Germain prime (i.e.,

n/2 and n+ 1 are prime).

(c) Find the smallest even number that does not equal W(n) for any n.

SOLUTIONS

A Double Sum for Apéry’s Constant

12222 [2020, 945]. Proposed by Roberto Tauraso, Università di Roma “Tor Vergata,”

Rome, Italy. Prove

∞


k=1

(−1)k

k2

∞


n=k

1

n2n
= −

13 ζ(3)

24
,

where ζ(3) is Apéry’s constant
∑∞

k=1 1/k
3.

Composite solution by Brian Bradie and Hongwei Chen, Christopher Newport University,

Newport News, VA. In general, ζ(m) =
∑∞

k=1 1/k
m. In working with expressions involving

reciprocal powers, it is useful to have the gamma function integral and its logarithmic

version

n!

kn+1
=

 ∞

0

e−kt tndt = (−1)n
 1

0

xk−1(ln x)ndx, (1)

where the latter integral is obtained from the former by setting t = − ln x.

Let S be the desired double sum. After interchanging the order of summation, we invoke

(1) with n = 1 to obtain

S =

∞


n=1

1

n2n

n


k=1

(−1)k

k2
=

∞


n=1

1

n2n

n


k=1

(−1)k+1

 1

0

xk−1 ln x dx

=

∞


n=1

1

n2n

 1

0



n


k=1

(−1)k+1xk−1



ln x dx =

∞


n=1

1

n2n

 1

0

1− (−x)n

1+ x
ln x dx.

Because the integrand in this last expression is nonpositive for every x in [0, 1] and every

n, one can interchange the summation and integration to obtain

S =

 1

0

− ln(1− 1/2)+ ln(1+ x/2)

1+ x
ln x dx =

 1

0

ln(2+ x) ln x

x + 1
dx.

We break the integral for S into three integrals by applying the polarization identity

ab = 1
2
(a2 + b2 − (a − b)2) to the numerator of the integrand, using a = ln x and b =

ln(2+ x). Letting
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J (f (x)) =

 1

0

(ln f (x))2

1+ x
dx,

we obtain

2S = J (x)+ J (x + 2)− J (x/(2+ x)). (2)

Expanding 1/(1+ x) into a geometric series and applying (1) with n = 2 yields

J (x) =

∞


k=0

(−1)k
 1

0

xk(ln x)2dx = 2

∞


k=0

(−1)k

(k + 1)3
.

To evaluate J (x + 2), we substitute t = 1/(x + 2). Since 1/(x + 1) = t/(1 − t), we

obtain dx/(1+ x) = dt/(t (t − 1)). Using partial fraction expansion and then another geo-

metric series,

J (x + 2) =

 1/2

1/3

(

1

t
+

1

1− t

)

(ln t)2dt =
(ln 3)3 − (ln 2)3

3
+

∞


k=0

 1/2

1/3

t k(ln t)2dt.

Integrating by parts twice yields

 1/2

1/3

t k(ln t)2dt = t k+1

(

(ln t)2

(k + 1)
−

2 ln t

(k + 1)2
+

2

(k + 1)3

)
∣

∣

∣

∣

1/2

1/3

. (3)

Summing over k, we now have J (x + 2) expressed in terms of polylogarithms, where the

polylogarithm Lis(z) is dened by Lis(z) =
∑∞

k=1 z
k/ks . Note that Li1(z) = − ln(1− z).

The function Li2 is called the dilogarithm, and Li3 is called the trilogarithm. In particular,

J (x) = −2Li3(−1) and

J (x + 2) =
(ln 3)3 − (ln 2)3

3
+

∞


k=1

(1/2)k
(

(ln(1/2))2

k
−

2 ln(1/2)

k2
+

2

k3

)

−
∞


k=1

(1/3)k
(

(ln(1/3))2

k
−

2 ln(1/3)

k2
+

2

k3

)

=
(ln 3)3 − (ln 2)3

3
+ (ln 2)2 Li1(1/2)+ 2 ln 2 Li2(1/2)+ 2Li3(1/2)

− (ln 3)2 Li1(1/3)− 2 ln 3 Li2(1/3)− 2Li3(1/3)

=
(ln 2)3 − (ln 3)3

3/2
+ 2 ln 2 Li2(1/2)+ 2Li3(1/2)

− 2 ln 3 Li2(1/3)− 2Li3(1/3)+ (ln 3)2 ln 2,

where the last step uses Li1(z) = − ln(1− z).

To evaluate J (x/(2+ x)), we substitute t = x/(2+ x), which yields x = 2t/(1− t),

1+ x = (1+ t)/(1− t), dx = 2 dt/(1− t)2, and dx/(1+ x) = 2 dt/(1− t2). Integrating

as we did in (3) after expanding a geometric sum yields

J (x/(2+ x)) = 2

 1/3

0

1

1− t2
(ln t)2dt

= 2

∞


k=0

(

1

3

)2k+1 (
(ln 3)2

2k + 1
+

2 ln 3

(2k + 1)2
+

2

(2k + 1)3

)

.
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The odd terms in a Taylor series T (x) at 0 sum to


T (x)− T (−x)


/2, so

J (x/(2+ x)) = (ln 3)2 ln 2+ 2 ln 3


Li2(1/3)− Li2(−1/3)


+ 2


Li3(1/3)− Li3(−1/3)


.

Substituting these expressions for J (x), J (x + 2), and J (x/(2+ x)) into (2) and com-

bining like terms yields

S =
(ln 2)3 − (ln 3)3

3
− ln 3



2Li2(1/3)− Li2(−1/3)


−


2Li3(1/3)− Li3(−1/3)


+ ln 2 Li2(1/2)− Li3(−1)+ Li3(1/2).

The following are known evaluations of dilogarithms and trilogarithms at −1, 1/2, and

±1/3:

Li3(−1) = −
3

4
ζ(3)

Li2(1/2) =
π2

12
−

(ln 2)2

2

Li3(1/2) =
−π2 ln 2

12
+

(ln 2)3

6
+

7

8
ζ(3)

2Li2(1/3)− Li2(−1/3) =
π2

6
−

(ln 3)2

2

2 Li3(1/3)− Li3(−1/3) = −
π2 ln 3

6
+

(ln 3)3

6
+

13

6
ζ(3).

After substituting these evaluations into the last expression for S, remarkably all terms not

involving ζ(3) cancel, leaving

S =
3

4
ζ(3)+

7

8
ζ(3)−

13

6
ζ(3) = −

13

24
ζ(3).

Editorial comment. The generation of many terms not involving ζ(3), which then can-

cel, suggests that there should be a shorter solution not involving polylogarithms, but no

solver was able to contribute such a solution. Some solvers replaced the original 2 by 1/x,

differentiated, summed, integrated, and thereby reduced the desired sum to

 1/2

0

Li2(−x)

x(1− x)
dx.

However, this also does not seem to lead to a shorter solution.

A standard reference for polylogarithms and their evaluations is L. Lewin (1981), Poly-

logarithms and Associated Functions, Amsterdam: North-Holland. For further examples

of series summing to ζ(3) and historical background, see A. van der Poorten (1979), A

proof that Euler missed, Math. Intelligencer 1: 195–203, and W. Dunham (2021), Euler

and the cubic Basel problem, thisMonthly 128: 291–301.

Also solved by N. Bhandari (Nepal), R. Boukharfane (Morocco), G. Fera (Italy), M. L. Glasser, P. W. Lind-

strom, M. Omarjee (France), A. Stadler (Switzerland), S. M. Stewart (Australia), R. Stong, and the proposer.

Collinear Intersection Points

12224 [2021, 88]. Proposed by Cherng-tiao Perng, Norfolk State University, Norfolk, VA.

Let ABC be a triangle, with D and E on AB and AC, respectively. For a point F in the

plane, let DF intersect BC at G and let EF intersect BC at H . Furthermore, let AF
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intersect BC at I , let DH intersect EG at J , and let BE intersect CD at K . Prove that I ,

J , and K are collinear.

Solution I by Nigel Hodges, Cheltenham, UK. We use XY.ZW to denote the intersection

of lines XY and ZW . Let L = AG.DI , M = AH.EI , and N = BC.DE. Lines EH ,

AI , and GD concur at F . Therefore, by the theorem of Desargues, the points EA.HI ,

EG.HD, and AG.ID are collinear. Since E lies on AC, and since H and I lie on BC, we

have EA.HI = C, and by denition, EG.HD = J and AG.ID = L. Thus, we have

C, J , and L are collinear. (1)

Similarly, applying the theorem of Desargues to EH , IA, and GD we conclude that

M , J , and B are collinear, (2)

and using EH , IA, and DG we get

M , N , and L are collinear. (3)

Statement (3) implies that lines LM , DE, and CB concur at N , so by one more applica-

tion of the theorem of Desargues we conclude that LD.ME, LC.MB, and DC.EB are

collinear. But L lies on DI and M lies on EI , so LD.ME = I , (1) and (2) imply that

LC.MB = J , and DC.EB = K by denition. Thus I , J , and K are collinear.

Solution II by O. P. Lossers, Eindhoven University of Technology, Eindhoven, Netherlands.

We use homogeneous coordinates with A = (1 : 0 : 0), B = (0 : 1 : 0), C = (0 : 0 : 1),

and K = (1 : 1 : 1). This gives D = (1 : 1 : 0) and E = (1 : 0 : 1). Let F = (a : b : c).

Since G lies on BC and DF , we have G = (0 : b − a : c). Similarly,

H = (0 : b : c − a), I = (0 : b : c), and J = (a : a − b : a − c),

so it follows that I , J , and K are collinear.

Also solved by M. Bataille (France), J. Cade, C. Curtis, I. Dimitrić, G. Fera (Italy), R. Frank (Germany),

O. Geupel (Germany), J.-P. Grivaux (France), E. A. Herman, W. Janous (Austria), J. H. Lindsey II, C. R. Prane-

sachar (India), C. Schacht, V. Schindler (Germany), A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy),

T. Wiandt, L. Zhou, Davis Problem Solving Group, The Zurich Logic-Coffee (Switzerland), and the proposer.

Gamma at Reciprocals of Positive Integers

12225 [2021, 88]. Proposed by Pakawut Jiradilok, Massachusetts Institute of Technology,

Cambridge, MA, and Wijit Yangjit, University of Michigan, Ann Arbor, MI. Let  denote

the gamma function, dened by (x) =
∫∞
0

e−t t x−1 dt for x > 0.

(a) Prove that  (1/n) = n for every positive integer n, where y denotes the smallest

integer greater than or equal to y.

(b) Find the smallest constant c such that  (1/n) ≥ n− c for every positive integer n.

Solution by Missouri State University Problem Solving Group, Springeld, MO. We use

three facts about the gamma function: (i) (x + 1) = x(x), (ii) ′(1) = −γ , where γ is

the Euler–Mascheroni constant, and (iii) the gamma function is convex on (0,∞).

(a) The equation of the line tangent to y = (x + 1) at the point (0, 1) is

y = 1+ ′(1)x = 1− γ x.

Since the gamma function is convex, this implies that for x > −1,

(x + 1) ≥ 1− γ x.
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Applying this with x = 1/n yields

(1/n) = n(1/n+ 1) ≥ n(1− γ /n) = n− γ .

Also, since (1) = (2) = 1, by convexity (x + 1) ≤ 1 for 0 ≤ x ≤ 1. Hence

(1/n) = n(1/n+ 1) ≤ n.

Since n− γ ≤ (1/n) ≤ n and γ < 1, we conclude that (1/n) = n.

(b) The solution to part (a) shows that γ satises the required condition. Now let c be any

constant such that (1/n) ≥ n− c for all n. We have

c ≥ n− (1/n) = n− n(1/n+ 1) = −
(1+ 1/n)− 1

1/n
.

Letting n approach∞ yields

c ≥ lim
n→∞

−
(1+ 1/n)− 1

1/n
= −′(1) = γ .

Thus, γ is the smallest such c.

Also solved by R. A. Agnew, K. F. Andersen (Canada), P. Bracken, H. Chen, G. Fera (Italy), D. Fleischman,

J.-P. Grivaux (France), J. A. Grzesik (Canada), L. Han, N. Hodges (UK), O. Kouba (Syria), O. P. Lossers

(Netherlands), I. Manzur (UK) &M. Graczyk (France), R. Molinari, M. Omarjee (France), A. Stadler (Switzer-

land), R. Stong, R. Tauraso (Italy), J. Vinuesa (Spain), M. Vowe (Switzerland), T. Wiandt, J. Yan (China),

L. Zhou, and the proposer.

A Recursive Sequence That Is Convergent or Eventually Periodic

12226 [2021, 88]. Proposed by Jovan Vukmirovic, Belgrade, Serbia. Let x1, x2, and x3 be

real numbers, and dene xn for n ≥ 4 recursively by xn = max{xn−3, xn−1}− xn−2. Show

that the sequence x1, x2, . . . is either convergent or eventually periodic, and nd all triples

(x1, x2, x3) for which it is convergent.

Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, Netherlands.

Let λ1 be the unique real root of λ
3 + λ− 1, so

λ1 =



9+
√
93

18

1/3

+



9−
√
93

18

1/3

= 0.682327803828 . . . .

The sequence converges if and only if (x1, x2, x3) = (x1, x1λ1, x1λ
2
1) with x1 > 0 or

(x1, x2, x3) = (x1, 0, 0) with x1 ≤ 0. Otherwise, it is eventually periodic with period 4.

Given such a sequence x1, x2, . . . , let i ∈ N be of type A if xi ≤ xi+2 and type B if

xi > xi+2. We claim that if i is of type A and i + 1 is of type B, then xj = xj+4 for

j ≥ i + 3. To see this, let (a, b, c) = (xi, xi+1, xi+2). We have a ≤ c and xi+3 = c − b, so

b > c − b and xi+4 = b − c.

If c ≤ b − c, which with b > c − b implies b > c, then the sequence continues

xi+5 = 2b − 2c, xi+6 = b − c, xi+7 = c − b, xi+8 = b − c, xi+9 = 2b − 2c.

With (xi+7, xi+8, xi+9) = (xi+3, xi+4, xi+5), the claim follows. If c > b − c, then the

sequence continues

xi+5 = b, xi+6 = c, xi+7 = c − b,

yielding (xi+5, xi+6, xi+7) = (xi+1, xi+2, xi+3). In both cases, the sequence has period 4

beginning no later than xi+3 and hence does not converge.
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If i of type A is never followed by i + 1 of type B, then either all i are of type B or there

exists some integer k ≥ 1 such that i is of type A if and only if i ≥ k. If all i are of type

B, then xn = −xn−2 + xn−3 for n ≥ 4. The characteristic polynomial λ3 + λ− 1 is strictly

increasing with unique real root λ1 between 0 and 1. The complex conjugate roots λ2 and

λ3 have magnitude greater than 1.

It follows that xn = c1λ
n
1 + (c2λn2) for some real c1 and complex c2, where (z)

denotes the real part of z. Since |λ2| > 1 and xn−3 > xn−1 for n ≥ 4, we conclude c2 = 0

and therefore xn = c1λ
n
1, where c1 > 0 to satisfy xn > xn+2. This is a strictly decreasing

convergent solution, not eventually periodic.

Finally, if i is of type A if and only if i ≥ k, then xk+1, xk+2, . . . satises xn = xn−1 −
xn−2 for n ≥ k + 3. Therefore,

xk+3 = xk+2 − xk+1 ≥ xk+1,

xk+4 = −xk+1 ≥ xk+2,

xk+5 = −xk+2,

xk+6 = xk+1 − xk+2 ≥ −xk+1,

xk+7 = xk+1 ≥ −xk+2.

From −xk+1 ≥ xk+2 and xk+1 ≥ −xk+2 we conclude xi = 0 for i ≥ k + 1. Since k is of

Type A, also xk ≤ 0. If k > 1, then xk+2 = xk−1 − xk > xk+1 − xk = −xk ≥ 0, which

contradicts xk+2 = 0. Therefore, k must equal 1, and the convergent sequences that are

also eventually periodic are given by (x1, x2, x3) = (x1, 0, 0) with x1 ≤ 0.

Also solved by C. Curtis & J. Boswell, G. Fera (Italy), N. Hodges (UK), Y. J. Ionin, P. Lalonde (Canada),

M. Reid, R. Stong, L. Zhou, and the proposer.

Sum of Reciprocals of Consecutive Integers

12227 [2021, 88]. Proposed by Gregory Galperin, Eastern Illinois University, Charleston,

IL, and Yury J. Ionin, Central Michigan University, Mount Pleasant, MI. Prove that for

any integer n with n ≥ 3 there exist innitely many pairs (A,B) such that A is a set of

n consecutive positive integers, B is a set of fewer than n positive integers, A and B are

disjoint, and
∑

k∈A 1/k =
∑

k∈B 1/k.

Solution by Rory Molinari, Beverly Hills, MI. For positive integers t and n, let

An(t) =

{

{t −m, t −m+ 1, . . . , t +m} if n = 2m+ 1,

{t −m, t −m+ 1, . . . , t +m− 1} if n = 2m,

where m is an integer. For a set X of nonzero numbers, let S(X) =
∑

i∈X 1/i.

First consider the odd case: n = 2m+ 1 ≥ 3. Fix a positive integer p. Using 1/(np) =

1/p − (n− 1)/(np), we compute

S(An(np)) =
1

p
−

n− 1

np
+

m


i=1

(

1

np − i
+

1

np + i

)

=
1

p
+

m


i=1

(

1

np − i
+

1

np + i
−

2

np

)

=
1

p
+

m


i=1

2i2

np(n2p2 − i2)
=

1

p
+

m


i=1

1

b(np, i)
,

where b(x, y) = x(x2 − y2)/(2y2). If we choose p to be a multiple of 2m!, then b(np, i)

is an integer for 1 ≤ i ≤ m. By taking A = An(np) and B = {p, b(np, 1), . . . , b(np,m)},
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