
Math 151

Practice problems for Test 1

Solutions

1. (a) 85 = 51 · 1 + 34
51 = 34 · 1 + 17
34 = 17 · 2
So (51, 85) = 17.

(b) 17 = 51− 34 · 1 = 51− (85− 51 · 1) · 1 = 51− 85 + 51 · 1 = 51 · 2− 85
Thus d = 51 · 2 + 85(−1), so m = 2 and n = −1.

2. (⇒)
b|a ⇒ a = bc for some integer c.
Then x ∈ aZ ⇒ x = am for some m ∈ Z ⇒ x = bcm = b(cm) ⇒ x ∈ bZ.
(⇐)
aZ ⊂ bZ ⇒ a = a · 1 ∈ bZ ⇒ a = bm for some m ∈ Z ⇒ b|a.

3. (a) 15x ≡ 21(mod 24)
Since (15, 24) = 3 and 3|21, this congruence has 3 solutions mod 24, which are
congruent mod 8.
Divide by 3: 5x ≡ 7(mod 8)
Again, we see that since (5, 8) = 1, this congruence has a unique solution mod 8.
Multiply by 5 (which is the inverse of [5]8): 25x ≡ 35(mod 8)
Reduce: x ≡ 3(mod 8).

(b) 15x ≡ 8(mod 24)
Since (15, 24) = 3 and 3 6 |8, this congruence has no solutions.

4. x ≡ 6(mod 25), x ≡ 2(mod 11).
Since (25, 11) = 1, by the Chinese Remainder Theorem the system has a unique solution
modulo 25 · 11 = 275.
25 = 11 · 2 + 3
11 = 3 · 3 + 2
3 = 2 · 1 + 1
1 = 3−2 ·1 = 3− (11−3 ·3) ·1 = 3−11 ·1+3 ·3 = 3 ·4−11 ·1 = (25−11 ·2) ·4−11 ·1 =
25 · 4− 11 · 8− 11 · 1 = 25 · 4− 11 · 9.
Now, 2 · 25 · 4− 6 · 11 · 9 = 200− 594 = −394 is a solution.
Since −394 ≡ 156(mod 275), we can write the answer as x ≡ 156(mod 275).

5. (a) φ(n) is the number of positive integers less than or equial to n that are relatively
prime to n.

(b) List all positive integers from 1 to 15, and exclude those which are not relatively
prime to 15, that is, which are divisible by 3 or 15.
All: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
Divisible by 3: 3, 6, 9, 12, 15
Divisible by 5: 5, 10, 15
The rest are relatively prime to 15: 1, 2, 4, 7, 8, 11, 13, 14 - there are 8 integers
in this list, therefore φ(15) = 8.

(c) φ(pq) = pq

(
1− 1

p

)(
1− 1

q

)
= pq

p− 1
p

q − 1
q

= (p− 1)(q − 1) = pq − p− q + 1.
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6. [101]21000 = [201]1000, [101]31000 = [301]1000, [101]41000 = [401]1000, [101]51000 = [501]1000,
[101]61000 = [601]1000, [101]71000 = [701]1000, [101]81000 = [801]1000, [101]91000 = [901]1000,
[101]10

1000 = [1]1000, therefore the multiplicative order of [101]21000 is 10, and the multi-
plicative inverse is [901]1000.

7. (a) f : Z8 → Z12 given by f([x]8) = [3x]12 is well-defined because
[x]8 = [y]8 ⇒ 8|(x−y)⇒ 24|3(x−y)⇒ 12|3(x−y)⇒ 12|(3x−3y)⇒ [3x]12 = [3y]12.
This function is not one-to-one because e.g. f([0]8) = [0]12 = [12]12 = f([4]8) while
[0]8 6= [4]8. The function is not onto because e.g. [1]12 is not in the image (this can
be easily checked by finding the images of all elements of Z8). (Also, the function
cannot be onto since Z12 contains more elements than Z8.)

(b) f : Z8 → Z16 given by f([x]8) = [−x]16 is not well-defined because
f([0]8) = [0]16 but f([8]8) = [−8]16 6= [0]16 while [0]8 = [8]8.

8. f : Zmn → Zm × Zn by f([x]mn) = ([x]m, [x]n).
Each element of Zmn can be written as [x]mn for some integer x, and f can be defined
by the above formula. We have to show that f is well-defined.
If [x]mn = [y]mn then mn|(x − y). Then m|(x − y) and n|(x − y), so [x]m = [y]m and
[x]n = [y]n. Therefore ([x]m, [x]n) = ([y]m, [y]n).
Now we show that if f is onto then (m, n) = 1. Let’s prove by contradiction. Sup-
pose (m,n) = d > 1. Then we claim that f is not onto because, for example, the pair
([0]m, [1]n) is not in the image: ([x]m, [x]n) = ([0]m, [1]n) would imply that [x]m = [0]m
and [x]n = [1]n, then m|x and n|(x − 1), so d|x and d|(x − 1), therefore d|1 which is
impossible. So we have a contradiction.
Conversely, if (m,n) = 1, then by the Chinese Remainder Theorem for each pair
(a, b) there exists x such that x ≡ a(mod m) and x ≡ b(mod n). Then ([x]m, [x]n) =
([a]m, [b]n), so each pair ([a]m, [b]n) is in the image, and thus f is onto.

9. (a) x ∼ y if |x| = |y| is an equivalence relation.
Reflexive law: x ∼ x for all x because |x| = |x|.
Symmetric law: if x ∼ y then |x| = |y| then |y| = |x| then y ∼ x.
Transitive law: if x ∼ y and y ∼ z, we have |x| = |y| and |y| = |z|, then |x| = |z|,
so x ∼ z.
There are infinitely many equivalence classes. One consists of just one element
0, and all other equivalence classes consist of 2 elements, one positive and one
negative, of the form {a,−a}. E.g. {1,−1}, {3,−3}, etc.

(b) x ∼ y if xy > 0 is not an equivalece relation because the reflexive law is not satisfied:
0 6∼ 0 according to the given rule.

(c) x ∼ y if either xy > 0 or x = y = 0 is an equivalence relation.
Reflexive law: x ∼ x for all x because either x · x > 0 or x = x = 0.
Symmetric law: if x ∼ y then either xy > 0 or x = y = 0, then either yx > 0 or
y = x = 0, so y ∼ x.
Transitive law: if x ∼ y and y ∼ z, then either xy > 0 (in which case y 6= 0, so
yz 6= 0) and yz > 0, or x = y = 0 and y = z = 0. In the first case we have xy > 0
and yz > 0, then xy2z > 0, so xz > 0 (since y2 > 0). In the second case we have
x = z = 0. Thus in both cases x ∼ z.
There are 3 equivalence classes: one class consists of 0 alone, one class consists of
all positive numbers, and the third class consists of all negative numbers.

10. (a) στ =
(

1 2 3 4 5 6
3 4 5 1 6 2

)
, τσ =

(
1 2 3 4 5 6
5 1 6 2 3 4

)
.
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(b) σ and τ do not commute because στ 6= τσ.

(c) σ−1 =
(

3 1 6 4 5 2
1 2 3 4 5 6

)
=

(
1 2 3 4 5 6
2 6 1 4 5 3

)
,

τ−1 =
(

1 4 5 2 3 6
1 2 3 4 5 6

)
=

(
1 2 3 4 5 6
1 4 5 2 3 6

)
.

(d) σ = (1362), τ = (24)(35)

(e)

1

3 6

2 4 5 1 2

4

3

5

6

σ τ
(f) σ = (1362) = (13)(36)(62)

(g) σ is odd because it can be written as a product of 3 (which is an odd number)
transpositions, and τ is even because it can be written as a product of 2 (which is
an even number) transpositions.
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