Math 151

Test 1 - Solutions

- 1. Let $a, b, c \in \mathbb{Z}, c \neq 0$. Prove that $bc|ac \Leftrightarrow b|a$.
 - (\Rightarrow) If bc|ac then ac = mbc for some integer m. Since $c \neq 0$, a = mb, i.e. b|a.
 - If b|a then a = mb for some integer m. Then ac = mbc, i.e. bc|ac.
- 2. Solve the congruence $30x \equiv 18 \pmod{27}$.

Since (30, 27) = 3|18, the congruence has 3 distinct solutions modulo 27, which are congruent modulo

Divide by 3: $10x \equiv 6 \pmod{9}$. Now there are at least 2 different approaches.

Approach 1: Since $10 \equiv 1 \pmod{9}$, the equation in equivalent to $x \equiv 6 \pmod{9}$.

Approach 2 (the more standard one): Now (10,9) = 1, so the congruence has a unique solution modulo 9. To find a solution, we will find integers a and b such that 10a = 6 + 9b, or 6 = 10a + 9(-b). First, 1 = 10 + 9(-1) can be found using the Euclidean algorithm or simply by observation since the numbers are small. Now multiply both sides by $6: 6 = 10 \cdot 6 + 9(-6)$.

Then $10 \cdot 6 \equiv 6 \pmod{9}$, so x = 6 is a solution, so the answer is $x \equiv 6 \pmod{9}$.

- 3. Find
 - (a) the multiplicative order
 - (b) the multiplicative inverse

of [3] in
$$\mathbb{Z}_{11}^*$$
.
 $3^2 = 9$
 $3^3 = 27 \equiv 5 \pmod{11}$
 $3^4 \equiv 5 \cdot 3 = 15 \equiv 4 \pmod{11}$
 $3^5 \equiv 4 \cdot 3 = 12 \equiv 1 \pmod{11}$

Therefore the multiplicative order of [3]₁₁ is 5, and the multiplicative inverse of [3]₁₁ is [4]₁₁.

- 4. Is $f: \mathbb{Z}_{12} \to \mathbb{Z}_8$ given by $f([x]_{12}) = [3x]_8$ a well-defined function? Explain why or why not. No, because e.g. $[0]_{12} = [12]_{12}$ but $f([0]_{12}) = [0]_8$ and $f([12]_{12}) = [3 \cdot 12]_8 = [36]_8 = [4]_8$.
- 5. Consider the set of real numbers \mathbb{R} . For x and y in \mathbb{R} , let $x \sim y$ if $(x y) \in \mathbb{Z}$. Show that \sim is an equivalence relation, and describe the equivalence classes.

Reflexive law: for each x, $x \sim x$ since $x - x = 0 \in \mathbb{Z}$.

Symmetric law: if $x \sim y$, then $(x - y) \in \mathbb{Z}$, then $(y - x) = -(x - y) \in \mathbb{Z}$, so $y \sim x$.

Transitive law: if $x \sim y$ and $y \sim z$, then $(x-y) \in \mathbb{Z}$ and $(y-z) \in \mathbb{Z}$, then $x-z = (x-y) + (y-z) \in \mathbb{Z}$,

The equivalence class of x is the set of all real numbers y such that $y-x=m\in Z$, i.e. y=x+m: $[x] = \{\ldots, x-3, x-2, x-1, x, x+1, x+2, x+3, \ldots\}$. There are infinitely many equivalence classes, one class for each number $a \in [0, 1)$.

- 6. Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 2 & 4 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 2 & 5 \end{pmatrix}$.

$$\tau\sigma = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 4 & 3 & 2 \end{array}\right)$$

(b) Draw the associated diagram for σ .

(c) Write σ as a product of disjoint cycles. $\sigma = (13)(254)$

Optional: Does there exist an integer number m such that for any prime number p, $m \equiv p - 1 \pmod{p}$? If such a number exists, find it. If not, prove that there is no such number.

Yes. m = -1 satisfies that property.