Practice problems for Test 2

Answers

1. (Note: feel free to show me your examples to make sure they are correct.)

group	order	abelian?	cyclic?
\mathbb{Z}_5^*	4	yes	yes
\mathbb{Z}_6	6	yes	yes
S_3	6	no	no
$\mathbb{Z}_4\oplus\mathbb{Z}_2$	8	yes	no
\mathbb{Z}	∞	yes	yes
$GL_2(\mathbb{R})$	∞	no	no
$\{e\}$ =trivial	1	yes	yes
D_5	10	no	no
$Mat_{2 imes 3}(\mathbb{Z}_2)$	64	yes	no
\mathbb{R}	∞	yes	no

2. $\mathbb{R} \cong \mathbb{R}^+$; $\mathbb{Z}_2 \oplus \mathbb{Z}_8 \cong \mathbb{Z}_8 \oplus \mathbb{Z}_2$.

$$4. \ 6. \ \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right], \left[\begin{array}{cc} 2 & 1 \\ 0 & 2 \end{array}\right], \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right], \left[\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array}\right], \left[\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}\right], \left[\begin{array}{cc} 2 & 2 \\ 0 & 2 \end{array}\right] \right\}.$$

- 5. (a) 8
 - (b) $H = \{0, 6, 12, 18\}$ is a cyclic subgroup. Generators: 6 and 18.

 $K = \{0, 4, 8, 12, 16, 20\}$ is a cyclic subgroup. Generators: 4 and 20.

 $H \cap K = \{0, 12\}$ is a cyclic subgroup. Generator: 12.

 $H \cup K = \{0, 4, 6, 8, 12, 16, 18, 20\}$ is not a subgroup.

 $H+K=\{0,2,4,6,8,10,12,14,16,18,20,22\}$ is a cyclic subgroup. Generators: 2, 10, 14, 22.

- 6. (a) Yes. $Ker(f) = \{0\}$. Image = $3\mathbb{Z}$. One-to-one. Not onto.
 - (b) Yes. $Ker(f) = 4\mathbb{Z}$. $Image = \mathbb{Z}_4$. Not one-to-one. Onto.
 - (c) Yes. $Ker(f) = 3\mathbb{Z}$. Image = $2\mathbb{Z}_6$. Not one-to-one. Not onto.
 - (d) No.
 - (e) Yes. $Ker(f) = \{(x, -x)\}$. Image = \mathbb{R} . Not one-to-one. Onto.
 - (f) No.
 - (g) Yes. $\text{Ker}(f)=\{(1,1)\}$. $\text{Image}=\left\{\left[\begin{array}{cc}a&b\\-2b&a+3b\end{array}\right]\right\}$. One-to-one. Not onto.
- 8 No. Yes. No.