Math 151 Spring 2004

Practice problems for Test 3 - Solutions

1. First of all, let’s list all the elements of the given set so that we see what we are
working with. Since each coefficient (a and b) can be either 0 or 1, we have 4
elements: 0+ 0z, 0+ 17, 1 4+ 0z, and 1+ 1z, or, for simplicity, just 0, ¢, 1, and 1+ .
Addition and multiplication are defined as for complex numbers, but the results
are reduced modulo 2.

It is a commutative ring with a multiplicative identity: it is easy to check that
associativity, commutativity, and distributivity hold, the additive identity is 0, the
multiplicative identity is 1, the additive inverse of each element is that element
itself.

Notice also that for the ring Z(i) = {a + bi | a,b € Z} and the ideal ] =< 2 >=
{a+bi| a,be 2Z}, the factor ring is Z (i) /I = Zy(i).

Zo(%) is not an integral domain because e.g. (14 ¢)(1+4) = 0 while 1 +14 # 0. It
is not a field because every field is an integral domain.

2. 2 — 2z
2242 | z° +3z+1
z® + 223
—22% + 3z
—22% — Az

Tr+1
So the quotient is ¢(z) = 2 — 2z and the remainder is r(z) = 7z + 1.

3. f(z) = 2° + 42* + 62 + 622 + 5z + 2, g(z) = z* + 32% + 32 + 6.

(a) Using the Euclidean algorithm (modulo 7!), we have:
25+ 42" +62° +62° +5r+2 = (z* +32° + 32+ 6)(x +4) + (323 + 522 + £+ 6)
z* +32% + 32+ 6 = (32 + 52° + £ + 6)(5x + 1)
Therefore the monic polynomial that is a multiple of 32% + 522 + z + 6 is the
ged of f and g. To get a monic polynomial, multiply 323 4+ 522 +x + 6 by 5
(the multiplicative inverse of 3 modulo 7):
d(z) = 23 + 42% + 5z + 2.

(b) 32%+52° + 2 +6 = (2° + 42" +62° +62° + 52+ 2) — (2 +32° + 32 +6) (z +4)
Rewrite with a plus:
313 +522+1+6 = (2° +42* 4+ 62° + 622 + 5z +2) + (2* + 322 + 32 +6) (62 + 3)
Multiply both sides by 5:
¥+ 422 +52+2 = (2°+42* 4+ 623+ 62° +52+2) -5+ (2*+32? + 32+ 6) (22 +1)
Therefore a(z) = 5 and b(z) = 2z + 1.



4. Using the Euclidean algorithm (modulo 5!), we have:
B4+r+1=(@+4)(z*+1+2)+3
=@ +z+1)—(z+4)(*+2+2)
=@ +z+1)+ (z+4)(—2*> -2 —2)
3=(@+z+1)+ (v +4)(42® + 4z + 3)
Now multiply both sides by 2 (the multiplicative inverse of 3 modulo 5, so that to
get 1 on the left): 1= (2® +z +1)2+ (z + 4)(32% + 3z + 1)
Thus we have (z+4)(3224+3z+1) = 1 (mod 2°+z+1), s0 [z +4]7! = 322+ 3z +1.

5. Since a rational root of *+42° 482432 = 0 must be of the form £ where (32 and
s|1, the possible roots are +1, +2, +4, 48, £16, and +32. But notice that since all
the coefficients are positive, a root cannot be positive. An easy check gives that —1
is not a root, but —2 is a root (16—4-8—8-2+32 = 0). Therefore the polynomial is
divisible by z+2. Long division gives: z*+42°+8z+32 = (z+2)(z*+22?—4z+16).
Now we have to find all roots of 23 4+ 222 — 424 16. Possible roots are —2, —4, —8,
and —16. —2 is not a root, but —4 is a root (—64 + 32+ 16 + 16 = 0). Therefore
we can divide by x +4: 2% + 22? — 4z + 16 = (z + 4)(2? — 2z + 4). Finally, since
22 — 2x + 4 has no rational roots, the original polynomial has no other roots.

6. over Z: x® — 2 is irreducible because it has no integer roots
over Q: still irreducible because it has no rational roots either

over R: (:v - \3/5) (:c2 + V2 + \3/4_1)
Now use the quadratic formula to find the roots of 22 + /2x + /4:

e & (o= v8) (2 L) (. S22 008

over Zsz: 0 is not a root; 1 is not a root; 2 is a root, so divide by z — 2 (or
equivalently, z + 1) over Zs: 22 —2 = (z+1)(2? —z+1). Now, 22 —z +1 also has
a root, namely, 2 again. So divide by x —2 = z+1 again, get 22 +2zx+1 = (z+1)2
Therefore 2° — 2 = (z + 1)® over Zs.

Another way: 22 —2=23+1= (z+1)(z*—z+1) = (z+1)(2*+22+1) = (z+1)3
(mod 3).

7. First list all the polynomials of degree 3 over Z,. Since a polynomial of degree 3
is irreducible if and only if it has no roots, we check whether or not each of our
polynomials has a root:

2% has a root, = 0

2% 4+ 1 has a root, z =1

2% + z has a root, £ = 0 (moreover, x = 1 is also a root, but we don’t need that)
2® + x + 1 has no roots

23 + 22 has a root, x = 0 (also z = 1)

2® + 22 + 1 has no roots

224+ 22+ z hasaroot, z =0

224+ 22+z+1hasaroot,z =1

So only 23 + 2 + 1 and 2% 4+ 22 + 1 have no roots and therefore are irreducible.



8.

9.

10.

11.

The prime p = 5 divides all the coefficients of 3z* + 30z — 60 except the leading co-
efficient, and p? does not divide the free term. Therefore by Eisenstein’s criterion,
this polynomial is irreducible over Q.

(a) R=12Z¢=1{0,1,2,3,4,5}, e = 1 is obviously a multiplicative identity.
S =27¢=1{0,2,4}, ¢ = 4. Check: 0-4=0,2-4 =2 (modulo 6!), 4-4 = 4.

(b) Since e is an identity in R, ee’ = €', e # 0.
Since €’ is an identity in S, e'e’ = €', €' # 0.
So we have ee’ = €'e/, or ee’ — €'e’ =0, or (e —€')e’ = 0.
In an integral domain, ab = 0 implies that either a =0 or b = 0.
Since €' # 0, we have e — ¢’ = 0. Thus e = €.

An element (r,s) of R@® S is a unit (i.e. an invertible element) if and only if r is
a unit in R and s is a unit in S.

Zig has 2 units: 1 and 5.

Zg has 4 units: 1, 3, 5, and 7.

Therefore Zg @ Zg has 8 units: (1,1), (1,3), (1,5), (1,7), (5,1), (5,3), (5,5), (5,7).

We have to show that I +J ={z € R |z =a+0b for some a € I,b € J} is closed
under addition and subtraction, and is closed under mulitplication by any element
of R.

Let 21,29 € I + J, so x1 = a1 + b; and zy = ay + by for some ai,ao, € I and
bi,by € J. Then 21 £ 29 = (a1 + b1) £ (a2 + by) = (a1 £ ag) + (b £bs) € I+ J
because both I and J are closed under addition and subtraction.

Letx =a+b€l+Jandr € R. Then rx =r(a+b) =ra+rbe I+ J because
both I and J are closed under multiplication by any element of R.



