1. Definitions, examples, basic properties:

- (a) Algebraic structures
 - set
 - group (abelian)
 - ring (commutative, commutative with identity)
 - integral domain
 - field
 - direct sum / product of two sets, groups, or rings
 - integer numbers (quotient, remainder, primes, gcd, lcm, congruence modulo n)
 - polynomials (monic, irreducible, quotient, remainder, gcd, lcm)
- (b) Substructures
 - subset
 - subgroup
 - subring
 - ideal (zero, proper, prime, maximal)
 - subfield
- (c) Functions
 - well-defined
 - one-to-one (injection)
 - onto (surjection)
 - one-to-one correspondence (bijection)
 - permutation
 - homomorphism
 - isomorphism
 - kernel
 - image
 - inverse function
 - composition

2. Important theorems (a star indicates that you should know a proof)

- Division algorithm (Th 1.1.3, p. 7)
- GCD as a linear combination (Th 1.1.6, p. 9)
- Fundamental theorem of arithmetic (Th 1.2.6, p. 18)
- (*) Euclid's theorem (Th 1.2.7, p. 19)
- (*) Inverse of an integer modulo n (Prop 1.3.4, p. 26)
- Solution to a congruence $ax \equiv b \pmod{n}$ (Th 1.3.5, p. 26)
- (*) Chinese remainder theorem (Th 1.3.6, p. 29)
- Lagrange's theorem (Th 3.2.10, p. 99)
- Decomposition of a finite abelian group (Th 3.5.4, p. 123)
- Cayley's theorem (Th 3.6.2, p. 127)
- (*) Fundamental homomorphism theorem for groups (Th 3.8.8, p. 152)
- (*) Remainder theorem (Th 4.1.9, p. 167)
- Root of a polynomial (Cor 4.1.11, p. 169)
- Unique factorization (Th 4.2.9, p. 178)
- Eisenstein's irreducibility criterion (Th 4.3.6, p. 184)
- $F[x]/\langle p(x)\rangle$ is a field if p(x) is irreducible (Th 4.4.6, p. 190)
- Kronecker's Theorem (Th 4.4.8, p. 191)
- (*) Fundamental homomorphism theorem for rings (Th 5.2.6, p. 215)
- Factor ring (Prop 5.3.9, p. 224)