
Math 151 Spring 2004

Practice problems for Test 2

Solutions

1. (Note: feel free to show me your examples to make sure they are correct.)
group order abelian? cyclic?
Z∗5 4 yes yes
Z6 6 yes yes
S3 6 no no
Z4 ⊕ Z2 8 yes no
Z ∞ yes yes
GL2(R) ∞ no no
{e}=trivial 1 yes yes
D5 10 no no
Mat2×3(Z2) 64 yes no
R ∞ yes no

Z∗5 consists of all units in Z5, and it is a group under multiplication. Z∗5 = {1, 2, 3, 4}, so |Z∗5| = 4.
It is abelian since multiplication of numbers is commutative. It is cyclic because it is generated by
2: < 2 >= {1, 2, 4, 3} = Z∗5.

Z6 = {0, 1, 2, 3, 4, 5} =< 1 > is an abelian cyclic group (under addition) of order 6. (In general,
Zn = {0, 1, 2, . . . , n− 1} =< 1 > is an abelian cyclic group of order n.)

S3 = {(1), (12), (13), (23), (123), (132)} has order 6. It is not abelian because e.g. (12)(13) = (132)
and (13)(12) = (123). (In general, Sn, the permutation group on a set of n elements, it has order n!
and is non-abelian.) It is not cyclic because every cyclic group is abelian and this one is not.

Z4 ⊕ Z2 = {(x, y) | x ∈ Z4, y ∈ Z2} is the set of all pairs, and it has order 4 · 2 = 8. It is abelian
since both Z4 and Z2 are. It is not cyclic because it has no element of order 8: it is easy to check
that the order of each element is ≤ 4.

Z is an infinite cyclic group consisting of all integer numbers (with addition). It is abelian since
addition of numbers is abelian. It is cyclic because it is generated by 1.

GL2(R) is the group of 2×2 invertible matrices with real entries under multiplication. There are in-

finitely many such matrices, so its order is infinity. It is not abelian because e.g.
[

0 2
3 0

] [
0 1
1 0

]
=

[
2 0
0 3

]
and

[
0 1
1 0

] [
0 2
3 0

]
=

[
3 0
0 2

]
. It is not cyclic because every cyclic group is abelian.

{e}=trivial group has only one element. It is abelian (all elements commute), and cyclic (gener-
ated by e). It is a very uninteresting group, but I just wanted to give an example of a group of order 1.

D5, dihedral group of order 2 · 5 = 10, is the group of rigid motions of a regular pentagon. Its
elements are e, a, a2, a3, a4, b, ab, a2b, a3b, a4b. It is not abelian (e.g. ba = a4b 6= ab), and hence not
cyclic.

Mat2×3(Z2) is the group of all 2×3 matrices with entries in Z2 under addition. Its order is 64: each
entry can be either 0 or 1, and there are 6 entries, so there are 26 = 64 such matrices. It is abelian
since addition in Z2 is commutative. But it is not cyclic: each non-zero element has order 2 because
if you add an entry of a matrix to itself you’ll get 0, thus any matrix added to itself gives the zero
matrix. Therefore there is no element (matrix) of order 64.
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R is an infinite group of real numbers under addition. It is abelian (addition of numbers is com-
mutative) but not cyclic: every nonzero element generates a cyclic subgroup consisting of its own
multiples, thus every cyclic subgroup has a smallest positive element. But R does not have any.

2. (a) Let S = {A ∈ GL2(R) | det(A) > 0}. First, S is closed under multiplication since if A, B ∈ S,
then det(A) > 0 and det(B) > 0, and then det(AB) = det(A)det(B) > 0, so AB ∈ S. Second,
S contains the identity matrix, since det(I2) = 1 > 0. Finally, S is closed under the inverses
since if A ∈ S, then det(A) > 0, and then det(A−1) = (det(A))−1 > 0, so A−1 ∈ S. Thus the
set S is a subgoup.

(b) The set is not a subgroup because it does not contain the identity matrix, since det(I2) = 1.

(c) The set is not a subgroup because it is not closed under the inverses, e.g. for A =
[

2 0
0 2

]
,

det(A) = 4 ∈ Z, so A is in the set, but A−1 =
[

0.5 0
00.5

]
has det(A−1) = 0.25 6∈ Z, so A−1 is

not in the set.

3. First notice that R, R∗, R+, and GL2(R) have infinite order, while Z4 ⊕ Z4, Z2 ⊕ Z8, Z8 ⊕ Z2, and
Z16 have order 16. So we only have to check the first 4 groups, and the last 4 groups, separately.

Among the first 4 groups, R and R+ are isomorphic: let f : R→ R+ be defined by f(x) = ex. Then
f(x + y) = ex+y = exey = f(x)f(y). f is one-to-one because if f(x) = f(y) then ex = ey, then
ln ex = ln ey which implies x = y. Finally, f is onto because for any positive real z, let x = ln z,
then f(x) = f(ln z) = eln z = z. (See example 3.4.2 on p.129.)

Groups R and R∗ are not isomorphic because the first group has no element of order 2, and the
second group has an element of order 2, namely −1 : (−1)2 = 1. R+ and R∗ are not isomorphic for
the same reason. (See example 3.4.3 on p.130.)

Finally, GL2(R) is not isomophic to any of the above because GL2(R) has an element of order 4
(e.g. see exercise 1(b) on page 112), but the other groups do not.

Among the last 4 groups, Z2 ⊕ Z8 and Z8 ⊕ Z2 are isomorphic: define f : Z2 ⊕ Z8 → Z8 ⊕ Z2

by f((x, y)) = (y, x). Obviously this is a 1-1 correspondence, and it is a homomorphism because
f((x, y) + (z, w)) = f((x + z, y + w)) = (y + w, x + z) = (y, x) + (w, z) = f((x, y)) + f((z, w)).

All other pairs are not isomorphic: Z4 ⊕ Z4 only has elements of order ≤ 4; Z2 ⊕ Z8 and Z8 ⊕ Z2

have elements of order 8 but no elements of order 16; Z16 has elements of order 16.

4. Let’s denote this subset of G by H. We want to show that H is a subgroup.

Closed under multiplication: if a, b ∈ H, then a2 = b2 = e. Then (ab)2 = a2b2 = e ·e = e, so ab ∈ H.
Identity: ord(e) = 1 ≤ 2, so e ∈ H.
Closed under inverses: if a ∈ H, then a2 = e. Then (a−1)2 = (a2)−1 = e−1 = e, so a−1 ∈ H.

5. Let’s denote the given matrix by A. We have to compute powers of A until we get the identity
matrix. The smallest positive k such that Ak = I is then the order of A, and the cyclic subgroup
generated by A is {I, A, A2, . . . , Ak−1}. Notice that entries of our matrices are elements of Z3, so
each time we multiply matrices, we have to reduce each entry of the product modulo 3. Then

<

[
2 1
0 2

]
>=

{
I2,

[
2 1
0 2

]
,

[
1 1
0 1

]
,

[
2 0
0 2

]
,

[
1 2
0 1

]
,

[
2 2
0 2

]}
.

Therefore the order of A is 6.

6. (a) Generators of Z24 are numbers (more precisely, classes of numbers) between 0 and 24 that are
relatively prime to 24. There are 8 of them: 1, 5, 7, 11, 13, 17, 19, 23.
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(b) H = {0, 6, 12, 18} is a cyclic subgroup. Generators: 6 and 18. 0 and 12 are not generators
because the order of 0 is 1, and the order of 12 is 2.
K = {0, 4, 8, 12, 16, 20} is a cyclic subgroup. Generators: 4 and 20.
H ∩K = {0, 12} is a cyclic subgroup. Generator: 12.
H ∪ K = {0, 4, 6, 8, 12, 16, 18, 20} is not a subgroup: it is not closed under addition, e.g.,
4 + 6 = 10 6∈ H ∪K.
H + K = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22} is a cyclic subgroup. Generators: 2, 10, 14, 22.

7. (a) f : Z → Z, f(x) = 3x is a homomorphism: f(x + y) = 3(x + y) = 3x + 3y = f(x) + f(y).
Ker(f) = {0}. Image = 3Z, the set of all multiples of 3. It is one-to-one because 3x = 3y
implies x = y. It is not onto because e.g. 1 is not in the image. It is not an isomorphism
because it is not onto.

(b) f : Z → Z4, f(x) = [x]4 is a homomorphism: f(x + y) = [x + y]4 = [x]4 + [y]4 = f(x) + f(y).
Ker(f) = 4Z, the set of all multiples of 4. Image = Z4. It is not one-to-one because e.g.
f(0) = [0]4 and f(4) = [4]4 = [0]4. It is onto: every element of Z4 is in the image since
[x]4 = f(x). It is not an isomorphism because it is not one-to-one.

(c) f : Z → Z6, f(x) = [2x]6 is a homomorphism: f(x + y) = [2(x + y)]6 = [2x + 2y]6 =
[2x]6 + [2y]6 = f(x)+ f(y). Ker(f) = 3Z, the set of all multiples of 3. Image = 2Z6 = {0, 2, 4}.
It is not one-to-one because e.g. f(0) = [0]6 and f(3) = [6]6 = [0]6. It is not onto because e.g.
[1]6 is not in the image. It is not an isomorphism e.g. because it is not one-to-one.

(d) f : Z2 → Z, f([x]2) = x is not a homomorphism because it is not a well-defined function:
[0]2 = [2]2, but f([0]2) = 0, f([2]2) = 2, and 0 6= 2.

(e) f : Z10 → Z10, f([x]10) = [3x]10 is a homomorphism. First, we will show that this function
is well-defined: if [x]10 = [y]10, then f([x]10) = [3x]10 = [3y]10 = f([y]10). It preserves the
operation since f([x]10+[y]10) = f([x+y]10) = [3x+3y]10 = [3x]10+[3y]10 = f([x]10)+f([y]10).
It is one-to-one: if f([x]10) = f([y]10), then [3x]10 = [3y]10. Multiplying both sides by 7, we
get [21x]10 = [21y]10. Since [21]10 = [1]10, we have [x]10 = [y]10. It is onto since for any
[y]10, f([7y]10) = [21y]10 = [y]10. It is an isomorphism since it is a bijection and preserves the
operation.

(f) f : R ⊕ R → R, f((x, y)) = x + y is a homomorphism. The kernel consists of all pairs (x, y)
for which x + y = 0, or y = −x. Therefore Ker(f) = {(x,−x)}. Image = R: given z ∈ R,
z = f((z, 0)) is in the image. It is not one-to-one because e.g. f((1, 0)) = 1 and f((2, 1)) = 1.
It is onto as shown above.It is not an isomorphism because it is not one-to-one.

(g) f : R∗ × R∗ → GL2(R), f((x, y)) =
[

2x− y y − x
2x− 2y 2y − x

]
is a homomorphism:

f((x, y))f((z, w)) =
[

2x− y y − x
2x− 2y 2y − x

] [
2z − w w − z
2z − 2w 2w − z

]

=
[

(2x− y)(2z − w) + (y − x)(2z − 2w) (2x− y)(w − z) + (y − x)(2w − z)
(2x− 2y)(2z − w) + (2y − x)(2z − 2w) (2x− 2y)(w − z) + (2y − x)(2w − z)

]

=
[

2xz − yw yw − xz
2xz − 2yw 2yw − xz

]
= f((xz, yw)) = f((x, y)(z, w)).

The kernel of f consists of all pairs for which 2x − y = 2y − x = 1 and 2x − 2y = y − x = 0.
Solving this system gives x = y = 1.

The image of f consists of all matrices of the form
[

2x− y y − x
2x− 2y 2y − x

]
. It is OK to leave this

matrix as is. However, I decided to give a slightly more explicit desctiption: let a = 2x − y
and b = y − x, then the other two entries can be expressed in terms of a and b, and Image

=
{[

a b
−2b a + 3b

]
| this matrix must be invertible: a2 + 3ab + 4b 6= 0

}
.

f is one-to-one since the kernel is trivial, and it is not onto because e.g.
[

1 2
1 0

]
is not in the

image. It is not an isomorphism because it is not onto.
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