CHAPTER |. INTEGERS

20. Leta, b, n be integers with n > 1. Suppose that a = nqy + r; with 0 < r; < n and
b =ngy + ro with 0 < ry < n. Prove that n | (@ — b) if and only if r; = ry.

21. Show that any nonempty set of integers that is closed under subtraction must also be
closed under addition. (Thus part of the hypothesis of Theorem 1.1.4 is redundant.)

22. Leta,b,q,r be integers such that b # 0 and a = bg + r. Prove that (a,b) = (b,r)
by showing that (b, r) satisfies the definition of the greatest common divisor of a
and b.

23. Perhaps a more natural definition of the greatest common divisor is the following:
Let a and b be integers, not both zero. An integer d is called the greatest common
divisor of the nonzero integers a and b if (i) d |« and d |b, and (ii) ¢ |a and c | b
implies d > c. Show that this definition is equivalent to Definition 1.1.5.

24. Show that 3 divides the sum of the cubes of any three consecutive positive integers.
25.1Find all integers x such that 3x + 7 is divisible by 11.

26. Prove the following proposition. Let a, b, n € Z with (a,b) = d, and let xq, yo be a
particular solution to the equation ax+by = n. Then every solution to ax +5 y=n
has the form x = xq + gt, y = yy— %t, for some ¢t € Z. Furthermore, for every

t € Z the integers x = x¢ + gt, Y = yo — 5t, yield a solution to ax + by = n.

27. Prove the following proposition. Let a, b € Z* with (a,b) = 1. Then the equation
ax+by = nhas solutions x, y € Zwithx >0,y > 0ifn > ab—a—b. Moreover,
if n = ab — a — b, then there are no such solutions.

28. Formulate a definition of the greatest common divisor of three integers a, b, ¢ (not
all zero). With the appropriate definition you should be able to prove that the greatest
common divisor is a linear combination of @, b and c.

1.2 Primes

The main focus of this section is on prime numbers. Our method will be to investi-
gate the notion of two integers which are relatively prime, that is, those which have
no common divisors except 1. Using some facts which we will prove about them,
we will be able to prove the prime factorization theorem, which states that every
nonzero integer can be expressed as a product of primes. Finally, we will be able
to use prime factorizations to learn more about greatest common divisors and least
common multiples.

1.2.1 Definition. The nonzero integers a and b are said to be relatively prime if
(a,b) = 1.
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1.2. PRIMES 17

1.2.2 Proposition. Let a, b be nonzero integers. Then (a,b) = 1 if and only if
there exist integers m, n such that ma + nb = 1.

Proof. If a and b are relatively prime, then by Theorem 1.1.6 integers /m and n
can be found for which ma + nb = 1. To prove the converse, we only need to
note that if there exist integers m and n with ma + nb = 1, then 1 must be the
smallest positive linear combination of a and b, and thus (a,b) = 1, again by
Theorem 1.1.6. [

Proposition 1.2.2 will be used repeatedly in the proof of the next result. A
word of caution—it is tempting to jump from the equation d = ma + nb to the
conclusion that d = (a, b). For example, 16 = 2 -5+ 3 - 2, but obviously (5, 2) #
16. The most that it is possible to say (using Theorem 1.1.6) is that d is a multiple
of (a, b). Of course, if ma+nb = 1, then Proposition 1.2.2 implies that (a, b) = 1.

1.2.3 Proposition. Let a, b, ¢ be integers, where a # 0 or b # 0.
(@) Ifblac, thenb|(a,b)-c.
(b) Ifb|ac and (a,b) = 1, then b |c.
(©Ifbla, claand (b,c) =1, then bc|a.
(d) (a,bc) = 1ifand only if (a,b) = 1 and (a,c) = 1.

Proof. (a) Assume that b |ac. To show that b|(a,b) - ¢, we will try to find an
expression for (a, b) - ¢ that has b as an obvious factor. We can write (a,b) =
ma + nb for some m, n € Z, and then multiplying by ¢ gives

(a,b)-c =mac + nbc.

Now b is certainly a factor of nbc, and by assumption it is also a factor of ac, so it
is a factor of mac and therefore of the sum mac + nbc. Thus b|(a, b) - c.

(b) Simply letting (a, b) = 1 in part (a) gives the result immediately.

(c)If b|a, then a = bq for some integer q. If ¢ |a, then ¢ | bg, so if (b,c) = 1,
it follows from part (b) that ¢ |g, say with ¢ = cgq. Substituting for ¢ in the
equation a = bq gives a = bcq,, and thus bc | a.

(d) Suppose that (a, bc) = 1. Then ma + n(bc) = 1 for some integers m and
n, and by viewing this equation as ma + (nc)b = 1 and ma + (nb)c = 1 we can
see that (a,b) = 1 and (a,c) = 1.

Conversely, suppose that (a,b) = 1 and (a,c¢) = 1. Then mia + n1b =1
for some integers m and n1, and maa + nac = 1 for some integers m, and ns.
Multiplying these two equations gives

(mymaa + mynac + manibla + (nyny)be = 1,

which shows that (a,bc) =1. O
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1.2.4 Definition. An integer p > 1 is called a prime number if its only divisors Pr
are £1 and + p. An integer a > 1 is called composite if it is not prime.

or
cas
To determine whether or not a given integer n > 1 is prime, we could just Pre

try to divide n by each positive integer less than n. This method of trial division
is very inefficient, and for this reason various sophisticated methods of “primality Pl
testing” have been developed. The need for efficient tests has become particularly |
apparent recently, because of applications to computer security that make use of 1hf|
cryptographic algorithms. To determine the complete list of all primes up to some we
bound, there is a useful procedure handed down from antiquity. ' |
Example 1.2.1 (Sieve of Eratosthenes). tw
The primes less than a fixed positive integer a can be found by the following {f;:ﬂ

procedure. List all positive integers less than a (except 1), and cross off every |
even number except 2. Then go to the first number that has not been crossed
off, which will be 3, and cross off all higher multiples of 3. Continue this .
process to find all primes less than a. You can stop after you have crossed ‘

7}
off all proper multiples of primes p for which p < ./, since you will have ni
crossed off every number less than « that has a proper factor. (If & is com- ]
posite, say b = byb,, then either by < Vb or by < +/b.) For example, we fDr
can find all primes less than 20 by just crossing off all multiples of 2 and 3, e
since 5 > +/20: 1S |

thg

2 3 4 5 ¢ 7 % 9 1p “kl

1112 13 14 15 16 17 18 19 . .

‘

This method is attributed to the Greek mathematician Eratosthenes, and is ‘Pﬁl

called the sieve of Eratosthenes.

Similarly, the integers less than « and relatively prime to @ can be found by 1)
crossing off the prime factors of & and all of their multiples. For example, the he
prime divisors of 36 are 2 and 3, and so the positive integers less than 36 and

relatively prime to it can be found as follows:

12 7 4 5 ¢ 7 8§ 9 1p 11 12 thy
13 14 15 16 17 18 19 20 21 22 23 24 as
25 26 27 28 29 30 31 32 33 34 35 . | a

an

Euclid’s lemma, the next step in our development of the fundamental theorem g
of arithmetic, is the one that requires our work on relatively prime numbers. We Wj
will use Proposition 1.2.3 (b) in a crucial way. $

fal
1
fa

1.2.5 Lemma (Euclid). An integer p > 1 is prime if and only if it satisfies the
following property: for all integers a and b, if p |ab, then either p|a or p|b. th
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1.2. PRIMES 19

Proof. Suppose that p is prime and p |ab. We know that either (p,a) = p
or (p,a) = 1, since (p,a) is always a divisor of p and p is prime. In the first
case p|a and we are done. In the second case, since (p,a) = 1, we can apply
Proposition 1.2.3 (b) to show that p |ab implies p|b. Thus we have shown that if
p|ab, then either p|a or p|b.

Conversely, suppose that p satisfies the given condition. If p were composite,
then we could write p = ab for some positive integers smaller than p. The condition
would imply that either p |aor p | b, which would be an obvious contradiction. [l

The following corollary extends Euclid’s lemma’to the product of more than
two integers. In the proof we will use mathematical induction, which we hope is
familiar to you. If you do not remember how to use induction, you should read the

discussion in Appendix A.4.

1.2.6 Corollary. If p is a prime number, and p |aiaz - --an forintegers ay, as, . .
ay, then pa; for some i with1 <i <n.

Proof. Tn order to use the principle of mathematical induction, let P, be the follow-
ing statement: if p|aiaz---an, then p |a; for some 1 < i < n. The statement Py
is clearly true. Next, assume that the statement Py is true, that is, if p|aiaz---ak,
then p|a; for some 1 < i < k. If plaiaz - axag4i, for integers ay, az, ...
ay, a1, then applying Euclid’s lemma to a = a1a2 -+~ dk and b = ag4 yields
that plajas---ag or plagyy. Incase plaiaz---ag, the truth of the statement
P, implies that p|a; for some 1 < i =< k. Thus, in either case, p|a; for some
1 <i <k + 1, and hence the statement Py is true. By the principle of mathe-
matical induction (as stated in Theorem A.4.2 of Appendix A.4), the statement P,
holds for all positive integers n. LI

The next theorem, on prime factorization, is sometimes called the fundamental
theorem of arithmetic. The naive way to prove that an integer a can be written
as a product of primes is to note that either a is prime and we are done, or else
a is composite, say a = bc. Then the same argument can be applied to b and c,
and continued until @ has been broken up into a product of primes. (This process
must stop after a finite number of steps because of the well-ordering principle.)
We also need to prove that any two factorizations of a number are in reality the
same. The idea of the proof is to use Euclid’s lemma to pair the primes in one
factorization with those in the other. In fact, the proof of the uniqueness of the
factorization requires a more delicate argument than the proof of the existence of

the factorization.
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1.2.7 Theorem (Fundamental Theorem of Arithmetic). Any integer a > 1 can
be factored uniquely as a product of prime numbers, in the form

— p%1 02 o
a_pl pz ...pn”’

where py < pa < ... < pp and the exponents a1,d, ...,y are all positive.

Proof. Suppose that there is some integer greater than 1 that cannot be written
as a product of primes. Then the set of all integers a > 1 that have no prime
factorization must be nonempty, so as a consequence of the well-ordering principle
it must have a smallest member, say 5. Now b cannot itself be a prime number since
then it would have a prime factorization. Thus b is composite, and we can write
b = cd for positive integers ¢, d that are smaller than b. Since b was assumed
to be the smallest positive integer not having a factorization into primes, and ¢
and d are smaller, then both ¢ and d must have factorizations into products of
primes. This shows that 5 also has such a factorization, which is a contradiction.
Since multiplication is commutative, the prime factors can be ordered in the desired
manner.

If there exists an integer > 1 for which the factorization is not unique, then

by the well-ordering principle there exists a smallest such integer, say a. Assume

that a has two factorizations a = p{' p52--- py" and a = qf ‘qu oo gPm where

P1r<p2<...<ppandq) <gy <...<gm,withe; >0fori = 1,...,n, and
Bi > 0fori =1,...,m. By Corollary 1.2.6 of Euclid’s lemma, g1 | py for some k
with 1 <k < n and p; |¢q; for some j with 1 < j < m. Since all of the numbers
pi and g; are prime, we must have q; = p; and p; = g;. Then p; = g; since
g1 < q; = p1 < pr = q1. Hence we can let

a a 1—1 _« Bi1—1
S:-—:—:pll pzz...pg”:qll qu...q’ﬁm.
P q1
If s = 1 then a = p; has a unique factorization, contrary to the choice of a. If
s > 1, then since s < a and s has two factorizations, we again have a contradiction
to the choice of g¢. O

It the prime factorization of an integer is known, then it is easy to list all of

its divisors. If a = p{' p3?--- py", then b is a divisor of a if and only if b =

p’lg ! pzﬂ2 p,’f”, where B; < a; for all i. Thus we can list all possible divisors of a

by systematically decreasing the exponents of each of its prime divisors.

Example 1.2.2 (Divisor diagrams).

The positive divisors of 12 are 1,2, 3, 4, 6, 12; the positive divisors of 8§ are
1,2, 4, 8; and the positive divisors of 36 are 1,2,3,4,6,9, 12, 18, 36. In Fig-
ure 1.2.1, we have arranged the divisors so as to show the divisibility relations

1.2.




1.2. PRIMES

among them. There is a path (moving upward only) from a to b if and only ‘

1 can
ifa|b.
In constructing the first diagram in Figure 1.2.1, it is easiest to use the prime |
factorization of 12. Since 12 = 223, we first divide 12 by 2 to get 6 and then
divide again by 2 to get 3. This gives the first side of the diagram, and to
2 construct the opposite side of the diagram we divide each number by 3.
vritten If the number has three different prime factors, then we would need a three-
prime dimensional diagram. (Visualize the factors as if on the edges of a box.) With
nciple more than three distinct prime factors, the diagrams lose their clarity. [
r since
| write
sumed Figure 1.2.1:
and ¢ |
icts of 8 36 |
iction. . | N |
esired 7N 18 12 |
6 4 5 Z N\ /N |
i # \ | 9 6 4
> el 3 2 N/ N\ ¥ \
ssume . A 2 3 ) |
where 1 l N/
n, and 1 J
ome k ‘
mbers
since The following proof, although easy to follow, is an excellent example of the M
austere beauty of mathematics. |'
I
1.2.8 Theorem (Euclid). There exist infinitely many prime numbers.
‘a. If ' Proof. Suppose that there were only finitely many prime numbers, say p1, P2, ' ‘
iction ., Pn. Then consider the number a = p1p2 -+ pp + 1. By Theorem 1.2.7, the
number g has a prime divisor, say p. Now p must be one of the primes we listed, !
so p|(p1p2-- pn), and since p|a, it follows that p|(a — p1p2 «++ pp). Thisis a '
all of contradiction since p cannot be a divisor of 1. [
- ‘ .
sofa Example 1.2.3 (Mersenne numbers). g
I

An integer of the form 2" — 1, forn € 77T, is called a Mersenne number. It
has been conjectured that infinitely many Mersenne numbers are prime. |
Consider the numbers 22 — 1 = 3,23 -1 =7,2 -1 =152 -1 = 31, .
and 26 — 1 = 63. The prime exponents each give rise to a prime, while the
composite exponents each give a composite number. Is this true in general?
Continuing to investigate prime exponents gives 27 —1 = 127, which is




prime, but 2! — 1 = 2047 = 23 - 89. Thus a prime exponent may or may
not yield a prime number.

On the other hand, it is always true that a composite exponent yields a com-
posite number. To prove this, let n be composite, say n = gm (where ¢ and
m are integers greater than 1), and consider 2" — 1 = 29 — 1. We need to
find a nontrivial factorization of 29" — 1 = (29)™ — 1. We can look at this
as x™ — 1, and then we have the familiar factorization

X l=(=DE" T "2+ D).

Substituting x = 29 shows that 29 —1 is a factor of 2" —1. Now 1 < 29—1 <
2" —1 since both g and m are greater than 1, and so we have found a nontrivial
factorization of 2" — 1. O

Example 1.2.4 (2™ — 1,2" — 1) = 1 if and only if (m,n) = 1).

Let m and n be positive integers. We will prove that (2 — 1,27 — 1) = 1 if
and only if (m,n) = 1, for any positive integers m and n.

Comment: Since this statement is “if and only if”, the proof will have two
parts. We first show the “only if” part, since it is shorter.

Proof: Suppose that (m, n) # 1, say (m,n) = d. Then there exist p,q € Z
with m = dg and n = dp. The factorization given in Example 1.2.3 shows
that 2¢ — 1 is a proper nontrivial divisor of both 244 — 1 and 29 — 1, and
therefore (2 —1,2" — 1) # 1.

To prove that (2™ — 1,2" — 1) = 1 if (m,n) = 1, we start by assuming that
(m,n) = 1. Then we can write am + bn = 1 for integers a, b, where we
can assume without loss of generality that ¢ < 0 and & > 0. Then, as in
Example 1.2.3, 2™ — 1 is a factor of 27" — 1, say 274" — 1 = (2™ — 1)s,
and 2" — 1 is a factor of 20" — 1, say 267 — 1 = (2" — 1)t, for positive integers
s,t. Then bn = 1 4+ (—a)m, so

@ -1y = 21 = 2ltCam
= 227%™ —1 = 227"~ 1) +2—1
22" = Ds +1

and therefore # (2" —1)—2s5(2"—1) = 1. This shows that 2" —1,2"—-1) = 1,
and completes the proof. [

The final concept we study in this section is the least common multiple of two
integers. Its definition is parallel to that of the greatest common divisor. We can
characterize it in terms of the prime factorizations of the two numbers, or by the
fact that the product of two numbers is equal to the product of their least common
multiple and greatest common divisor.
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1.2. PRIMES 23

1.2.9 Definition. A positive integer m is called the least common multiple of the
nonzero integers a and b if

(i) m is a multiple of both a and b, and

(ii) any multiple of both a and b is also a multiple of m.
We will use the notation lemla, b] or |a, b] for the least common multiple of a and

b.

When written out in symbols, the definition of the least common multiple looks
like this: m = lem[a, b] if (i) @ |m and b |m, and (i) if a[c and b |c, thenm|c.

There are times, as in next proposition, when it is convenient to allow the prime
factorization of a number to include primes with exponent 0. This leads to a repre-
sentation that is no longer unique, but it is particularly useful to be able to write the
prime factorizations of two different integers in terms of the same primes.

1.2.10 Proposition. Let a and b be positive integers with prime factorizations a =

p1' py> - patand b = pf' pzl82 ---pf", where o > 0 and B; > 0 for all i.

(a) Then a|b ifand only ifo; < Bi fori =1,2,...,n.
(b) For each i, let §; = min{e;, Bi} and b = max{w;, B;}. Then

§1 .68 2
ged(a,b) = pS p%2 - p¥r and lemla,b] = pi'py7 PR

Proof. (a) Suppose that o; < B fori = 1,2,...,n. Lety; = Bi —ay, for
i=1,2,...,n,and setc = p{‘p;'z---p},/” (note that y; > Ofori = 1,2,...,n).

Then

_ oy 00 ay V1 ,Y2 _ a1ty eaty2 a,+
ac = p] p2 "'pn”pl p2 ,__p’);n — pl p2 _.,pnn Yn
_ B B =
— pl p2 ...pg” — b .

Since b = ac, we have a | b.

Conversely, suppose that a |b. Then there exists ¢ € Z such that b = ac.
For any prime p such that p|c, we have p|b, and so p = pj for some j with
1 < j < n. Thus ¢ has a factorization ¢ = pltp)? .- pi", where y; > O for

i =1,2,...,n. Since b = ac, we have

n — n n — + + n n
PP pBr L = T pSe L pn Yt pl2 e pln = p Y g YR ple
where 8; = a; + y; fori = 1,2,...,n. Because y; > 0, we have o; < f; for

i=1,2,...,n.
(b) The proof follows immediately from part (a) and the definitions of the least

common multiple and greatest common divisor. [J



As a corollary of Proposition 1.2.10, it is clear that ged(a, b) - lem[a, b] =
ab. This can also be shown directly from the definitions, as we have noted in
Exercise 19.

For small numbers it is probably easiest to use their prime factorizations to find
their greatest common divisor and least common multiple. It takes a great deal of
work to find the prime factors of a large number, even on a computer making use
of sophisticated algorithms. In contrast, the Euclidean algorithm is much faster, so
its use is more efficient for finding the greatest common divisor of large numbers.

Example 1.2.5.

In the previous section we computed (126, 35). To do this using Proposi-
tion 1.2.10 we need the factorizations 126 = 2! . 32.7! and 35 = 51 . 7!,
We then add terms so that we have the same primes in each case, to get
126 =21.32.50.71 and 35 = 29.39.51 . 71 Thus we obtain (126,35) =
20.30.50.71 = 7and [126,35] = 2! .32.51 .71 = ¢30. O

Example 1.2.6 ((a, b) = 1 if and only if (a2, b2) = 1).

We will give two essentially different proofs that (a,b) = 1 if and only if
(a?,b%) = 1, for any positive integers a, b.

First proof: Proposition 1.2.3 (d) states that (a,bc) = 1 if and only if
(a,b) = 1 and (a,c) = 1. Using ¢ = b gives (a,b*) = 1if and only
if (@,b) = 1. Then a similar argument yields (a2, %) = 1 if and only if
(a,b?) = 1.

Second Proof: Proposition 1.2.10 shows that (a,b) = 1 if and only if a
and b have no prime divisors in common. By Euclid’s Lemma (1.2.5), this
happens if and only if @® and b2 have no prime divisors in common, and this
is equivalent to the statement that (a2, 52) = 1. O

EXERCISES: SECTION 1.2

When proving results in these exercises, we recommend that you first try to use Propo-
sition 1.2.2, Proposition 1.2.3, or Lemma 1.2.5, before trying to use the very powerful
fundamental theorem of arithmetic.

1. Find the prime factorizations of each of the following numbers, and use them to
compute the greatest common divisor and least common multiple of the given pairs

of numbers.
t(a) 35,14
(b) 15,11

CHAPTER 1. INTEGERS
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n[a,b] = 1(c) 252, 180
noted in (d) 7684, 4148
s to find +(e) 6643, 2873
at deal of 2. Use the sieve of Eratosthenes to find all prime numbers less than 200.
at}; lsrigrussg 3.1 For each composite number a, with 4 < a < 20, find all positive numbers less than
lumbe’rs « that are relatively prime to a.

4. Find all positive integers less than 60 and relatively prime to 60.
Hint: Use techniques similar to the sieve of Eratosthenes.

5. Let p; = 2, p» = 3, p3 = 5,... be the sequence of prime numbers, and set

Dsi- ai=p1+1, aa=p1p2+1, az=p1p2p3+ 1,.... What is the least n such
7. that a, is composite?

get

° 6.1 For each of the numbers 9, 15,20,24 and 100, give a diagram of all divisors of the

number, showing the divisibility relationships. (See Example 1.2.2.)

7. For each of the following numbers, give a diagram of all divisors of the number,
showing the divisibility relationships.

(a) 60
y if (b) 1575
8. Let m and n be positive integers such that m +n = 57 and [m, n] = 680. Find m
7 if and n.
n].); 9.%(a) For which n € Z7 is n* — 1 a prime number?
i
/ ¥(b) For which n € Z* is n® + 1 a prime number?
- 1(c) For which n € Z7 is n*> — 1 a prime number?
his 1(d) For which n € Z* is n? + 1 a prime number?
his 10.tProve that n* + 4 is composite if n > 1.
11. Prove that n* + 4" is composite if n > 1.
12. Let a, b be positive integers, and let d = (a,b). Since d |a and d | b, there exist
integers h, k such thata = dh and b = dk. Show that (h, k) = 1.
13. Leta, b, ¢ be positive integers, and letd = (a, b). Since d | a, there exists an integer
ise Propo- h with a = dh. Show thatif a | bc, then k| c.
powerful
14. Show that aZ N bZ = [a, b]Z.
e them to 15. Let a, b be nonzero integers, and let p be a prime. Show thatif p | {a, b], then either
iven pairs plaorp|b.

16. Let a, b, ¢ be nonzero integers. Show that (a,b) = 1 and (a, ¢) = 1if and only if
(a,[b,c]) =L
. Let a, b be nonzero integers. Prove that (a,b) = 1 if and only if (a +b,ab) = 1.
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18.}Let a, b be nonzero integers with (a, b) = 1. Compute (a + b,a — b).

19. Let a and b be positive integers, and let m be an integer such that ab = m(a, b).
Without using the prime factorization theorem, prove that (a,b)[a, b] = ab by ver-
ifying that m satisfies the necessary properties of la, b]

20. A positive integer a is called a square if @ = n? for some n € Z. Show that the

integer @ > 1 is a square if and only if every exponent in its prime factorization is
even.

21. Show that if the posilive integer a is not a square, then a # b2/c2 for integers b, c.
Thus any positive integer that is not a square must have an irrational square root.
Hint: Use Exercise 20 to show that ac® # b2,

22.1Show that if a, b are positive integers such that (a,b) = 1 and ab is a square, then
a and b are also squares.

23. Let p and g be prime numbers. Prove that pq + 1is asquare if and only if p and ¢
are twin primes.

24. A positive integer is called square-free if it is a product of distinct primes. Prove
that every positive integer can be written uniquely as a product of a square and a
square-free integer.

25.1For which n € Z* is n(n + 30) a square?
26. Prove thatif @ > 1, then there is a prime pwitha < p <al+1.
27. Show that for any n > 0, there are n consecutive composite numbers,

28. (a) Show that if 2% is the highest power of 2 that is a factor of any element of the set
{1,2,...,n}, then 2 is the only multiple of 2% in the set.

(b) Show that 1 + % + % + ...+ % is not an integer for n > 2.
29. Show that log 2/ log 3 is not a rational number.

30.3If a, b, ¢ are positive integers such that a? + b2 = ¢2, then (a, b, c) is called a
Pythagorean triple. For example, (3, 4, 5) and (5,12, 13) are Pythagorean triples.

Assume that (a, b, ¢) is a Pythagorean triple in which the only common divisors of
a,b,care +1.

(a) Show that @ and b cannot both be odd.

(b) Assume that a is even. Show that there exist relatively prime integers m and n
such thata = 2mn, b = m? —n?, and ¢ = m? + n2,
Hint: Factor a® = ¢ — b2 after showing that (c 4 b, ¢ — b) =2.
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