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1.3. CONGRUENCES

1.3 Congruences

For many problems involving integers, all of the relevant information is contained
in the remainders obtained by dividing by some fixed integer . Since only 7 differ-
ent remainders are possible (0, 1,...,n — 1), having only a finite number of cases
to deal with can lead to considerable simplifications. For small values of » it even
becomes feasible to use trial-and-error methods.

Example 1.3.1 (Sums of squares).

A famous theorem of Lagrange states that every positive integer can be writ-
ten as sum of four squares. (See the notes at the end of this chapter for a short
discussion of this problem.) To illustrate the use of remainders in solving a
number theoretic problem, we will show that any positive integer whose re-
mainder is 7 when divided by 8 cannot be written as the sum of three squares.
Therefore this theorem of Lagrange is as sharp as possible.

Ifn = a? + b2 + ¢2, then when both sides are divided by 8, the remainders
must be the same. It will follow from Proposition 1.3.3 that we can compute
the remainder of n = a2 4+ b2 + ¢2 by adding the remainders of a2, b, and
¢? (and subtracting a multiple of 8 if necessary). By the same proposition,
we can compute the remainders of a2, b2, and ¢ by squaring the remainders
of a, b, and ¢ (and subtracting a multiple of 8 if necessary). The possible
remainders for a, b, and ¢ are 0, 1, .. ., 7, and squaring and taking remainders
yields only the values 0, 1, and 4. To check the possible remainders for
a? + b% + ¢2 we only need to add together three such terms. (If we get a
sum larger than 7 we subtract 8.) A careful analysis of all of the cases shows
that we cannot obtain 7 as a remainder for a® + b? + ¢. Thus we cannot
express any integer n whose remainder is 7 when divided by 8 in the form
n=a>+b>+c% O

Trial and error techniques similar to those of Example 1.3.1 can sometimes be
used to show that a polynomial equation has no integer solution. For example, if
x = c is a solution of the equation akxk +...+ai1x+ag =0, then akck +...+
ajc + ag must be divisible by every integer n. If some n can be found for which
akxk + ...+ a1x + ag is never divisible by 7, then this can be used to prove that
the equation has no integer solutions. For example, x3 4 x 4+ 1 = 0 has no integer
solutions since ¢ 4+ ¢ + 1 is odd for all integers ¢, and thus is never divisible by 2.

A more familiar situation in which we carry out arithmetic after dividing by
a fixed integer is the addition of hours on a clock (where the fixed integer is 12).
Another example is given by the familiar rules “even plus even is even,” “even
times even is even,” etc., which are useful in other circumstances (where the fixed
integer is 2). Gauss introduced the following congruence notation, which simplifies

computations of this sort.
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1.3.1 Definition. Let n be a positive integer. Integers a and b are said to be congru-
ent modulo n if they have the same remainder when divided by n. This is denoted
by writing a = b (mod n).

If we use the division algorithm to write a = ng + r, where 0 < r < n,
then r = n -0 + r. It follows immediately from the previous definition that a =
r (mod 7). In particular, any integer is congruent modulo » to one of the integers
0,1,2,...,n—1.

We feel that the definition we have given provides the best intuitive understand-
ing of the notion of congruence, but in almost all proofs it will be easiest to use the
characterization given by the next proposition. Using this characterization makes it
possible to utilize the facts about divisibility that we have developed in the preced-
ing sections of this chapter.

1.3.2 Proposition. Let a, b, and n > 0 be integers. Then a = b (mod n) if and
only ifn|(a —b).

Proof. If a = b (mod n), then a and b have the same remainder when divided by
n, so the division algorithm gives a = nq; + r and b = nq, + r. Solving for the
common remainder gives a — nq; = b —ng». Thusa — b = n(q; — g2), and so
n|(a—b).

To prove the converse, assume that n | (@ — b). Then there exists k € Z with
a —b = nk, and hence b = a — nk. If upon applying the division algorithm
wehavea = ng +r,withO < r < n,thenb = a —nk = (nq +r) —nk =
n(g —k) + r. Since 0 < r < n, division of b by n also yields the remainder r.
Hencea = b (mod n). O

When working with congruence modulo 7, the integer » is called the modulus.
By the preceding proposition, a = b (mod #) if and only if a — b = ng for some
integer g. We can write this in the form a = b 4+ ng, for some integer g. This
observation gives a very useful method of replacing a congruence with an equation
(over Z). On the other hand, Proposition 1.3.3 shows that any equation can be
converted to a congruence modulo » by simply changing the = sign to =. In doing
so, any term congruent to 0 can simply be omitted. Thus the equationa = b + nqg
would be converted back to a = b (mod n).

Congruence behaves in many ways like equality. The following properties,
which are obvious from the definition of congruence modulo #, are a case in point.
Let a, b, ¢ be integers. Then

(i) a = a (mod n);
(ii) if a = b (mod n), then b = a (mod »);
(iii) if a = b (mod ) and b = ¢ (mod n), then a = ¢ (mod n).
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The following theorem carries this analogy even further. Perhaps its most
important consequence is that when adding, subtracting, or multiplying congru-
ences you may substitute any congruent integer. For example, to show that 992 =
1 (mod 100), it is easier to substitute —1 for 99 and just show that (—1)% = 1.

1.3.3 Proposition. Let n > 0 be an integer. Then the following conditions hold for
all integers a,b,c,d:

@ Ifa=c (modn)andb = d (mod n), thena + b = ¢ + d (mod n), and
ab = cd (mod n).

() Ifa +c =a+d (modn), then c = d (mod n). If ac = ad (mod n) and
(a,n) =1, then c = d (mod n).

Proof. (a)If a = ¢ (mod n) and b = d (mod n), thenn|(a —c) and n| (b — d).
Adding shows that n | ((a + b) — (¢ + d)), and subtracting shows that n | ((a — b) —
(¢c—=d)). Thusa + b = ¢ + d (mod n).

Since 1| (a —c), we have n | (ab —cb), and then since n | (b — d), we must have
n|(ch —cd). Adding shows that n | (ab — cd) and thus ab = c¢d (mod n).

(b)Ifa+c=a+d (mod n),thenn|((a+c)—(a +d)). Thusn|(c —d)
and so ¢ = d (mod n).

If ac = ad (mod n), then n|(ac — ad), and since (n,a) = 1, it follows from
Proposition 1.2.3 (b) that n | (¢ — d). Thus ¢ = d (mod n). O

The consequences of Proposition 1.3.3 can be summarized as follows.

(i) For any number in the congruence, you can substitute any congruent integer.

(i) You can add or subtract the same integer on both sides of a congruence.

(iii) You can multiply both sides of a congruence by the same integer.

(iv) Canceling, or dividing both sides of a congruence by the same integer, must
be done very carefully. You may divide both sides of a congruence by an integer
a only if (a,n) = 1. For example, 30 = 6 (mod 8), but dividing both sides by
6 gives 5 = 1 (mod 8), which is certainly false. On the other hand, since 3 is
relatively prime to 8, we may divide both sides by 3 to get 10 = 2 (mod 8).

Proposition 1.3.3 shows that the remainder upon division by n of a 4+ b or ab
can be found by adding or multiplying the remainders of a and b when divided by
n and then dividing by » again if necessary. For example, if n = 8§, then 101 has
remainder 5 and 142 has remainder 6 when divided by 8. Thus 101142 = 14,342
has the same remainder as 30 (namely, 6) when divided by 8. Formally, 101 =
5 (mod 8) and 142 = 6 (mod 8), so it follows that 101 - 142 = 5-6 = 6 (mod 8).

As a further example, we compute the powers of 2 modulo 7. Rather than
computing each power and then dividing by 7, we reduce modulo 7 at each stage
of the computations:

22 = 4 (mod 7),
23=222=4.2=1 (mod 7),
24=232=1-2=2(mod 7),
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2> =2%=2.2=4(mod 7).
From the way in which we have done the computations, it is clear that the
powers will repeat. In fact, since there are only finitely many remainders modulo
n, the powers of any integer will eventually begin repeating modulo 7.

1.3.4 Proposition. Let a and n > 1 be integers. There exists an integer b such that
ab =1 (mod n) if and only if (a,n) = 1.

Proof. If there exists an integer b such that ab = 1 (mod rn), then we have
ab = 14 gn for some integer g. This can be rewritten to give a linear combination
of a and n equal to 1, and so (a,n) = 1.

Conversely, if (a,n) = 1, then there exist integers s, ¢ such that sa + tn = 1.
Letting b = s and reducing the equation to a congruence modulo n gives ab =
1 (mod n). O

We are now ready to present a systematic study of linear congruences that in-
volve unknowns. The previous proposition shows that the congruence

ax =1 (mod n)

has a solution if and only if (a,n) = 1. In fact, the proof of the proposition
shows that the solution can be obtained by using the Euclidean algorithm to write
1 = ab + nq for some b, g € Z, since then 1 = ab (mod n).

The next theorem determines all solutions of a linear congruence of the form

ax = b (mod n) .

Of course, if the numbers involved are small, it may be simplest just to use trial
and error. For example, to solve 3x = 2 (mod 5), we only need to substitute
x =0,1,2,3,4. Thus by trial and error we can find the solution x = 4 (mod 5).

In many ways, solving congruences is like solving equations. There are a few
important differences, however. A linear equation over the integers (an equation
of the form ax = b, where a # 0) has at most one solution. On the other hand,
the linear congruence 2x = 2 (mod 4) has the two solutions x = 1 (mod 4) and
x = 3 (mod 4).

For linear equations, it may happen that there is no solution. The same is true
for linear congruences. For example, trial and error shows that the congruence
3x = 2 (mod 6) has no solution. Thus the first step in solving a linear congruence
is to use Theorem 1.3.5 to determine whether or not a solution exists.

We say that two solutions r and s to the congruence ax = b (mod n) are
distinct solutions modulo 7 if r and s are not congruent modulo n. Thus in the
next theorem the statement “d distinct solutions modulo #” means that there are d
solutions 51, 82, ..., 84 such thatif i # j, then s; and s; are not congruent modulo
n. This terminology is necessary in order to understand what we mean by “solving”
the congruence ax = b (mod n). In the next section, we will introduce the concept
of a “congruence class” to clarify the situation.
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1.3.5 Theorem. Let a,b and n > 1 be integers. The congruence ax = b (mod n)
has a solution if and only if b is divisible by d, where d = (a,n). If d |b, then
there are d distinct solutions modulo n, and these solutions are congruent modulo

n/d.

Proof. To prove the first statement, observe that ax = b (mod n) has a solution
if and only if there exist integers s and ¢ such that as = b + ngq, or, equivalently,
as + (—q)n = b. Thus there is a solution if and only if b can be expressed as a
linear combination of a and n. By Theorem 1.1.6 the linear combinations of ¢ and
n are precisely the multiples of d, so there is a solution if and only if d | b.

To prove the second statement, assume that d |b, and let m = n/d. Suppose
that x; and x, are solutions of the congruence ax = b (mod n), giving ax, =
axy (mod n). Then n|a(x; — x2), and so it follows from Proposition 1.2.3 (a) that
n|d(x; —x2). Thus m | (x; — x2), and so x; = x, (mod m). On the other hand, if
x1 = x2 (mod m), then m|(x; — x2), and so n |d(x; — x) since n = dm. Then
since d |a we can conclude that n |a(x; — x2), and so ax; = ax, (mod n).

We can choose the distinct solutions from among the remainders 0, 1, ..., n—I.
Given one such solution, we can find all others in the set by adding multiples of
n/d, giving a total of d distinct solutions. [

We now describe an algorithm for solving linear congruences of the form
ax =b (modn) .

We first compute d = (a,n), and if d | b, then we write the congruence ax =
b (mod n) as an equation ax = b + gn. Since d is a common divisor of a, b, and
n, we can write a = day, b = dby, and n = dm. Thus we get ajx = by + gm,
which yields the congruence

aix = by (mod m) ,

where ay = a/d, by =b/d,andm = n/d.

It follows immediately from Proposition 1.2.10 that since d = (a, n), the num-
bers a1 and m must be relatively prime. Thus by Proposition 1.3.4 we can apply the
Euclidean algorithm to find an integer ¢ such that ca; = 1 (mod m). Multiplying
both sides of the congruence a;x = b; (mod m) by ¢ gives the solution

x = ch; (mod m) .

Finally, since the original congruence was given modulo n, we should give
our answer modulo 7 instead of modulo m. The congruence x = c¢b; (mod m)
can be converted to the equation x = cb; + mk, which yields the solution x =
cby+mk (mod n). The solution modulo m determines d distinct solutions modulo
n. The solutions have the form so + km, where s¢ is any particular solution of
x = byc (mod m) and k is any integer.
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Example 1.3.2 (Homogeneous linear congruences).

In this example we consider the special case of a linear homogeneous con-
gruence
ax =0 (modn) .

In this case there always exists a solution, namely x = 0 (mod »), but this
may not be the only solution modulo 7.

As the first step in the solution we obtain a;x = 0 (mod #n1), where a =
day and n = dn;. Since a; and n; are relatively prime, by part (b) of
Proposition 1.3.3 we can cancel a1, to obtain

n

=0 d ; ithn, = ——.
X (mod n;) with 1y adilla i)

We have d distinct solutions modulo #.

For example, 28x = 0 (mod 48) reduces to x = 0 (mod 12), and x = 0, 12,
24, 36 are the four distinct solutions modulo 48. [

Example 1.3.3.

To solve the congruence
60x = 90 (mod 105) ,

we first note that (60, 105) = 15, and then check that 15| 90, so that there will
indeed be a solution. Dividing the corresponding equation 60x = 90 4 105¢g
by 15, we obtain the equation 4x = 6 + 7¢q, which reduces to the congruence

4x =6 (mod 7) .

To solve this congruence, we need an integer ¢ with ¢ - 4 = 1 (mod 7), so
in effect we must solve another congruence, 4z = 1 (mod 7). We could
use the Euclidean algorithm, but with such a small modulus, trial and error is
quicker, and it is easy to see that ¢ = 2 will work.

We now multiply both sides of the congruence 4x = 6 (mod 7) by 2, to
obtain 8x = 12 (mod 7), which reduces to

x =5 (mod 7).

Writing the solution in the form of an equation, we have x = 5 + 7k, so
x = 54 7k (mod 105). By adding multiples of 7 to the particular solution
Xo = 5, we obtain the solutions ..., —2,5,12,19,.... There are 15 distinct
solutions modulo 105, so we have

x =5,12,19,26,33,40,47,54,61, 68,75, 82, 89, 96, 103 (mod 105) . O
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In the next theorem we show how to solve two simultaneous congruences over
moduli that are relatively prime. The motivation for the proof of the next theorem '
is as follows. Assume that the congruences x = a (mod n) and x = b (mod m)
are given. If we can find integers y and z with

y =1 (mod n) y = 0 (mod m)

z = 0 (mod n) z =1 (mod m)

then x = ay + bz will be a solution to the pair of simultaneous congruences

x = a (mod n) and x = b (mod m). This can be seen by reducing x modulo n
and then modulo m.

1.3.6 Theorem (Chinese Remainder Theorem). Let n and m be positive integers,
with (n,m) = 1. Then the system of congruences

X = a (mod n) x = b (mod m)
has a solution. Moreover, any two solutions are congruent modulo mn.

Proof. Since (n,m) = 1, there exist integers r and s such that rm + sn = 1.
Then rm =1 (mod n) and sn = 1 (mod m). Following the suggestion in the
preceding paragraph, we let x = arm + bsn. Then a direct computation verifies
that x = arm = a (mod n) and x = bsn = b (mod m).

If x is a solution, then adding any multiple of mn is obviously still a solution.
Conversely, if x; and x, are two solutions of the given system of congruences,
then they must be congruent modulo 7 and modulo . Thus X1 — x3 is divisible by

both n and m, so it is divisible by mn since by assumption (n,m) = 1. Therefore J
X1 = x2 (mod mn). O

Example 1.3.4.

The proof of Theorem 1.3.6 actually shows how to solve the given system of |
congruences. For example, if we wish to solve the system

x =7 (mod 8) x = 3 (mod 5)

we first use the Euclidean algorithm to write 2-8 —3 .5 = 1. Then x —=

7(=3)(5) + 3(2)(8) = —57 is a solution, and the general solution is x =
—57 + 40¢. The smallest nonnegative solution is therefore 23, so we have

x =23 (mod 40) . O
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Another proof of the existence of a solution in Theorem 1.3.6 can be given as
follows. In some respects this method of solution is more intuitive and provides a
convenient algorithm for solving the congruences. Given the congruences

x = a (mod n) x = b (mod m)

we can rewrite the first congruence as an equation in the form x = a +gn for some
q € Z. To find a simultaneous solution, we only need to substitute this expression
for x in the second congruence, giving a + gn = b (mod m), or

gn=b—a (modm) .

Since (n,m) = 1, we can solve the congruence nz = 1 (mod m), and using this
solution we can solve for g in the congruence gn = b — a (mod m).

Recall that we converted the first congruence x = a (mod m) to the equation
x = a + gn. Now that we have a value for g, we can substitute, and so this gives
the simultaneous solutions to the two congruences in the form x = a + gn. We
can choose as a particular solution the smallest positive integer in this form. The
general solution is obtained by adding multiples of mn.

Example 1.3.5.

To illustrate the second method of solution, again consider the system
x =7 (mod 8) x =3 (mod 5) .

The first congruence gives us the equation x = 7 4 8¢, and then substituting
we obtain 74-8g = 3 (mod 5), or equivalently, 3¢ = —4 (mod 5). Multiply-
ing by 2, since 2-3 = 1 (mod 5), gives ¢ = —8 (mod 5) or g = 2 (mod 5).
This yields the particular solution x =7 +2-8 =23. O

Example 1.3.6 (Difference of squares).

We will use techniques from this section to prove that if m and n are odd
integers, then m? — n? is divisible by 8. (Compare Example 1.1.7.)

Proof: We need to show that if m and n are odd, then m? — n2 = 0 (mod 8).
Modulo 8, any odd integer is congruent to either +1 or &3, and squaring any
of these four values gives 1 (mod 8). Thus m?—n? = 1—1 = 0 (mod 8). O

Example 1.3.7.

For which positive integers n does a? = 0 (mod n) imply a = 0 (mod n)?

Answer: We will show that a? = 0 (mod ) implies a = 0 (mod #) if and
only if » is not divisible by the square of a prime number.

| )
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First, suppose that # is not divisible by the square of a prime number. Then
by the fundamental theorem of arithmetic we can write 1 = pypy-+- py
for distinct primes py, ps., ..., Pk- Then a? = 0 (mod n) implies n|a?,
and so for each i we have p; |42, and hence pi|a, for each i. Therefore
P1p2--prla,and soa = 0 (mod n).

To prove the converse, we give a proof by contradiction. If p? | n for some

prime number p, then n = p2¢ for some ¢ € Z. Letting a = pr, it follows
that a* = 0 (mod 1) but a % 0 (mod n). O

EXERCISES: SECTION 1.3

1. Solve the following congruences.
T(a) 4x = 1 (mod 7)
(b) 2x = 1 (mod 9)
T(c) 5x =1 (mod 32)
(d) 19x =1 (mod 36)

2. Write n as a sum of four squares for 1 < n < 20.

3. Solve the following congruences.
T(a) 10x = 5 (mod 21)
(b) 10x = 5 (mod 15)
T(c) 10x = 4 (mod 15)
(d) 10x = 4 (mod 14)

4. Solve the following congruence. 20x = 12 (mod 72)
5.7 Solve the following congruence. 25x = 45 (mod 60)

6. Find all integers x such that 3x + 7 is divisible by 11.
Comment: This was Exercise 25 of Section I.1; new techniques are available.

7. The smallest positive solution of the congruence ax = 0 (mod ») is called the

additive order of @ modulo ». Find the additive orders of each of the following
elements, by solving the appropriate congruences.

(a) 8 modulo 12
(b) 7 modulo 12
T(c) 21 modulo 28
(d) 12 modulo 18

8. Prove that if p is a prime number and g is any integer such that p f a, then the
additive order of ¢ modulo p is equal to p.
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9. Prove thatif n > 1 and a > O are integers and d = (a, n), then the additive order of

a modulon isn/d.

10. Let a, b, n be positive integers. Prove thatif a = b (mod n), then (a,n) = (b, n).

11. Show that 7 is a divisor of (6! + 1), 11 is a divisor of (10! + 1), and 19 is a divisor

of (18! + 1).
12. Show that 4 - (n2 4 1) is never divisible by 11.

13. Prove that the sum of the cubes of any three consecutive positive integers is divisible

by 9. (Compare Exercise 24 of Section 1.1.)
14. Find the units digit of 329 4 1112 4 15.

Hint: Choose an appropriate modulus 72, and then reduce modulo 7.
15. Solve the following congruences by trial and error.
t(a) x2 = 1 (mod 16)
(b) x> = 1 (mod 16)
t(c) x* = 1 (mod 16)
(d) x8 = 1 (mod 16)
16. Solve the following congruences by trial and error.
(a) x3 4+ 2x + 2 = 0 (mod 5)
) x* + x>+ x2+x+1=0 (mod 2)
() x* + x + 2x% + 2x = 0 (mod 3)

17. List and solve all quadratic congruences modulo 3. That is, list and solve all con-
gruences of the form ax? 4+ bx + ¢ = 0 (mod 3). The only coefficients you need to

consider are 0, 1, 2.

18. Solve the following system of congruences.

x = 15 (mod 27) x = 16 (mod 20)
19.1 Solve the following system of congruences.
x = 11 (mod 16) x = 18 (mod 25)
20. Solve the following system of congruences.
2x =5 (mod 7) 3x = 4 (mod 8)

Hint: First reduce to the usual form.

21. Solve the following system of congruences.

x = a (mod n) x =b (modn +1)
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> order of 22. Extend the techniques of the Chinese remainder theorem to solve the following sys-
tem of congruences.

(b, n). 2x = 3 (mod 7) x = 4 (mod 6) 5x = 50 (mod 55)

a divisor
23. This exercise extends the Chinese remainder theorem. Let m, n be positive integers,

with (m,n) = d and [m, n] = k. Prove that the system of congruences
divisible x = a (mod n) x = b (mod m)
has a solution if and only if « = b (mod d), and in this case any two solutions are
congruent modulo k.

24. (Casting out nines) Show that the remainder of an integer n when divided by 9 is the
same as the remainder of the sum of its digits when divided by 9.
Hint: For example, 7862 = 7 + 8 + 6 + 2 (mod 9). How you can use the digits of
7862 to express it in terms of powers of 10?
Note: “Casting out nines” is a traditional method for checking a sum of a long
column of large numbers by reducing each of the numbers modulo 9 and checking
the sum modulo 9. This exercise shows that the method is practical, because it
provides a quick algorithm for reducing an integer modulo 9.

25. Find a result similar to casting out nines for the integer 11.
26.3 Prove that the fourth power of an integer can only have 0, 1, 5, or 6 as its units digit.

27. Let p be a prime number and let ¢, b be any integers. Prove that

all con- - ,
| need to (a + b)P =a? + b? (mod p) .

28. Prove that in any Pythagorean triple (a, b, ¢), either a or b is divisible by 3, and one
of a, b, ¢ is divisible by 5.

29. Prove that there exist infinitely many prime numbers of the form 4m + 3 (where m
is an integer).
30.1 An integer of the form F,, = 22" 4 1,forn € Z,n > 0, 1s called a Fermat number.

(a) Show that if m € Z, m > 0, such that 2 + 1 is prime, then m = O or m is a
power of 2.

(b) Show that Fs is divisible by 641, providing a counterexample to Fermat’s belief
that all Fermat numbers are prime.

(c) Show that F,, = 7 (mod 10) forn > 2.

(d) Show that ]—[05"<m F,=F,—2.

(e) Show that (F,, F,;,) = lifn # m.

(f) Use part (e) to give a new proof that there are infinitely many prime numbers.




