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1.4 Integers Modulo »

In working with congruences, we have established that in computations involving
addition, subtraction, and multiplication, we can consider congruent numbers to be
interchangeable. In this section we will formalize this point of view. We will now
consider entire congruence classes as individual entities, and we will work with
these entities much as we do with ordinary numbers. The point of introducing the
notation given below is to allow us to use our experience with ordinary numbers as
a guide to working with congruence classes. Most of the laws of integer arithmetic
hold for the arithmetic of congruence classes. The notable exception is that the
product of two nonzero congruence classes may be zero.

1.4.1 Definition. Let a and n > 0 be integers. The set of all integers which have
the same remainder as a when divided by n is called the congruence class of a
modulo n, and is denoted by [a],,, where

[aln ={x €Z|x =a (modn)}.

The collection of all congruence classes modulo n is called the set of integers
modulo n, denoted by Z.,.

Note that [a], = [b], if and only if a = b (mod n). When the modulus is
clearly understood from the context, the subscript # can be omitted and [a], can be
written simply as [a].

A given congruence class can be denoted in many ways. For example, x =
5 (mod 3) if and only if x = 8 (mod 3), since 5 = 8 (mod 3). This shows
that [5]3 = [8]3. We sometimes say that an element of [aln is a representative
of the congruence class. Each congruence class [a], has a unique nonnegative
representative that is smaller than »n, namely, the remainder when q is divided by
n. This shows that there are exactly n distinct congruence classes modulo 7. For
example, the congruence classes modulo 3 can be represented by 0, 1, and 2.

0]z = {...,-9,—6,-3,0,3,6,9,...}
1z = {..,-8,-5,-2,1,4,7,10,..}
2l = {..,-7,-4,-1,2,5,8,11,...}

Each integer belongs to exactly one congruence class modulo 3, since the remainder
on division by 3 is unique. In general, each integer belongs to a unique congruence
class modulo n. Hence we have

Zn = {[O]Ih[l]n”[n_l]ﬂ}

The set Z; consists of [0], and [1],, where [0] is the set of even numbers and
[1]2 is the set of odd numbers. With the new notation, the familiar rules
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“even + even =even,”  “odd + even =odd” “odd + odd = even”
wolving can be expressed as
s to be
vill now [0 +[0]2 =[0]2,  [1] + [0]2 = [1]2, (1] + [1]2 = [0]>.
rk with o
cing the Similarly,
nbers as “even x even =even,”  “even X odd =even,”  “odd x odd = odd”
tthmetic
that the can be expressed as |
0l [0l = [0l [l [o=[0].  [-[l2=[i. |
ch have These rules can be summarized by giving an addition table and a multiplication I
1ss of a table (Table 1.4.1).
Table 1.4.1: Addition and Multiplication in Z,
ntegers
lulus is
. can be |
e, x = |
' shows To use the addition table, select an element a from the first column, and an
ntative element b from the top row. Read from left to right in the row to which a belongs,
egative until reaching the column to which b belongs. The corresponding entry in the table
ided by is @ + b. In this table, as we will sometimes do elsewhere, we have simplified our
)”' For notation for congruence classes by omitting the subscript in [a],,. l
. A similar addition and multiplication can be introduced in Z,,, for any n. Given
congruence classes in Z,, we add (or multiply) them by picking representatives
of each congruence class. We then add (or multiply) the representatives, and find
the congruence class to which the result belongs. This can be written formally as
follows. |
|
1ainder Addition: [aln + [b]n = [a + bl |
ruence |

Multiplication: [a]n - [b]n = lab]n ’

In Z15, for example, we have [8];2 = [20];, and [10]i2 = [34];5. Adding
congruence classes gives the same answer, no matter which representatives we use:
2rs and [8]12 + [10]12 = [18]12 = [6]12 and also [20]12 + [34]12 = [54]12 = [6]12.
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1.4.2 Proposition. Let n be a positive integer, and let a, b be any integers. Then the
addition and multiplication of congruence classes given below are well-defined:

[aln + [b]ln = [a + bl [a]n - [b]n = [ab]n .

Proof. We must show that the given formulas do not depend on the integers a and
b which have been chosen to represent the congruence classes with which we are
concerned. Suppose that x and y are any other representatives of the congruence
classes [a], and [b],, respectively. Then x = a (mod n) and y = b (mod n), and
so we can apply Proposition 1.3.3. It follows from that proposition that x + y =
a + b (mod n) and xy = ab (mod n), and thus we have [x], + [y], = [a + b]»
and [x], - [¥]n = [ab]n. Since the formulas we have given do not depend on
the particular representatives chosen, we say that addition and multiplication are
“well-defined.” [

The familiar rules for addition and multiplication carry over from the addition
and multiplication of integers. A complete discussion of these rules will be given
in Chapter 5, when we study ring theory. If [a],, [b],, € Z, and [a], + [b]n = [0]n,
then [b], is called an additive inverse of [a],. By Proposition 1.3.3 (b), additive
inverses are unique. We will denote the additive inverse of [a], by —[a],. Itis easy
to see that —[a], is in fact equal to [—a],, since [a], + [—al, = [a —al]n = [0]x.

For any elements [a]y, [b]x, [c]n in Zj, the following laws hold.

Associativity: (laln + [b]n) + [c]n = [aln + ([B]n + [c]n)
(laln « [B]n) - [c]n = [aln - ([]n - [¢]n)

Commutativity: [aln + [B]n = [B]n + [aln

[aln - [bln = [P]n - [aln
Distributivity: [aln - ([b]n + [c]n) = laln - [b]n + [aln - [c]n
Identities: [aly + [0]n = [a]n

[aln - [1]n = [aln
Additive inverses: [aln + [—aln = [0]n

We will give a proof of the distributive law and leave the proofs of the remaining
properties as an exercise. If a, b, ¢ € Z, then

[aln - ((bln + [c]n) = laln-([b+cln) = [a(b + O)]n
= [ab+acly = labln + [acln
= laln - [b]n + [a]n - [c]n -
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The steps in the proof depend on the definitions of addition and multiplication and
the equality a(b + ¢) = ab + ac, which is the distributive law for Z.

Looking ahead.

The preceding remarks on addition and multiplication of congruence
classes will be used in Chapter 3 to show that Z,, is a group, and in
Chapter 5 to show that Zy, is a commutative ring.

In doing computations in Z,, the one point at which particular care must be
taken is the cancellation law, which no longer holds in general. Otherwise, in al-
most all cases your experience with integer arithmetic can be trusted when working
with congruence classes. A quick computation shows that [6]g - [5]s = [6]g - [1]s,
but [5]s # [1]s. It can also happen that the product of nonzero classes is equal to
zero. For example, [6]g - [4]g = [0]s.

1.4.3 Definition. If [a], belongs to Z,, and [a],[b]ln = [0, for some nonzero
congruence class [b]n, then |a], is called a divisor of zero.

If [a], is not a divisor of zero, then in the equation [a],[b], = [a]a[c]n wWe
may cancel [a],, to get [b], = [c],. To see this, if [a],[b], = [aln[cln, then
[aln([b]n — [c]n) = a]n]b — c]n = [0]n, and so [b], — [c], must be zero since [a],
is not a divisor of zero. This shows that [b],, = [c],.

1.4.4 Definition. If [a], belongs to Z,, and [a],[b]n = [1]n, for some congruence
class [b],, then [b), is called a multiplicative inverse of [a], and is denoted by
lal "
In this case, we say that [a]y, is an invertible element of L, or a unit of Z,,.

The next proposition (which is just a restatement of Proposition 1.3.4) shows
that @ has a multiplicative inverse modulo »n if and only if (a,n) = 1. When a
satisfies this condition, it follows from Proposition 1.3.3 (b) that any two solutions
toax = 1 (mod n) are congruent modulo #, and so we are justified in referring to
the multiplicative inverse of [a],, whenever it exists.

In Z7, each nonzero congruence class contains representatives which are rela-
tively prime to 7, and so each nonzero congruence class has a multiplicative inverse.
We can list them as [1];1 = [1]7, [2];1 = [4]7, [3];1 = [5]7, and [6];1 = [6]7.
We did not need to list [4]7! and [5]5! since, in general, if [a],! = [b]x, then
b1, " = [a]n.

From this point on, if the meaning is clear from the context we will omit the
subscript on congruence classes. Using this convention in Z,,, we note that if [a]
has a multiplicative inverse, then it cannot be a divisor of zero, since [a][b] = [0]
implies [b] = [a]~! ([a][5]) = [a]~"[0] = [0].
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1.4.5 Proposition. Let n be a positive integer:

(a) The congruence class [a], has a multiplicative inverse in Zy, if and only if
(a,n) =1

(b) A nonzero element of Z,, either has a multiplicative inverse or is a divisor
of zero.

Proof. (a) If [a] has a multiplicative inverse, say [a]~! = [b], then [a][b] = [1].
Therefore ab = 1 (mod n), which implies that ab = 1 + gn for some integer g.
Thus ab + (—¢)n = 1,and so (a,n) = 1.

Conversely, if (a, n) = 1, then there exist integers b and ¢ such that ab +gn =
1. Reducing modulo n shows that ab = 1 (mod 1), and so [b] = [a] ™.

(b) Assume that a represents a nonzero congruence class, so that n fa. If
(a,n) = 1, then [a] has a multiplicative inverse. If not, then (a,n) = d, where
1 < d < n. Inthis case, since d | n and d | a, we can find integers k, b withn = kd
and a = bd. Then [k] is a nonzero clement of Zj, but

lallk] = [ak] = [bdk] = [bn] = [0],
which shows that [a] is a divisor of zero. O
1.4.6 Corollary. The following conditions on the modulus n > 0 are equivalent.
(1) The number n is prime.

(2) Z,, has no divisors of zero, except [0],.
(3) Every nonzero element of L, has a multiplicative inverse.

Proof. Since n is prime if and only if every positive integer less than 7 is relatively
prime to n, Corollary 1.4.6 follows from Proposition 1.4.5. [

The proof of Proposition [.4.5 (a) shows that if (a,n) = 1, then the multiplica-
tive inverse of [a] can be computed by using the Euclidean algorithm.

Example 1.4.1.

For example, to find [11]7! in Z;¢ using the matrix form of the Euclidean al-
gorithm (see the discussion preceding Example 1.1.5) we have the following

computation:
1 -1 5 "y
0 1 11

1 -1 5 - 11 —16 0
-2 31 —2 31 '

Thus 16(=2) 4 11 -3 = 1, which shows that [11]7] = [3]16.

Nu——|
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When the numbers are small, as in this case, it is often easier to use trial
and crror. The positive integers less than 16 and relatively prime to 16 are
1.3.5.7.9, 11, 13, 15. It is easier to use the representatives 1, &3, &35, £7
since if [a][b] = [1], then [—a][—b] = [1], and so [—a]™! = —[a]™". Now
we observe that 3.5 = 15 = —1 (mod 16), so 3(—5) = 1 (mod 16). Thus
B3l7d = [-5li6 = [11]16 and [-3]73 = [5]16. Finally, 7-7 = 1 (mod 16),
so [717¢ = [The and [-7]7g = [=Tlie = [9l1e- O

Another way to find the inverse of an element [a] € Zy is to take successive
powers of [a]. If (a,n) = 1, then [a] is not a zero divisor, and so no power of
[a] can be zero. We let [a]® = [1]. The set of powers [1], [a], [a12, [a]?; .-
must contain fewer than 2 distinct elements, so after some point there must be a
repetition. Suppose that the first repetition occurs for the exponent 1, say [a]™ =
[a)¥, with k < m. Then [a)"* = [a]° = [1] since we can cancel [a] from both
sides a total of k times. This shows that for the first repetition we must have had
k = 0, so actually [a]™ = [1]. From this we can see that [a]”! = [a)™ .

Example 1.4.2.

To find [11]7¢, we can list the powers of [11]16. We have [1 12 = [-5] =
[9], [11]® = [11]*[11] = [99] = [3], and [11]* = [11P[11] = [33] = [1].
Thus again we see that [11]7¢ = [3]16. O

As for integers, we will say that the congruence class [b] € Z, is a multiple of
[a] € Z, if [b] = [ma] for some m € Z. The next example looks at multiples in
Z,,, and implies that if (a, ) = 1, then every element in Zy, is a multiple of [a].

Example 1.4.3 (Sets of multiples).

We will show that if 0 < @ < n, with (a,n) = d, then the multiples of [a] in
Z,, are just the multiples of [d] in Z,.

Proof: Let 0 < a < n, with (a,n) = d, and suppose that a = kd. Then for
any integer m we have [ma] = [(mk)d], showing that every multiple of [¢]
is a multiple of [d].

On the other hand, let [md] be a multiple of [d]. We can write d = sa+tn for
some integers s, 7, 50 [md] = [m(sa + tn)] = [(ms)a] + [(mi)n] = [(ms)a)
since [(m1)n] = [0]. Thus every multiple of [d] is also a multiple of [a]. O

We are now ready to continue our study of equations in Z,. A linear congruence
of the form ax = b (mod n) can be viewed as a linear equation [al,[x], = [bln
in Z,. If [a], has a multiplicative inverse, then there is a unique congruence class
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[x]n = [a],'[b], that is the solution to the equation. Without the notation for
congruence classes we would need to modify the statement regarding uniqueness
to say that if x is a solution of ax = b (mod n), then so is xo + g n, for any integer
q.

It is considerably harder to solve nonlinear congruences of the form akxk +
...+ ax +ap = 0 (mod n), where ay,...,ap € Z. It can be shown that
in solving congruences modulo n of degree greater than or equal to 1, the problem
reduces to solving congruences modulo p“ for the prime factors of n. This question
is usually addressed in a course on elementary number theory, where the Chinese
remainder theorem is used to show how to determine the solutions modulo a prime
power p% (for integers « > 2) from the solutions modulo p. Then to determine
the solutions modulo p we can proceed by trial and error, simply substituting each
of 0,1,..., p — 1 into the congruence. Fermat’s theorem (Corollary 1.4.12) can be
used to reduce the problem to considering polynomials of degree at most p — 1.

We will prove this theorem of Fermat as a special case of a more general the-
orem due to Euler. Another proof will also be given in Section 3.2, which takes
advantage of the concepts we will have developed by then. The statement of Eu-
ler’s theorem involves a function of paramount importance in number theory and
algebra, which we now introduce.

1.4.7 Definition. Let n be a positive integer. The number of positive integers less
than or equal to n which are relatively prime to n will be denoted by ¢p(n). This
Sfunction is called Euler’s p-function, or the totient function.

In Section 1.2 we gave a procedure for listing the positive integers less than n
and relatively prime to n. However, in many cases we only need to determine the
numerical value of ¢(n), without actually listing the numbers themselves. With the
formula in Proposition 1.4.8, ¢(n) can be given in terms of the prime factorization
of n. Note that ¢(1) = 1.

1.4.8 Proposition. If the prime factorization of n is n = py' p3?--- pi¥, where
a; >0forl <i <k, then

r=efi-2) (-2 (-5

Proof. See Exercises 19, 31, and 32. A proof of this result will also be presented
in Section 3.5. I
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Example 1.4.4.

Using the formula in Proposition 1.4.8, we have

p(10) =10 (%) (%) =4 and ©(36) = 36 (%) (%) =12. 0

1.4.9 Definition. The set of units of Zy, the congruence classes [a] such that
(a,n) = 1, will be denoted by Z,,.

1.4.10 Proposition. The set Z, of units of Zy is closed under multiplication.

Proof. This can be shown either by using Proposition 1.2.3 (d) or by using the
formula ([a][p])~! = [p]"!a]™!. O

The number of elements of Z) is given by ¢(n). The next theorem should be
viewed as a result on powers of elements in Z);, although it is phrased in the more
familiar congruence notation.

1.4.11 Theorem (Euler). If (a,n) = 1, then a®®™ =1 (mod n).

Proof. In the set Zj, there are (n) congruence classes which are represented by
an integer relatively prime to n. Let these representatives be ai, ..., dg(n). For
the given integer @, consider the congruence classes represented by the products
aay,...,ady). By Proposition 1.3.3 (b) these are all distinct because (a,n) = 1.
Since each of the products is still relatively prime to n, we must have a representa-
tive from each of the ¢(n) congruence classes we started with. Therefore

ayaz - Ayp) = (aar)(aaz) - (aaym)) = a“’(”)alaz---aq,(n) (mod n).

Since the product aj - -+ @) is relatively prime to n, we can cancel it in the con-
gruence

aiaz---agp) = a‘ﬂ(n)alaz ©Ag(n) (l’l’lOd I’l),

and so we have a®?®™ =1 (mod n). O

1.4.12 Corollary (Fermat). If p is a prime number, then for any integer a we have
a? = a (mod p).
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Proof. If p|a, then trivially a? = a = 0 (mod p). If p fa, then (a, p) = 1 and
Euler’s theorem gives a??) = 1 (mod p). Then since ¢(p) = p — 1, we have
a? =a (mod p). O

It is instructive to include another proof of Fermat’s “little” theorem, one that
does not depend on Euler’s theorem. Expanding (a + b)? we obtain
p(p—1)

(a+ b)? =a® + pa® b+ —ﬁ—al’—zb2 + ...+ pabP™! 4 bP,

For k # 0,k # p, each of the coefficients

p!
kli(p —k)!

is an integer and has p as a factor, since p is a divisor of the numerator but not the
denominator. Therefore

(a + b)? = a? + b? (mod p) .
Using induction, this can be extended to more terms, giving (@ + b + ¢)? =
a®? + b? + cP (mod p), etc. Writing a as (1 + 1 + ... + 1) shows that

a?P = +14+...+ 1D =17+ ...+ 17 = a (mod p).

Example 1.4.5.

Note that if (a,n) = 1, then the multiplicative inverse of [a], can be given
explicitly as [a]£™ ™", since by Euler’s theorem, a - a?™~1 = 1 (mod n).
Note also that for a given n the exponent ¢(n) in Euler’s theorem may not
be the smallest exponent possible. For example, in Zg the integers 1, £3
are relatively prime to 8, and Euler’s theorem states that a* = 1 (mod 8) for

each of these integers. In fact, a> = 1 (mod 8) fora = +1,+3. O

EXERCISES: SECTION 1.4

1. Make addition and multiplication tables for the following sets.
(a) Z3
(b) Z4
1(¢) Z12
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Make multiplication tables for the following sets.

(@) Zs

(b Z7

(c)Zs

Find the multiplicative inverses of the given elements (if possible).
T(a) [14] in Zy5

(b) [38] in Zs3
t(c) [351] in Zeeso

(d) [91] in Zys65

Let a and b be integers.

(a) Prove that [a], = [b], if and only if a = b (mod n).

(b) Prove that either [a], N [b], = @ or [a], = [b]a.

Prove that each congruence class [a], in Z, has a unique representative r that satis-
fiesO<r <n.

Let m,n € Z* such that m |n. Show that for any integer a, the congruence class
[@]m is the union of the congruence classes [al,, [a+m]y, [a+2m],, ..., [a+rn—m],.

Prove that the associative and commutative laws hold for addition and multiplication
of congruence classes, as defined in Proposition 1.4.2.

Use Proposition 1.3.3 (b) to show that if [b] and [c] are both multiplicative inverses
of [a] in Z,, then b = ¢ (mod n).

Let (a,n) = 1. The smallest positive integer k such that a¥ =1 (mod n) is called
the multiplicative order of [a] in Z);.

t(a) Find the multiplicative orders of [5] and [7] in Z4.
(b) Find the multiplicative orders of [2] and [5} in Z7;.

. Let (a,n) = 1. If [a] has multiplicative order k in Z), show that k | ¢(n).
. Letn € Z withn > 1. Show thatn /2" — 1.

F1In Z3 each element is equal to a power of [2]. (Verify this.) Can you find a congru-

ence class in Zg such that each element of Zg is equal to some power of that class?
Answer the same question for Z7.

Generalizing Exercise 12, we say that the set of units Z; of Z,, is cyclic if it has an
element of multiplicative order ¢(n). Show that Z7, and Z7, are cyclic, but Z7, is
not.

14.1Show that Z7, is cyclic.

Hint: Just use trial and error. (It is known that if p is prime, then Z;, is cyclic.)
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16.

17.

18.

20.
21.

22.

23.
24.

25.
26.
27.

28.

29.

. Prove that if (m,n) = 1, then n®m 4 e = | (mod mn).

CHAPTER 1. INTEGERS

15. An element [a] of Z, is said to be idempotent if [a]? = [a].

1 (a) Find all idempotent elements of Zg and Z1 .

(b) Find all idempotent elements of Zg and Zsp.

If p is a prime number, show that [0] and [1] are the only idempotent elements in
Zy.

If n is not a prime power, show that Z,, has an idempotent element different from [0]
and [1].

Hint: Suppose that n = bc, with (b,c) = 1. Solve the simultaneous congruences
x = 1 (mod b) and x = 0 (mod c).

An element [a] of Z, is said to be nilpotent if [a]* = [0] for some k. Show that
7., has no nonzero nilpotent elements if and only if # has no factor that is a square
(except 1).

19.} Using the formula for ¢(n), compute ¢(27), ¢(81), and ¢(p®), where p is a prime

number. Give a proof that the formula for ¢(n) is valid when n = p%, where pis a
prime number.

Show that if @ and b are positive integers such that a | b, then ¢(a) | ¢(b).

Show that ¢(1) + @(p) + ... + @(p®) = p* for any prime number p and any
positive integer «.

Show that if n > 2, then ¢(n) is even.
For n = 12 show that Zdln @{(d) = n. Do the same for n = 18.

Show that if # > 1, then the sum of all positive integers less than n and relatively
prime to 1 is ng(n)/2. Thatis, g cs<p. @m=14 = np(n)/2.

Show that if p is a prime number, then the congruence x? = 1 (mod p) has only
the solutions x = | and x = —1.

Let a, b be integers, and let p be a prime number of the form p = 2k + 1. Show
that if p fa and a = b? (mod p), then a¥ = 1 (mod p).

Let p = 2k + 1 be a prime number. Show that if a is an integer such that p [ a, then
either ¥ = 1 (mod p) or a* = —1 (mod p).

Prove Wilson’s theorem, which states that if p is a prime number, then (p — 1)! =
—1 (mod p).

Hint: [(p — 1)1] is the product of all elements of Z. Pair each clement with its
inverse, and use Exercise 25. For three special cases see Exercise 11 of Section 1.3.

(a) Prove the converse of Wilson’s theorem.

(b) Show that if m is composite and i > 4, then (m — 1)! = 0 (mod m).
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31.;Prove that if m, n are positive integers with (m, ) = 1, then @(mn) = p(m)p(n).
Hint: Use the Chinese remainder theorem to show that each pair of elements [a],
and [b],, (in Zy, and Z,, respectively) corresponds to a unique element [x], in Zipy .
Then show that under this correspondence, [a] and [b] are units if and only if [x] is
a unit.

32.1 Use Exercise 19 and Exercise 31 to prove Proposition 1.4.8.

33. (a) Find all integers n > 1 such that ¢(n) = n/2.
(b) Find all integers n > 1 such that ¢(n) = ¢(2n).

34. (a) Find all integers n > 1 such that ¢(n) = 2.
(b) Find all integers n > 1 such that ¢(n) = 12.

Notes

The prime numbers are the basic the basic building blocks in number theory, since
every positive integer can be written (essentially uniquely) as a product of prime
numbers. (If you are reading this before studying the chapter, perhaps we need to
remind you that an integer p > 1 is called prime if its only positive divisors are 1
and p.) Euclid considered primes and proved that there are infinitely many. When
we look at the sequence of primes

2,3,5,7, 11, 13, 17, 19, 23, 29, 31, ...

we observe that except for 2, all primes are odd. Any two odd primes on the list
must differ by at least 2, but certain pairs of “twin primes” that differ by the minimal
amount 2 do appear, for example,

(3,5), (5,7), (11,13), (17,19), (29,31), (41,43),....

Are there infinitely many “twin prime” pairs? The answer to this seemingly inno-
cent question is unknown.

Although any positive integer is a product of primes, what about sums? Another
open question is attributed to Christian Goldbach (1690-1764). He asked whether
every even integer greater than 2 can be written as the sum of two primes. (Since
the sum of two odd primes is even, the only way to write an odd integer as a sum of
two primes is to use an odd prime added to 2. That means that the only odd primes
that can be represented as a sum of two primes are the ones that occur as the larger
prime in a pair of “twin primes.”) We invite you to experiment in writing some
even integers as sums of two primes.

A beautiful theorem proved by Joseph Louis Lagrange (1736-1813) in 1770
states that every positive integer can be written as the sum of four squares (where
an integer of the form n? is called a square). Could we get by with fewer than
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four squares? The answer is no; try representing 7 as a sum of three squares. This
naturally leads to the question of which positive integers can be written as the sum
of three squares. The answer is that n can be written as a sum of three squares if and
only if 2 is not of the form 4" (8k + 7), where m, k are any nonnegative integers.
This theorem was first correctly proved by Gauss and appears in his famous book
Disquisitiones Arithmeticae (1801).

This raises the question of which positive integers can be written as the sum
of two squares. The answer in this case is slightly more complicated. It is that
n can be written as the sum of two squares if and only if when we factor n as a
product of primes, all those primes that give a remainder of 3 upon division by 4
have even exponents. The first published proof of this fact (dating from 1749) is
due to Leonhard Euler (1707—1783). Around 1640 Pierre de Fermat (1601-1665)
had stated, without proof, all three of these theorems on the representation of n as
a sum of squares.

Our fourth and final topic deals with another statement of Fermat, usually
known as “Fermat’s last theorem.” The ancient Greeks (the Pythagoreans, in partic-
ular) knew that certain triples (x, y, z) of nonzero integers can satisfy the equation

X2+y2=22,

for example,
(3,4,5), (5,12,13), (8,15,17), (7,24,25),... .

(See Exercise 30 of Section 1.2.) Fermat considered a generalization of this equa-
tion, and asked whether for any integer n > 2 there exists a triple (x, y, z) such
that
x4yt =2".

In the margin of his copy of a number theory text he stated that he had a wonderful
proof that there exists no such triple for n > 3, but he went on to say that the margin
was not wide enough to write it out. His assertion dates from 1637, and mathemati-
cians have spent the last 350 years searching for a proof! Finally, in 1993, Andrew
Wiles announced that he had completed the proof of “Fermat’s last theorem.” A
gap was found in his initial proof, but within a year, Wiles, with the assistance of
Richard Taylor, found a way to complete the proof. A long paper by Wiles, together
with a shorter one by Taylor and Wiles, fill the May, 1995 issue of the Annals of
Mathematics. This proof will stand as one of the major accomplishments of our
time.

Fermat is clearly the first truly modern number theorist, and he deserves much
of the credit for the subject as we know it today. Another important milestone
in modern number theory is Gauss’s Disquisitiones Arithmeticae, which changed
number theory from a “hodge-podge” of results into a coherent subject. The mate-
rial on congruences in Section 1.3 first appeared there, and contributed much to the
systematic organization of number theory.
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