Math 151

1.

Practice problems for Test 3 - Solutions

2 — 2
22 +2 ’ x° +3z+1
x° + 223
—223 + 3z
—2x% — Ax

Tr +1
So the quotient is ¢(x) = 2 — 2z and the remainder is r(z) = 7x + 1.

2. f(z) = 2° 4+ 4a* + 62% + 622 + br + 2, g(x) = 2* + 32 + 32 + 6.

3.

d.

(a) Using the Euclidean algorithm (modulo 7), we have:
25 + dxt + 623 + 622 + 5z + 2 = (2 + 32% + 3z + 6) (v + 4) + (323 + 52? + x + 6)
2t +32% +3r 4+ 6 = (32 + 52 + x4+ 6)(bx + 1)
Therefore the monic polynomial that is a multiple of 323 + 522 4+ = + 6 is the ged
of f and g. To get a monic polynomial, multiply 323 + 52> + z + 6 by 5 (the
multiplicative inverse of 3 modulo 7):
d(x) = 23 + 42* + bx + 2.

(b) 32% + 522 + 2+ 6 = (2° + 42 + 623 + 62% + 51 + 2) — (2 + 32% + 3z + 6)(z + 4)
Rewrite with a plus:
32% + 522 + 1 + 6 = (2° + 4z + 623 + 622 + 5z + 2) + (z* + 32% + 3z + 6)(6x + 3)
Multiply both sides by 5:
234402+ 5042 = (2% + 42t + 623 + 622 + 5r +2) -5+ (at + 322 + 32 +6)(2x + 1)
Therefore a(z) =5 and b(z) = 2z + 1.

Using the Euclidean algorithm (modulo 5), we have:
?4+r+l=(@+4)(*+2+2)+3

3=(@+z+1)—(z+4)(2* +2+2)

3= +z+1)+ (z+4)(—2*>—2—2)

3=(*+z+1)+ (v +4)(42? + 42 + 3)

Now multiply both sides by 2 (the multiplicative inverse of 3 modulo 5, so that to get
1 on the left): 1= (2*+z+1)2+ (z +4)(322 + 3z + 1)

Thus we have (x +4)(322 + 3z +1) =1 (mod 2° + x + 1), so [z + 4] 1 = 32% + 3z + 1.

Since a rational root of a* + 42 4+ 8z + 32 = 0 must be of the form £ where r[32 and
s|1, the possible roots are +1, £2, +4, +£8 +16, and +32. But notice that since all the
coefficients are positive, a root cannot be positive. An easy check gives that —1 is not a
root, but —2 is a root (16 —4-8 —8-2+ 32 = 0). Therefore the polynomial is divisible
by x + 2. Long division gives: z* + 42 4+ 8z + 32 = (z + 2)(2® 4+ 22* — 4z + 16). Now
we have to find all roots of 23 + 22? — 42 + 16. Possible roots are —2, —4, —8, and —16.
—2 is not a root, but —4 is a root (—64 + 32 + 16 + 16 = 0). Therefore we can divide
by x +4: 2% + 22% — 42 + 16 = (z + 4)(2* — 2 + 4). Finally, since 22 — 2z + 4 has no
rational roots, the original polynomial has no other roots.

over Z: x® — 2 is irreducible because it has no integer roots
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over Q: still irreducible because it has no rational roots either
over R: (1’ — \3/§> <x2 +V2x + \%_l)
Now use the quadratic formula to find the roots of z? + 2 + /4:

over C: (:L‘—%) (x—f—%) (x—f—M)

over Zs: 0 is not a root; 1 is not a root; 2 is a root, so divide by z — 2 (or equivalently,
x4+ 1) over Zz: 23 — 2= (z+1)(2®> — 2z + 1). Now, 22 — x + 1 also has a root, namely,
2 again. So divide by z — 2 = x + 1 again, get 2? + 2z + 1 = (z + 1)%. Therefore
3 — 2= (x+1)3 over Zs.

Another way: 22 —2=23+1=(z+1)(2* —z+1)=(z+1)(2*+ 22+ 1) = (x +1)?
(mod 3).

. First list all the polynomials of degree 3 over Zj,. Since a polynomial of degree 3 is
irreducible if and only if it has no roots, we check whether or not each of our polynomials
has a root:

22 has a root, x = 0

2%+ 1 has aroot, z = 1

23 4+ x has a root, x = 0 (moreover, x = 1 is also a root, but we don’t need that)

22 + x + 1 has no roots

23 + 2% has a root, z = 0 (also z = 1)

2% + 2% + 1 has no roots

2% + 2% 4+ 2 has a root, z = 0

2+ 22+ 2+ 1hasaroot, z =1

So only z® + 2 + 1 and 2% 4+ 2? + 1 have no roots and therefore are irreducible.

. The prime p = 5 divides all the coefficients of 32*+302—60 except the leading coefficient,
and p? does not divide the free term. Therefore by Eisenstein’s criterion, this polynomial
is irreducible over Q.

. First of all, let’s list all the elements of the given set so that we see what we are working
with. Since each coefficient (a and b) can be either 0 or 1, we have 4 elements: 0 + 04,
0+ 1z, 1 4+ 0z, and 1 + 14, or, for simplicity, just 0, 7, 1, and 1 + 7. Addition and
multiplication are defined as for complex numbers, but the results are reduced modulo
2.

It is a commutative ring: it is easy to check that associativity, commutativity, and
distributivity hold, the additive identity is 0, the multiplicative identity is 1, the additive
inverse of each element is that element itself.

Zs(7) is not an integral domain because e.g. (1+4)(1+¢) = 0 while 1 +4 # 0. It is not
a field because every field is an integral domain.

. An element (r,s) of R@® S is a unit (i.e. an invertible element) if and only if r is a unit
in R and s is a unit in S. Similarly for the sum of three rings.

(a) Zg has 2 units: 1 and 5.
Zsg has 4 units: 1, 3, 5, and 7.
Therefore Zg ® Zg has 8 units: (1,1), (1,3), (1,5), (1,7), (5,1), (5,3), (5,5), (5,7).

(b) Units in Z are +1, thus Z & Z & Z has 8 units: (£1,+1,+£1).



10.

11.

(c) Since R is a field, every nonzero element is a unit. Thus R @ R has infinitely many
units, namely all elements of the form (a,b) where both a and b are nonzero.

(a) Let ¢ : Z — R be a ring homomorphism. Then ¢(0) = 0 (by Proposition 5.2.3)
and ¢(1) = 1 (by definition). We will prove by Mathematical Induction that for
any n € N, ¢(n) = n. The basis step was established above. For the inductive
step, assume ¢(n) = n for a certain n € N. Then ¢(n+1) = ¢(n) + ¢(1) =n+ 1.
Next, for any n € Z, n < 0, we have —n > 0, so by proposition 5.2.3 ¢(n) =
d(—(—n)) = —¢(—n) = —(—n) = n. Thus we have ¢p(n) = n for all n € Z.

(b) Since Z is countable and R is not, there are no bijections from Z to R, hence there
are no isomorphisms.

(a) v/5 is algebraic over Q because it is a root of z* — 5 = 0.

(b) v/5 + 1 is algebraic over Q because it is a root of (z — 1)* —5 = 0.

(c) e is transcendental (i.e. not algebraic) over Q as mentioned after Definition 6.1.1
on page 283, however, the proof is beyond this class.

(d) We will prove that e 4 1 is transcendental over Q by contradiction. Suppose it is
algebraic, then let p(z) be a polynomial over Q such that p(e + 1) = 0. Consider
the polynomial ¢(z) = p(x 4+ 1). Then ¢(e) = p(e + 1) = 0, so e is algebraic over
Q. However, we know that this is false.



