Section 5.1

8(a) If f is increasing on [a,b] and $P = \{x_0, \ldots, x_n\}$ is any partition of [a,b], prove that $\sum_{j=1}^{n} (M_j(f) - m_j(f))(x_j - x_{j-1}) \leq (f(b) - f(a))||P||.$

We need two observations. (1) For each $j, x_j - x_{j-1} \le ||P||$.

(2) For each j, $M_j(f) = m_{j+1}(f)$ since f is increasing.

Then
$$\sum_{j=1}^{n} (M_j(f) - m_j(f))(x_j - x_{j-1}) \le \sum_{j=1}^{n} (M_j(f) - m_j(f))||P|| = \left(\sum_{j=1}^{n} (M_j(f) - m_j(f))\right)||P||$$

 $= (M_n(f) - m_n(f) + M_{n-1}(f) - m_{n-1}(f) + \dots + M_2(f) - m_2(f) + M_1(f) - m_1(f))||P||$
 $= (M_n(f) - m_1(f))||P|| = (f(b) - f(a))||P||.$

8(b) Prove that if f is mononotone on [a, b], then f is integrable on [a, b].

Case I. f is increasing.

Since f is increasing, it is bounded on [a,b]. Let $\varepsilon > 0$ be given, then choose a partition P such that $||P|| \le \frac{\varepsilon}{f(b) - f(a)}$ (if f(b) - f(a) = 0, choose any partition P). Then

$$U(f,P) - L(f,P) = \sum_{j=1}^{n} (M_j(f) - m_j(f))(x_j - x_{j-1}) \le (f(b) - f(a))||P|| < \varepsilon.$$

Case II. f is decreasing.

Then -f is increasing. By above, -f is integrable, therefore f = -(-f) is integrable.

- 9 Let f be bounded on a nondegenerate interval [a,b]. Prove that f is integrable on [a,b] if and only if given $\varepsilon>0$ there is a partition P_ε of [a,b] such that $P\supset P_\varepsilon$ implies $|U(f,P)-L(f,P)|<\varepsilon$.
- (⇒) If f is integrable then for any $\varepsilon > 0$ there exists a partition P_{ε} such that $U(f, P_{\varepsilon}) L(f, P_{\varepsilon}) < \varepsilon$. Then for any refinement P of P_{ε} we have $L(f, P_{\varepsilon}) \leq L(f, P) \leq U(f, P) \leq U(f, P_{\varepsilon})$, therefore $|U(f, P) L(f, P)| \leq |U(f, P_{\varepsilon}) L(f, P_{\varepsilon})| < \varepsilon$.
- (\Leftarrow) If for any $\varepsilon > 0$ there is a partition P_{ε} of [a,b] such that $P \supset P_{\varepsilon}$ implies $|U(f,P)-L(f,P)| < \varepsilon$, then since P_{ε} is a refinement of itself, we have $|U(f,P_{\varepsilon})-L(f,P_{\varepsilon})| < \varepsilon$, therefore f is integrable.

Section 5.2

1 Using the connection between integrals and area, evaluate each of the following integrals.

(a)
$$\int_{0}^{1} |x - 0.5| dx = A_{1} + A_{2} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

$$y$$

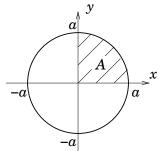
$$A_{1}$$

$$A_{2}$$

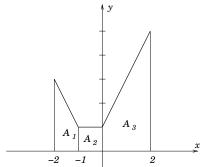
$$0.5$$

$$1$$

(b)
$$(a > 0)$$
 $\int_0^a \sqrt{a^2 - x^2} dx = A = \frac{1}{4}\pi a^2$

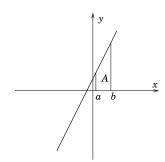


(c)
$$\int_{-2}^{2} (|x+1|+|x|)dx = A_1 + A_2 + A_3 = \frac{1}{2}(3+1) \cdot 1 + 1 + \frac{1}{2}(1+5) \cdot 2 = 2 + 1 + 6 = 9$$



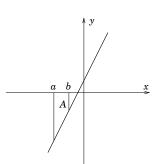
$$(d) (a < b) \int_a^b (3x+1)dx$$

Case I.
$$a \ge -\frac{1}{3}$$
.



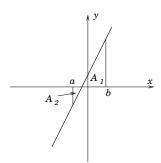
$$\int_{a}^{b} (3x+1)dx = A = \frac{1}{2}(3a+1+3b+1)(b-a) = \frac{3}{2}(b^{2}-a^{2}) + (b-a)$$

Case II. $b \leq -\frac{1}{3}$.



$$\int_{a}^{b} (3x+1)dx = -A = \frac{1}{2}(-3a-1-3b-1)(b-a) = \frac{3}{2}(b^{2}-a^{2}) + (b-a)$$

Case III. $a < -\frac{1}{3} < b$.



$$\int_{a}^{b} (3x+1)dx = A_{1} - A_{2} = \frac{1}{2}(3b+1)\left(b+\frac{1}{3}\right) - \frac{1}{2}(-3a-1)\left(-\frac{1}{3}-a\right) = \frac{3}{2}(b^{2}-a^{2}) + (b-a)$$

4 Suppose that a < b < c and f is integrable on [a,c]. Prove that $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx.$

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{a}^{b} f(x)dx$$

By theorem 5.20,
$$\int_a^c f(x)dx = \int_a^b f(x)dx + \int_b^c f(x)dx$$
, therefore
$$\int_a^b f(x)dx = \int_a^c f(x)dx - \int_b^c f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx.$$