
Math 171 Solutions to homework problems Spring 2005

Section 2.1
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6(a) Suppose that {xn} and {yn} converge to the same point. Prove that xn−yn → 0
as n → ∞.

Suppose that {xn} and {yn} converge to a. Then for any ε > 0, choose N1 such that ∀n ≥ N1,

|xn − a| <
ε

2
, and choose N2 such that ∀n ≥ N2, |yn − a| <

ε

2
. Let N = max(N1, N2). Then

∀n ≥ N we have

|xn − yn| = |xn − a + a − yn| ≤ |xn − a| + |a − yn| = |xn − a| + |yn − a| <
ε

2
+

ε

2
= ε.

6(b) Prove that the sequence {n} does not converge.

Suppose that the sequence {n} converges. Every convergent sequence is bounded. Then {n} is
bounded, i.e. there exists a real number M such that for any n ∈ N, −M < n < M . However,
by Archimedean principle, for any real number M there exists a natural number n such that
n > M . Contradiction. Therefore our assumption that {n} converges was false.

6(c) Show that the converse of part (a) is false.

The converse of (a) is: if {xn} and {yn} are sequences such that xn − yn → 0 as n → ∞ then
{xn} and {yn} converge to the same point.

Counterexample: Let xn = yn = n, then xn − yn = 0 → 0, but the sequences {xn} and {yn}
do not converge.

7(a) Let a be a fixed real number and define {xn = a} for n ∈ N. Prove that the
“constant” sequence xn converges. (b) What does {xn} converge to?

The constant sequence is a, a, a, . . .. We guess that this sequence converges to a. Proof:

given ε > 0, let N = 1. Then ∀n ≥ N we have |xn − a| = |a − a| = 0 < ε. So lim
n→∞

xn = a.

Section 2.2

5 Prove that given x ∈ R there is a sequence rn ∈ Q such that rn → x as n → ∞.

By the density of rationals theorem, for any n ∈ N there exists a rational number rn such that

x −
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n
. (That is, for each n ∈ N we choose such a rational number rn, and so

we get a sequence {rn}.) Since lim
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3 Prove that if {xn} and {yn} are convergent real sequences such that yn 6= 0 and

lim
n→∞

yn 6= 0, then lim
n→∞

xn

yn

=
limn→∞ xn

limn→∞ yn

.
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yn = y. First we will prove that lim
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Let N = max(N1, N2). Then ∀n ≥ N we have
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Another approach is to show that lim
n→∞

(xny − xyn) = 0 and
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9 Interpret a decimal expansion 0.a1a2 . . . as 0.a1a2 . . . = lim
n→∞

n
∑

k=1

ak

10k
.

Prove that (a) 0.5 = 0.4999 . . . and (b) 1 = 0.999 . . ..

The limit on the right is the limit of the following sequence:
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which is the infinite decimal 0.a1a2a3a4 . . ..

(a) If a1 = 4 and ak = 9 for k ≥ 2, we have
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(b) 0.9999 . . . = lim
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