
Math 171 Solutions to homework problems Spring 2005

Section 4.1

1(b) For f(x) =
1

x
, a 6= 0, use Definition 4.1 directly to prove that f ′(a) exists.

f ′(a) = lim
h→0

1
a+h

− 1
a

h
= lim

h→0

(

a−(a+h)
a(a+h)

)

h
= lim

h→0

−h

ha(a + h)
= lim

h→0

−1

a(a + h)
= −

1

a2

3 Let I be an open interval, f : I → R, and c ∈ I. The function f is said to have a
local maximum at c if and only if there is a δ > 0 such that f(c) ≥ f(x) holds for all

|x − c| < δ. (a) If f has a local maximum at c, prove that
f(c + h) − f(c)

h
≤ 0

and
f(c + H) − f(c)

H
≥ 0 for h > 0 and H < 0 sufficiently small.

Since f has a local maximum at c, f(c) ≥ f(c + h) for h sufficiently small. Therefore

f(c + h) − f(c) ≤ 0. For h > 0, we have
f(c + h) − f(c)

h
≤ 0.

Also, we can write f(c) ≥ f(c + H) for H sufficiently small. Therefore f(c + H) − f(c) ≤ 0.

For H < 0, we have
f(c + H) − f(c)

H
≥ 0.

3(b) If f is differentiable and has a local maximum at c, prove that f ′(c) = 0.

Since f is differentiable, f ′(c) = lim
h→0

f(c + h) − f(c)

h
exists. Therefore lim

h→0+

f(c + h) − f(c)

h

and lim
H→0−

f(c + H) − f(c)

H
exist and are equal. By the comparison theorem, part (a) implies

that lim
h→0+

f(c + h) − f(c)

h
≤ 0 and lim

H→0−

f(c + H) − f(c)

H
≥ 0. Since these two limits must be

equal, they are both equal to 0. Thus f ′(c) = 0.

3(c) Make and prove analogous statements for local minima.

Definition. Let I be an open interval, f : I → R, and c ∈ I. The function f is said to have a
local minimum at c if and only if there is a δ > 0 such that f(c) ≤ f(x) holds for all |x− c| < δ.

Statement a. If f has a local minimum at c, then
f(c + h) − f(c)

h
≥ 0 and

f(c + H) − f(c)

H
≤ 0

for h > 0 and H < 0 sufficiently small.
Statement b. If f is differentiable and has a local minimum at c, then f ′(c) = 0.

Proof of a. Since f has a local minimum at c, f(c) ≤ f(c+h) for h sufficiently small. Therefore

f(c + h) − f(c) ≥ 0. For h > 0, we have
f(c + h) − f(c)

h
≥ 0.

Also, we can write f(c) ≤ f(c + H) for H sufficiently small. Therefore f(c + H) − f(c) ≥ 0.

For H < 0, we have
f(c + H) − f(c)

H
≤ 0.

Proof of b. Since f is differentiable, lim
h→0

f(c + h) − f(c)

h
exists. Therefore lim

h→0+

f(c + h) − f(c)

h

and lim
H→0−

f(c + H) − f(c)

H
exist and are equal. By the comparison theorem, part (a) implies

that lim
h→0+

f(c + h) − f(c)

h
≥ 0 and lim

H→0−

f(c + H) − f(c)

H
≤ 0. Since these two limits must be

equal, they are both equal to 0. Thus f ′(c) = 0.
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3(d) Show by example that the converses of the statements in parts (b) and (c) are
false. Namely, find an f such that f ′(0) = 0 but f has neither a local maximum nor
a local minimum at 0.

Let f(x) = x3. Then f ′(x) = 3x2, so f ′(0) = 0. However, f(x) is positive for positive x, and
f(x) is negative for negative x, so f(x) has neither a local maximum nor a local minimum at 0.

Section 4.2

1(d) Let f(x) = |x3 + 2x2 − x− 2|. Find all x for which f ′(x) exists and find a formula
for f ′.

Let p(x) = x3 + 2x2 − x − 2, then f(x) = |p(x)| =

{

p(x) if p(x) ≥ 0
−p(x) if p(x) < 0

.

So we need to find the intevals where p(x) is positive and intervals where it is negative.

p(x) = (x3 + 2x2)− (x + 2) = x2(x + 2)− (x + 2) = (x2 − 1)(x + 2) = (x − 1)(x + 1)(x + 2), so
p(x) = 0 at −2, −1, and 1. Then it is easy to check that it is positive on (−2,−1) and (1, +∞),
and negative on (−∞,−2) and (−1, 1).

Since p′(x) = 3x2 + 4x − 1 and −p′(x) = −3x2 − 4x + 1, we have

f ′(x) =

{

p′(x) if p(x) > 0
−p′(x) if p(x) < 0

=

{

3x2 + 4x − 1 if x ∈ (−2,−1) ∪ (1, +∞)
−3x2 − 4x + 1 if x ∈ (−∞,−2) ∪ (−1, 1)

Note: since p′(x) 6= −p′(x) at −2, −1, and 1, we conclude that f ′(x) does not exist at these
points. (Sketch graphs of p(x) and f(x)!)

5 Suppose that f is differentiable at a and f(a) 6= 0.
(a) Show that for h sufficiently small, f(a + h) 6= 0.

Since f(x) is differentiable at a, it is continuous at a.

If f(a) > 0, by the sign-preserving property f(x) > 0 for x sufficiently close to a, i.e. f(a+h) >

0 for h sufficiently small.

If f(a) < 0, consider g(x) = −f(x). Then g(x) is continuous at a and g(a) > 0. So by the
sign-preserving property, g(a + h) > 0 for h sufficiently small. Therefore f(a + h) < 0 for h

sufficiently small.

5(b) Using Definition 4.1 directly, prove that
1

f(x)
is differentiable at x = a and

(

1

f

)

′

(a) = −
f ′(a)

f2(a)
.

(

1

f

)

′

(a) = lim
h→0

1
f(a+h) −

1
f(a)

h
= lim

h→0

(

f(a)−f(a+h)
f(a)f(a+h)

)

h
= lim

h→0

f(a) − f(a + h)

hf(a)f(a + h)

= − lim
h→0

(

f(a + h) − f(a)

h
·

1

f(a)f(a + h)

)

= −f ′(a) ·
1

f2(a)
= −

f ′(a)

f2(a)

6 Use Exercise 5 and the Product Rule to prove the Quotient Rule.
(

f

g

)

′

(a) =

(

f ·
1

g

)

′

(a) = f ′(a) ·
1

g(a)
+ f(a)

(

1

g

)

′

(a) = f ′(a) ·
1

g(a)
−

f(a)g′(a)

g2(a)

=
f ′(a)g(a) − f(a)g′(a)

g2(a)
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