
Math 171 Solutions to homework problems Spring 2005

Section 4.3

1(b) Evaluate the limit if it exists: lim
x→0+

cosx − ex

log(1 + x2)
.

Since lim
x→0+

cosx − ex = lim
x→0+

log(1 + x2) = 0, we can use L’Hospital’s Rule:

lim
x→0+

cosx − ex

log(1 + x2)
= lim

x→0+

(cosx − ex)′

(log(1 + x2))′
= lim

x→0+

− sinx − ex

(

2x

1+x
2

) = lim
x→0+

−(sin x + ex)(1 + x2)

2x
=

−∞

4(a) Using (ex)′ = ex, (log x)′ =
1

x
, and xα = eα log x, show that (xα)′ = αxα−1 for all

x > 0.

(xα)′ =
(

(

elog x

)α

)

′

=
(

eα log x

)′

= eα log x · α

x
= xα · α

x
= αxα−1

6 Let f be differentiable on a nonempty, open interval (a, b) with f ′ bounded on
(a, b). Prove that f is uniformly continuous on (a, b).

Let |f ′| ≤ M for some M > 0. Let ε > 0 be given. Set δ =
ε

M
. Then by the Mean Value

Theorem for any x1 < x2 in (a, b) such that |x2 − x1| < δ there exists c ∈ (x1, x2) such that

f ′(c) =
f(x2) − f(x1)

x2 − x1

. Therefore |f(x2) − f(x1)| = |f ′(c)| · |x2 − x1| < M · δ = M · ε

M
= ε.

8 Let f be twice differentiable on (a, b) and let there be points x1 < x2 < x3 in (a, b)
such that f(x1) > f(x2) and f(x3) > f(x2). Prove that there is a point c ∈ (a, b) such
that f ′′(c) > 0.

Since x1 < x2 and f(x1) > f(x2), by the Mean Value Theorem there exists a point a ∈ (x1, x2)

such that f ′(a) =
f(x2) − f(x1)

x2 − x1

< 0.

Since x2 < x3 and f(x3) > f(x2), by the Mean Value Theorem there exists a point b ∈ (x2, x3)

such that f ′(b) =
f(x3) − f(x2)

x3 − x2

> 0.

Then by the Mean Value Theorem (applied to f ′(x)) there exists a point c ∈ (a, b) such that

f ′′(c) =
f ′(b) − f ′(a)

b − a
> 0.

Section 4.4

1(b) Find all a ∈ R such that ax2 +3x+5 is strictly increasing on the interval (1, 2).

Let f(x) = ax2 + 3x + 5. Then f ′(x) = 2ax + 3 is continuous. If f ′(x) is negative at some
number, it is negative on some open interval, and then by the increasing/decreasing test, f(x)
is decreasing on that interval. Therefore if f(x) = ax2 + 3x + 5 is strictly increasing then
f ′(x) ≥ 0 on (1, 2). So 2ax + 3 ≥ 0 on (1, 2). Since f ′(x) = 2ax + 3 is continuous, f ′(2) ≥ 0.

So we have 4a + 3 ≥ 0, so a ≥ −3

4
.

Conversely, if a ≥ −3

4
, then 2ax + 3 > 0 on (1, 2), and then f(x) is strictly increasing on

(1, 2).
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Another solution (not using calculus): if a = 0, then f(x) = 3x + 5 is strictly increasing
everywhere.

If a 6= 0, then the graph of this function is a parabola. If a > 0 then the parabola opens
upward, and if a < 0 then the parabola opens downward. Recall that the vertex of the

parabola y = ax2 + bx + c has x-coordinate − b

2a
, so for our function it is − 3

2a
. Now,

f(x) = ax2 + 3x + 5 is strictly increasing on (1, 2) if either a > 0 and − 3

2a
≤ 1 (i.e. the vertex

of the parabola is to the left of the interval), or a < 0 and − 3

2a
≥ 2 (i.e. the vertex of the

parabola is to the right of the interval). Solving these inequalities, and adding the solution

a = 0, gives

[

−3

4
, +∞

)

.

2 Let f and g be 1-1 and continuous on R. If f(0) = 2, g(1) = 2, f ′(0) = π, and
g′(1) = e, compute the following derivatives.
(a) (f−1)′(2).

(f−1)′(2) =
1

f ′(f−1(2))
=

1

f ′(0)
=

1

π
.

(b) (g−1)′(2).

(g−1)′(2) =
1

g′(g−1(2))
=

1

g′(1)
=

1

e
.

(c) (f−1 · g−1)′(2).

(f−1 · g−1)′(2) = f−1(2)(g−1)′(2) + (f−1)′(2)g−1(2) = 0 · 1

e
+

1

π
· 1 =

1

π
.

4 Using the Inverse Function Theorem, prove that (arcsinx)′ =
1√

1 − x2
for

x ∈ (−1, 1) and (arctanx)′ =
1

1 + x2
for x ∈ (−∞,∞).

Since arcsinx = sin−1 x, arcsin−1 x = sin x, so by the Inverse Function Theorem

(arcsinx)′ =
1

sin′(arcsinx)
=

1

cos(arcsinx)
.

Let y = arcsinx, then sin y = x, sin2 y = x2, cos2 y = 1−sin2 y = 1−x2, so cos y = ±
√

1 − x2.

Since −π

2
≤ arcsinx = y ≤ π

2
, cos y ≥ 0, so cos y =

√

1 − x2.

Thus cos(arcsinx) = cos y =
√

1 − x2, and (arcsinx)′ =
1√

1 − x2
.

Similarly for arctanx: (arctanx)′ =
1

tan′(arctanx)
=

1

sec2(arctanx)
.

Let y = arctanx, then tan y = x, sec2 y = 1 + tan2 y = 1 + x2. Then (arctanx)′ =
1

1 + x2
.
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