
Math 171 Solutions to homework problems Spring 2005

Section 5.1

1(c) For f(x) = x2−x, compute U(f, P ), L(f, P ), and

∫

1

0

f(x)dx, where P =

{

0,
2

5
,
1

2
,
3

5
, 1

}

.

Find out whether the lower sum or the upper sum is a better approximation to
the integral. Graph f and explain why this is so.

2/5 1/2 3/5 1

y

x

U(f, P ) = f(0)
2

5
+ f

(

2

5

)

1

10
+ f

(

3

5

)

1

10
+ f(1)

2

5
= −0.048.

L(f, P ) = f

(

2

5

)

2

5
+ f

(

1

2

)

1

10
+ f

(

1

2

)

1

10
+ f

(

3

5

)

2

5
= −0.242.

∫

1

0

f(x)dx =

(

x3

3
−

x2

2

)∣

∣

∣

∣

1

0

=
1

3
−

1

2
= −

1

6
= −0.16.

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

2/5 1/2 3/5 1

y

x

L(f,P)
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U(f,P)

The lower sum is a better approximation. We see from the graphs that the function is concave
upward, and so for each subinterval, the difference between the area of the lower approximating
rectangle and the area of the region above the curve is less than the difference between the area
of the upper approximating rectangle and the area of the region above the curve.

2(c(β)) Let Pn =

{

j

n
: j = 0, 1, . . . , n

}

. Use Exercise 1, p. 17, to find formulas for

the upper and lower sums of f(x) = x2 on Pn, and use them to compute the value

of

∫

1

0

f(x)dx.

U(f, Pn) =

n
∑

i=1

f

(

i

n

)

1

n
=

n
∑

i=1

i2

n3
=

1

n3

n
∑

i=1

i2 =
n(n + 1)(2n + 1)

6n3
=

(n + 1)(2n + 1)

6n2
.

L(f, Pn) =

n
∑

i=1

f

(

i − 1

n

)

1

n
=

n
∑

i=1

(i − 1)2

n3
=

1

n3

n
∑

i=1

(i − 1)2 =
1

n3

n−1
∑

i=0

i2 =
(n − 1)n(2n− 1)

6n3

=
(n − 1)(2n − 1)

6n2
.

lim
n→∞

U(f, Pn) = lim
n→∞

(n + 1)(2n + 1)

6n2
= lim

n→∞

(1 + 1

n
)(2 + 1

n
)

6
=

2

6
=

1

3
.

1



lim
n→∞

L(f, Pn) = lim
n→∞

(n − 1)(2n − 1)

6n2
= lim

n→∞

(1 − 1

n
)(2 − 1

n
)

6
=

2

6
=

1

3
.

Since lim
n→∞

U(f, Pn) = lim
n→∞

L(f, Pn) =
1

3
,

∫

1

0

f(x)dx =
1

3
.

4 Suppose that [a, b] is a closed, nondegenerate interval and f : [a, b] → R is bounded.

(a) Prove that if f is continuous at x0 ∈ [a, b] and f(x0) 6= 0, then (L)

∫

b

a

|f(x)|dx > 0.

Since f(x0) 6= 0, |f(x0)| > 0, and by the sign-preserving property there exist δ > 0 and
ε > 0 such that |f(x)| > ε for x ∈ (x0 − δ, x0 + δ). Let P be a partition such that one of its
subintervals is contained in (x0−δ, x0+δ). Then the area of the lower approximating rectangle
over that subinterval is positive, and the areas of all other lower approximating rectangles is

nonnegative, therefore the lower Riemann sum over P is positive. Then (L)

∫ b

a

|f(x)|dx > 0.

(b) Show that if f is continuous on [a, b], then

∫

b

a

|f(x)|dx = 0 if and only if f(x) = 0

for all x ∈ [a, b].

(⇒) If there exists x0 ∈ [a, b] such that f(x0) 6= 0 then by part (a) (L)

∫ b

a

|f(x)|dx > 0, and

therefore

∫

b

a

|f(x)|dx 6= 0.

(⇐) If f(x) = 0 for all x then

∫

b

a

|f(x)|dx =

∫

b

a

0 = 0.

(c) Does part (b) hold if the absolute values are removed? If it does, prove it. If
it does not, provide a counterexample.

No. Counterexample:

∫

1

−1

xdx = 0 but f(x) = x 6= 0.

7(a) Prove that (U)

∫ b

a

(f(x) + g(x))dx ≤ (U)

∫ b

a

f(x)dx + (U)

∫ b

a

g(x)dx and

(L)

∫

b

a

(f(x) + g(x))dx ≤ (L)

∫

b

a

f(x)dx + (L)

∫

b

a

g(x)dx.

Let P be any partition. Then for each subinterval and for all x in that subinterval,
(f + g)(x) = f(x) + g(x) ≤ Mi(f) + Mi(g), therefore Mi(f + g) ≤ Mi(f) + Mi(g). Multiplying
both sides of this inequality by (xi − xi−1) and taking the sum over i from 1 to n gives U(f +
g, P ) ≤ U(f, P ) + U(g, P ). Taking inf of both sides over P gives the first inequality.

Similarly, (f + g)(x) = f(x) + g(x) ≥ mi(f) + mi(g), therefore mi(f + g) ≥ mi(f) + mi(g).
Multiplying both sides of this inequality by (xi − xi−1) and taking the sum over i from 1 to
n gives L(f + g, P ) ≥ L(f, P ) + L(g, P ). Taking sup of both sides over P gives the second
inequality.
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