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Test 1 - Solutions
February 28, 2005

. Give the definition of a Cauchy sequence. A sequence {x,} is called Cauchy if for any
€ > 0 there exists N € N such that for any n,m > N, |z, — x| < €.

. State the Well-ordering Principle. Every nonempty subset of N has a least element.

. State and prove the Approximation Property for Suprema.

Let E be a subset of R that has a supremum. Then for any € > 0 there exists a € E such that
sup E—e<a< sup E.

Proof. Suppose that the statement is false, i.e. there exists an € > 0 such that no point a € E
satisfies sup E—e < a < sup E. Then for alla € E, a < sup E —¢e. Then sup E — € is an

upper bound of E. Since any upper bound of E is greater than or equal to sup E, sup E—¢e >
sup E, so 0> €. This contradicts to the statement that € > 0.

. Let f: R — R be given by f(z) = (z + 1) — 3 and let E = (—3,0]. Find f(FE) and f~1(E).
(Explain how you find these!)

Sketch the graph of f(x). Actually, it is convenient to have two separate graphs, and show E
on the x-azis in order to find f(E), and show E on the y-axis in order to find f~(E):
y y

From the above graphs, we see that
f(E)={y e Rly = f(x) for some x € E} =[-3,1), and

FUE) ={z e R|f(x) =y for some y € E} = [r1,—1) U (—1,72] where v and s are the roots
of the equation (z +1)? — 3 = 0. Solving this equation gives: (x +1)2 =3, 2 +1 = +/3, so0
r=—V3—1ands=+/3—1. Therefore we have f 1 (E) = [-v/3 —1,-1)U (=1,v/3 - 1].

. Prove that for allm € N, 14+2+3+.. +(n—2)+(n—1)+n+(n—1)+(n—2)+.. +3+2+1=n2.
Proof by induction. Basis step: if n = 1, the formula becomes 1 = 12 which is true.

Inductive step. Assume the formula holds for n =k, i.e.
142434+...+(k=-2)+(k—-1)+k+(k—-1)+(k—2)+...+3+2+1=Fk"
We want to show that the formula holds forn =k +1, i.e.

14243+ 4+ k-1 +k+k+1)+k+(k—-1)+...+3+2+1=(k+1)%

Adding (k + 1) + k to both sides of
142434+...+(k=2)+(k—-1)+k+(k—-1)+(k—2)+...+3+2+1=Fk?

we have:

14243+...+k-2)+Gk-1)+k+k+1)+E+k-1)+(k—-2)+...+34+2+1=
P+ k+1)+k=k+2k+1=(k+1)%



6. (For extra credit, 10 points) Prove or disprove each of the following statements:
(a) If lim f(x) = L then lim |f(x)| = |L|.

This statement is true.

If L = 0, then for any € > 0 there exists 6 > 0 such that 0 < |z — a| < ¢ implies
|f(z) — 0] <€, which implies || f(x)| — 0| <€, so lim |f(z)| = 0.

L
Now consider L # 0. Given € > 0, let e = min | €, % . Since lim f(z) = L, there

exists 0 > 0 such that 0 < |x —a| < 0 implies |f(x) —L| < €1, i.e. L—e1 < f(x) < L+e.
L

Since €1 < |—2|, the numbers L — €1, L, and L 4 €1 are either all positive or all negative.

Case I. The numbers L — €1, L, and L + €1 are all positive. Then f(x) is also positive

for 0 < |x —a| < 6, and we have |L| — €1 < |f(x)| < |L|+ €1. Since e1 < €, we have

|L| — e < |f(z)] < |L|+e. Therefore lim |f(z)| = |L]|.

Case II. The numbers L — €1, L, and L+ €1 are all negative. Then f(x) is also negative
for 0 < |z —a| < §, and we have —|L| — e1 < —|f(z)| < —|L| + €1 which implies
|L] —e1 < |f(x)] < |L| + €1. Again, since €1 < €, we have |L| —e < |f(x)| < |L| + €.
Therefore lim |f(x)| = |L|.
(b) If lim |f(z)| = |L| then lim f(x) =L or lim f(z) = —L.
. , ) |1 if x is rational
This statement is false. Counterexample: let f(z) = { Z1, ifx is irrational

Then lin%) |f(z)| = lin%l =1, but lin}) f(z) does not exist.



