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1. Give the definition of a Cauchy sequence. A sequence {xn} is called Cauchy if for any

ε > 0 there exists N ∈ N such that for any n, m ≥ N , |xn − xm| < ε.

2. State the Well-ordering Principle. Every nonempty subset of N has a least element.

3. State and prove the Approximation Property for Suprema.

Let E be a subset of R that has a supremum. Then for any ε > 0 there exists a ∈ E such that

sup E − ε < a ≤ sup E.

Proof. Suppose that the statement is false, i.e. there exists an ε > 0 such that no point a ∈ E

satisfies sup E − ε < a ≤ sup E. Then for all a ∈ E, a ≤ sup E − ε. Then sup E − ε is an

upper bound of E. Since any upper bound of E is greater than or equal to sup E, sup E − ε ≥
sup E, so 0 ≥ ε. This contradicts to the statement that ε > 0.

4. Let f : R → R be given by f(x) = (x + 1)2 − 3 and let E = (−3, 0]. Find f(E) and f−1(E).
(Explain how you find these!)

Sketch the graph of f(x). Actually, it is convenient to have two separate graphs, and show E

on the x-axis in order to find f(E), and show E on the y-axis in order to find f−1(E):
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From the above graphs, we see that

f(E) = {y ∈ R|y = f(x) for some x ∈ E} = [−3, 1), and

f−1(E) = {x ∈ R|f(x) = y for some y ∈ E} = [r1,−1) ∪ (−1, r2] where r and s are the roots

of the equation (x + 1)2 − 3 = 0. Solving this equation gives: (x + 1)2 = 3, x + 1 = ±
√

3, so

r = −
√

3 − 1 and s =
√

3 − 1. Therefore we have f−1(E) = [−
√

3 − 1,−1) ∪ (−1,
√

3 − 1].

5. Prove that for all n ∈ N, 1+2+3+. . .+(n−2)+(n−1)+n+(n−1)+(n−2)+. . .+3+2+1 = n2.

Proof by induction. Basis step: if n = 1, the formula becomes 1 = 12 which is true.

Inductive step. Assume the formula holds for n = k, i.e.

1 + 2 + 3 + . . . + (k − 2) + (k − 1) + k + (k − 1) + (k − 2) + . . . + 3 + 2 + 1 = k2.

We want to show that the formula holds for n = k + 1, i.e.

1 + 2 + 3 + . . . + (k − 1) + k + (k + 1) + k + (k − 1) + . . . + 3 + 2 + 1 = (k + 1)2.

Adding (k + 1) + k to both sides of

1 + 2 + 3 + . . . + (k − 2) + (k − 1) + k + (k − 1) + (k − 2) + . . . + 3 + 2 + 1 = k2,

we have:

1 + 2 + 3 + . . . + (k − 2) + (k − 1) + k + (k + 1) + k + (k − 1) + (k − 2) + . . . + 3 + 2 + 1 =
k2 + (k + 1) + k = k2 + 2k + 1 = (k + 1)2.



6. (For extra credit, 10 points) Prove or disprove each of the following statements:

(a) If lim
x→a

f(x) = L then lim
x→a

|f(x)| = |L|.
This statement is true.

If L = 0, then for any ε > 0 there exists δ > 0 such that 0 < |x − a| < δ implies

|f(x) − 0| < ε, which implies ||f(x)| − 0| < ε, so lim
x→a

|f(x)| = 0.

Now consider L 6= 0. Given ε > 0, let ε1 = min

(

ε,
|L|
2

)

. Since lim
x→a

f(x) = L, there

exists δ > 0 such that 0 < |x−a| < δ implies |f(x)−L| < ε1, i.e. L−ε1 < f(x) < L+ε1.

Since ε1 ≤ |L|
2

, the numbers L− ε1, L, and L + ε1 are either all positive or all negative.

Case I. The numbers L − ε1, L, and L + ε1 are all positive. Then f(x) is also positive

for 0 < |x − a| < δ, and we have |L| − ε1 < |f(x)| < |L| + ε1. Since ε1 ≤ ε, we have

|L| − ε < |f(x)| < |L| + ε. Therefore lim
x→a

|f(x)| = |L|.
Case II. The numbers L− ε1, L, and L + ε1 are all negative. Then f(x) is also negative

for 0 < |x − a| < δ, and we have −|L| − ε1 < −|f(x)| < −|L| + ε1 which implies

|L| − ε1 < |f(x)| < |L| + ε1. Again, since ε1 ≤ ε, we have |L| − ε < |f(x)| < |L| + ε.

Therefore lim
x→a

|f(x)| = |L|.

(b) If lim
x→a

|f(x)| = |L| then lim
x→a

f(x) = L or lim
x→a

f(x) = −L.

This statement is false. Counterexample: let f(x) =

{

1, if x is rational

−1, if x is irrational

Then lim
x→0

|f(x)| = lim
x→0

1 = 1, but lim
x→0

f(x) does not exist.


