MATH 171 Test 2 - Solutions April 8, 2005

1. Give the definition of $\lim_{x \to \infty} f(x) = L$.

Let f be defined on some interval $(c, +\infty)$. We say that $\lim_{x\to\infty} f(x) = L$ if for any $\varepsilon > 0$ there exists an $M \in \mathbb{R}$ such that x > M implies $|f(x) - L| < \varepsilon$.

2. State Rolle's theorem.

Let a < b. If f(x) is continuous on [a,b] and differentiable on (a,b), and f(a) = f(b), then there exists a point $c \in (a,b)$ such that f'(c) = 0.

3. State and prove the sign-preserving property.

Let I be an open (nondegenerate) interval. If f(x) is continuous at a point $a \in I$ and f(a) > 0, then there exist positive numbers ε and δ such that for $x \in I$, $|x - a| < \delta$ implies $f(x) > \varepsilon$.

Proof. Let $\varepsilon = \frac{f(a)}{2}$. Since f(x) is continuous at a, there exists $\delta > 0$ such that $|x - a| < \delta$ implies $|f(x) - f(a)| < \varepsilon$. Then $|f(x) - f(a)| < \frac{f(a)}{2}$, so $-\frac{f(a)}{2} < f(x) - f(a) < \frac{f(a)}{2}$. Adding f(a) gives $\frac{f(a)}{2} < f(x) < \frac{3f(a)}{2}$, so we have $f(x) > \frac{f(a)}{2} = \varepsilon$.

4. Find all $a \in \mathbb{R}$ such that $f(x) = \frac{ax+2}{x+1}$ is strictly increasing on (1,2).

$$f'(x) = \frac{a(x+1) - (ax+2)}{(x+1)^2} = \frac{a-2}{(x+1)^2}$$

If f(x) is strictly increasing then $f'(x) \ge 0$, so we have $a - 2 \ge 0$, or $a \ge 2$.

If a > 2 then we have f'(x) > 0, so f(x) is strictly increasing in its domain (which contains the interval (1,2)).

If
$$a = 2$$
, $f(x) = \frac{2x+2}{x+1} = 2$ is not strictly increasing
Answer: $a > 2$.

- 5. Let f(x) and g(x) be uniformly continuous on \mathbb{R} . Prove that (f+g)(x) is uniformly continuous on \mathbb{R} .
 - Let $\varepsilon > 0$.

Since f(x) is uniformly continuous on \mathbb{R} , there exists $\delta_1 > 0$ such that for any $x_1, x_2 \in \mathbb{R}$, $|x_1 - x_2| < \delta_1$ implies $|f(x_1) - f(x_2)| < \frac{\varepsilon}{2}$.

Since g(x) is uniformly continuous on \mathbb{R} , there exists $\delta_2 > 0$ such that for any $x_1, x_2 \in \mathbb{R}$, $|x_1 - x_2| < \delta_2$ implies $|g(x_1) - g(x_2)| < \frac{\varepsilon}{2}$.

Let
$$\delta = \min(\delta_1, \delta_2)$$
. Then for any $x_1, x_2 \in \mathbb{R}$ such that $|x_1 - x_2| < \delta$ we have
 $|(f+g)(x_1) - (f+g)(x_2)| = |f(x_1) + g(x_1) - f(x_2) - g(x_2)| = |f(x_1) - f(x_2) + g(x_1) - g(x_2)|$
 $\leq |f(x_1) - f(x_2)| + |g(x_1) - g(x_2)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$
Thus $(f+g)(x)$ is uniformly continuous on \mathbb{R} .

6. Prove or disprove each of the following statements:

- (a) If a function is continuously differentiable on \mathbb{R} then it is twice differentiable on \mathbb{R} . The statement is false. Let $f(x) = \begin{cases} 0 & \text{if } x < 0 \\ x^2 & \text{if } x \ge 0 \end{cases}$. Then $f'(x) = \begin{cases} 0 & \text{if } x < 0 \\ 2x & \text{if } x \ge 0 \end{cases}$ is continuous but not differentiable.
- (b) If a function is continuously differentiable 100 times on \mathbb{R} then it is differentiable 101 times on \mathbb{R} .

The statement is false. Let
$$f(x) = \begin{cases} 0 & \text{if } x < 0 \\ x^{101} & \text{if } x \ge 0 \end{cases}$$
. Then $f^{(100)}(x) = \begin{cases} 0 & \text{if } x < 0 \\ 101!x & \text{if } x \ge 0 \end{cases}$ is continuous but not differentiable.