MATH 171
Test 3 - Solutions
May 9, 2005

1. Give the definition of an integrable function.
A function f : [a,b] — R is called integrable on [a,b] if f is bounded on |a,b] and for any
e > 0 there is a partition P of [a,b] such that U(f, P) — L(f, P) < e.

2. State the Fundamental Theorem of Calculus.
Let f : [a,b] — R.

(i) If f continuous on |a,b] and F(x) = / f(t)dt, then F is continuously differentiable
on la,b] and F'(z) = f(x). ’

(i) If f is differentiable on [a,b] and [ is integrable on [a,b], then/ f'@)dt = f(x)—f(a)
3. Prove that the harmonic series diverges.
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Therefore the series Z % diverges.
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4. Evaluate the integral: /1 ﬁdm

Let w = 2% 4+ 1, then du = 2xdx, %du = xdx, so
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5. (a) Prove that if Z ay, converges, then its partial sums s,, are bounded.
k=1
Ifz ar converges then the sequence of its partial sums {s,} converges. Since every
k=1
convergent sequence is bounded (Theorem 2.8), {s,} is bounded.

(b) Show that the converse of part (a) is false. Namely, she that a series Z a may have

k=1
bounded partial sums and still diverge.

Let aj, = (—=1)*. Then the sequence of partial sums onak is {—1,0,—1,0,...}. It

k=1
1s bounded but divergent, so the series diverges.



